Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = lunar environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1909 KiB  
Article
Evaluating the Suitability of Perfusion-Based PD Probes for Use in Altered Gravity Environments
by Madelyn MacRobbie, Vanessa Z. Chen, Cody Paige, David Otuya, Aleksandra Stankovic and Guillermo Tearney
Biosensors 2025, 15(8), 478; https://doi.org/10.3390/bios15080478 - 24 Jul 2025
Viewed by 304
Abstract
Measurable changes in electrophysiology have been documented in spaceflight, creating a pathway for disease genesis and progression in astronauts. These electrophysiology changes can be measured using potential difference (PD). A probe to measure PD was developed and is used clinically on Earth; this [...] Read more.
Measurable changes in electrophysiology have been documented in spaceflight, creating a pathway for disease genesis and progression in astronauts. These electrophysiology changes can be measured using potential difference (PD). A probe to measure PD was developed and is used clinically on Earth; this probe relies on fluid perfusion to establish an electrical connection to make PD measurements. The changes to fluid behavior in microgravity and partial gravity (including lunar and Martian gravity) drives the need to test this probe in a spaceflight environment. Here, we test the PD probe in a novel nasal cavity phantom in parabolic flight, simulating microgravity, lunar gravity, Martian gravity, and hypergravity conditions across 37 parabolas. The results are evaluated across gravity conditions using the Wilcoxon Rank Sum test. We record no statistically significant difference in probe PD measurements in 1 g, microgravity, lunar gravity, and hypergravity (approximately 1.8 g) conditions, reaching a NASA Technology Readiness Level 6. Martian gravity findings are inconclusive. Perfusion-based PD probes are therefore successfully demonstrated for use in spaceflight operation in microgravity, lunar gravity, and hypergravity environments; this establishes a foundation for moving towards the in-space testing of perfusion-based probes in astronauts. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

18 pages, 2884 KiB  
Review
Advances in Solidification Technologies of Lunar Regolith-Based Building Materials Under Extreme Lunar Environments
by Jun Chen and Ruilin Li
Buildings 2025, 15(14), 2543; https://doi.org/10.3390/buildings15142543 - 19 Jul 2025
Viewed by 416
Abstract
With the launch of the Artemis program and the International Lunar Research Station project, the construction of lunar bases has emerged as a global research focus. In situ manufacturing technologies for robust lunar regolith-based building materials are critical to ensuring building safety under [...] Read more.
With the launch of the Artemis program and the International Lunar Research Station project, the construction of lunar bases has emerged as a global research focus. In situ manufacturing technologies for robust lunar regolith-based building materials are critical to ensuring building safety under the Moon’s extreme environmental conditions. This paper reviews the relevant advancements in two areas: solidification technologies for lunar regolith-based construction materials and simulation techniques of extreme lunar environments. This review reveals that, although significant advancements have been made in solidification technologies, the development of lunar environment simulation technologies, particularly for 1/6 g gravity, has lagged, thereby hindering the assessment of the in situ applicability of these solidification methods. To address these limitations, this paper introduces a newly developed comprehensive lunar extreme environment simulation system based on superconducting magnetic suspension technology and its potential applications in lunar regolith-based construction material solidification. This review highlights the current progress and challenges in solidification techniques for lunar regolith-based building materials, aiming to enhance researchers’ attention to the extreme environmental conditions on the lunar surface. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

16 pages, 4576 KiB  
Article
EMM Project—LD GRIDS: Design of a Charged Dust Analyser for Moon Exploration
by Diego Scaccabarozzi, Abdelrahman Mohamed Ragab M. Ahmed, Andrea Appiani, Bortolino Saggin, Carmen Porto and Francesca Esposito
Designs 2025, 9(3), 70; https://doi.org/10.3390/designs9030070 - 10 Jun 2025
Viewed by 709
Abstract
This work presents a comparative design of the sensing elements for the Lunar Dust GRID System (LD GRIDS), a dust analyser conceived to measure charged particles on future lunar missions. LD GRIDS replaces traditional electrodes with continuous conductive grids, i.e., the sensing elements [...] Read more.
This work presents a comparative design of the sensing elements for the Lunar Dust GRID System (LD GRIDS), a dust analyser conceived to measure charged particles on future lunar missions. LD GRIDS replaces traditional electrodes with continuous conductive grids, i.e., the sensing elements of the instrument, which are able to collect induced charge when charged particles pass through them. The investigation focuses on evaluating the influence of various grid geometrical parameters (size, thickness, and patterns) on the sensor’s performance, either from an electrical or a mechanical perspective. All simulations were carried out using off-the-shelf numerical modelling software, where electrostatic simulation (i.e., induction performance), modal analysis, and quasi-static structural responses under a high acceleration quasi-static load were examined. The results indicate that while grids with round patterns tend to produce a higher induced charge, they also experience higher localised stresses compared to square pattern ones. Moreover, grid size does not significantly affect the instrument sensitivity, whereas increasing the grid thickness significantly reduces peak stresses, with only minor effects on electrostatic performance. Overall, the findings provided valuable insights for optimising the LD GRIDS design, aimed at balancing either electrostatic sensitivity or mechanical resistance, facing the harsh lunar environment. Full article
Show Figures

Figure 1

29 pages, 5292 KiB  
Article
Path Planning for Lunar Rovers in Dynamic Environments: An Autonomous Navigation Framework Enhanced by Digital Twin-Based A*-D3QN
by Wei Liu, Gang Wan, Jia Liu and Dianwei Cong
Aerospace 2025, 12(6), 517; https://doi.org/10.3390/aerospace12060517 - 8 Jun 2025
Viewed by 616
Abstract
In lunar exploration missions, rovers must navigate multiple waypoints within strict time constraints while avoiding dynamic obstacles, demanding real-time, collision-free path planning. This paper proposes a digital twin-enhanced hierarchical planning method, A*-D3QN-Opt (A-Star-Dueling Double Deep Q-Network-Optimized). The framework combines the A* algorithm for [...] Read more.
In lunar exploration missions, rovers must navigate multiple waypoints within strict time constraints while avoiding dynamic obstacles, demanding real-time, collision-free path planning. This paper proposes a digital twin-enhanced hierarchical planning method, A*-D3QN-Opt (A-Star-Dueling Double Deep Q-Network-Optimized). The framework combines the A* algorithm for global optimal paths in static environments with an improved D3QN (Dueling Double Deep Q-Network) for dynamic obstacle avoidance. A multi-dimensional reward function balances path efficiency, safety, energy, and time, while priority experience replay accelerates training convergence. A high-fidelity digital twin simulation environment integrates a YOLOv5-based multimodal perception system for real-time obstacle detection and distance estimation. Experimental validation across low-, medium-, and high-complexity scenarios demonstrates superior performance: the method achieves shorter paths, zero collisions in dynamic settings, and 30% faster convergence than baseline D3QN. Results confirm its ability to harmonize optimality, safety, and real-time adaptability under dynamic constraints, offering critical support for autonomous navigation in lunar missions like Chang’e and future deep space exploration, thereby reducing operational risks and enhancing mission efficiency. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 4496 KiB  
Article
Space Demonstration of All-Solid-State Lithium-Ion Batteries Aboard the International Space Station
by Yu Miyazawa, Takanobu Shimada, Tetsuhito Fuse, Shuhei Shimada, Sousuke Nishiura, Hidetake Okamoto, Tetsuya Okawa, Takeshi Hoshino, Osamu Kawasaki and Hitoshi Naito
Aerospace 2025, 12(6), 514; https://doi.org/10.3390/aerospace12060514 - 6 Jun 2025
Viewed by 683
Abstract
All-solid-state lithium-ion batteries (ASSBs) have a wide operating temperature range (−40 °C to +120 °C) and are expected to be applied to lunar exploration, which has become increasingly active in recent years. Since a ground development test confirmed that ASSBs are tolerant of [...] Read more.
All-solid-state lithium-ion batteries (ASSBs) have a wide operating temperature range (−40 °C to +120 °C) and are expected to be applied to lunar exploration, which has become increasingly active in recent years. Since a ground development test confirmed that ASSBs are tolerant of the space environment, in this study, a space demonstration test is conducted on the International Space Station (ISS). The battery was exposed in the ISS Exposed Section for 434 days. A total of 562 charge–discharge cycle tests were conducted, in addition to basic charge–discharge characterization, with no significant degradation observed in the charge–discharge characteristics or battery appearance. These results confirm that the battery operates reliably even in a complex space environment. This test confirmed that the lifetime characteristics of ASSBs can be estimated via ground-based charge–discharge characteristics, encouraging their potential application in space exploration. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 705 KiB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 607
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

17 pages, 7452 KiB  
Article
Determination of the Dynamic Angle of Repose of Lunar Regolith Simulants
by Mateusz Pawłowski, Damian Pietrusiak, Jakub Wróbel and Janusz Kozubal
Geosciences 2025, 15(6), 207; https://doi.org/10.3390/geosciences15060207 - 2 Jun 2025
Viewed by 436
Abstract
The determination of the dynamic angle of repose (DAR) of lunar regolith simulants is essential for modeling material behavior during in situ resource utilization (ISRU) processes and lunar surface operations. This study presents a methodology and dedicated test rig employing digital image processing [...] Read more.
The determination of the dynamic angle of repose (DAR) of lunar regolith simulants is essential for modeling material behavior during in situ resource utilization (ISRU) processes and lunar surface operations. This study presents a methodology and dedicated test rig employing digital image processing to measure DAR for seven lunar regolith simulants, representing both Mare and Highland regions. Experiments were conducted under terrestrial gravity at rotational drum speeds of 2, 5, and 10 RPM, with standardized material fill and image capture procedures. For each simulant, lower, higher, and total DAR values were recorded, indicating complex dependencies on particle size distribution, mineralogy, and rotational speed. These measurements provide a critical dataset for numerical model calibration and the simulation of regolith handling systems under lunar conditions. The findings emphasize the necessity of selecting appropriate DAR parameters based on regolith type and operational scale to ensure accurate predictions of granular flow behavior in extraterrestrial environments. Full article
Show Figures

Figure 1

33 pages, 13813 KiB  
Review
Advances in Thermal Management for Liquid Hydrogen Storage: The Lunar Perspective
by Jing Li, Fulin Fan, Jingkai Xu, Heran Li, Jian Mei, Teng Fei, Chuanyu Sun, Jinhai Jiang, Rui Xue, Wenying Yang and Kai Song
Energies 2025, 18(9), 2220; https://doi.org/10.3390/en18092220 - 27 Apr 2025
Viewed by 811
Abstract
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage [...] Read more.
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage and management under the extreme lunar environment characterized by wide temperature variations, low pressure, and low gravity. This paper reviews the strategies for siting and deployment of liquid hydrogen storage systems on the Moon and the technical challenges posed by the lunar environment, with particular attention for thermal management technologies. Passive technologies include advanced insulation materials, thermal shielding, gas-cooled shielding layers, ortho-para hydrogen conversion, and passive venting, which optimize insulation performance and structural design to effectively reduce evaporation losses and maintain storage stability. Active technologies, such as cryogenic fluid mixing, thermodynamic venting, and refrigeration systems, dynamically regulate heat transfer and pressure variations within storage tanks, further enhancing storage efficiency and system reliability. In addition, this paper explores boil-off hydrogen recovery and reutilization strategies for liquid hydrogen, including hydrogen reliquefaction, mechanical, and non-mechanical compression. By recycling vaporized hydrogen, these strategies reduce resource waste and support the sustainable development of energy systems for lunar bases. In conclusion, this paper systematically evaluates passive and active thermal management technologies as well as vapor recovery strategies along with their technical adaptability, and then proposes feasible storage designs for the lunar environment. These efforts provide critical theoretical foundations and technical references for achieving safe and efficient storage of liquid hydrogen and energy self-sufficiency in lunar bases. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

17 pages, 7946 KiB  
Article
Optical Camera Characterization for Feature-Based Navigation in Lunar Orbit
by Pierluigi Federici, Antonio Genova, Simone Andolfo, Martina Ciambellini, Riccardo Teodori and Tommaso Torrini
Aerospace 2025, 12(5), 374; https://doi.org/10.3390/aerospace12050374 - 26 Apr 2025
Viewed by 559
Abstract
Accurate localization is a key requirement for deep-space exploration, enabling spacecraft operations with limited ground support. Upcoming commercial and scientific missions to the Moon are designed to extensively use optical measurements during low-altitude orbital phases, descent and landing, and high-risk operations, due to [...] Read more.
Accurate localization is a key requirement for deep-space exploration, enabling spacecraft operations with limited ground support. Upcoming commercial and scientific missions to the Moon are designed to extensively use optical measurements during low-altitude orbital phases, descent and landing, and high-risk operations, due to the versatility and suitability of these data for onboard processing. Navigation frameworks based on optical data analysis have been developed to support semi- or fully-autonomous onboard systems, enabling precise relative localization. To achieve high-accuracy navigation, optical data have been combined with complementary measurements using sensor fusion techniques. Absolute localization is further supported by integrating onboard maps of cataloged surface features, enabling position estimation in an inertial reference frame. This study presents a navigation framework for optical image processing aimed at supporting the autonomous operations of lunar orbiters. The primary objective is a comprehensive characterization of the navigation camera’s properties and performance to ensure orbit determination uncertainties remain below 1% of the spacecraft altitude. In addition to an analysis of measurement noise, which accounts for both hardware and software contributions and is evaluated across multiple levels consistent with prior literature, this study emphasizes the impact of process noise on orbit determination accuracy. The mismodeling of orbital dynamics significantly degrades orbit estimation performance, even in scenarios involving high-performing navigation cameras. To evaluate the trade-off between measurement and process noise, representing the relative accuracy of the navigation camera and the onboard orbit propagator, numerical simulations were carried out in a synthetic lunar environment using a near-polar, low-altitude orbital configuration. Under nominal conditions, the optical measurement noise was set to 2.5 px, corresponding to a ground resolution of approximately 160 m based on the focal length, pixel pitch, and altitude of the modeled camera. With a conservative process noise model, position errors of about 200 m are observed in both transverse and normal directions. The results demonstrate the estimation framework’s robustness to modeling uncertainties, adaptability to varying measurement conditions, and potential to support increased onboard autonomy for small spacecraft in deep-space missions. Full article
(This article belongs to the Special Issue Planetary Exploration)
Show Figures

Figure 1

9 pages, 2040 KiB  
Proceeding Paper
A Thermal and Structural Assessment of a Conceptual Lunar Micro Rover Design with the Aim of Night Survivability
by Leon Spies, Joel Gützlaff, Daniel Zinken and Markus Czupalla
Eng. Proc. 2025, 90(1), 93; https://doi.org/10.3390/engproc2025090093 - 8 Apr 2025
Viewed by 414
Abstract
The SAMLER-KI (Semi-autonomous Micro Rover for Lunar Exploration using Artificial Intelligence) project aims to open up further potential for future lunar micro rover missions. The focus is on the conceptual design of a micro rover with a higher level of autonomy and the [...] Read more.
The SAMLER-KI (Semi-autonomous Micro Rover for Lunar Exploration using Artificial Intelligence) project aims to open up further potential for future lunar micro rover missions. The focus is on the conceptual design of a micro rover with a higher level of autonomy and the ability to survive the lunar night. Achieving this capability requires a sophisticated thermal design to endure the harsh lunar environment and maintain acceptable temperatures not only during the extreme cold of the lunar night but also while addressing the power demands of autonomous exploration activities during daytime operations. Simultaneously, the structural design must withstand the vibration loads experienced during rocket launch. The design process is challenged by the conflicting requirements between the structural and thermal subsystems, further compounded by the mission’s mass requirement of 20 kg. An initial rover design has been developed in alignment with these requirements and the overall mission scenario. This paper presents a structural and thermal assessment of the preliminary rover design concept under mission-relevant load conditions. The analyses identify critical design weaknesses, including major parasitic thermal pathways and structurally vulnerable components. Although the current design does not yet meet the imposed requirements, the findings provide essential insights into critical areas that show potential for improvement. These results are expected to guide future iterations towards achieving a feasible and robust thermal and structural design. Full article
Show Figures

Figure 1

19 pages, 4067 KiB  
Article
Improving Lunar Soil Simulant for Plant Cultivation: Earthworm-Mediated Organic Waste Integration and Plant-Microbe Interactions
by Zhongfu Wang, Sihan Hou, Boyang Liao, Zhikai Yao, Yuting Zhu, Hong Liu and Jiajie Feng
Plants 2025, 14(7), 1046; https://doi.org/10.3390/plants14071046 - 27 Mar 2025
Viewed by 668
Abstract
Long-term human residence on the Moon is an inevitable trend in lunar exploration, necessitating the development of Bioregenerative Life Support Systems (BLSSs). In BLSSs, plant cultivation serves as the core functional unit, requiring substantial amounts of cultivation substrates. Lunar soil has potential as [...] Read more.
Long-term human residence on the Moon is an inevitable trend in lunar exploration, necessitating the development of Bioregenerative Life Support Systems (BLSSs). In BLSSs, plant cultivation serves as the core functional unit, requiring substantial amounts of cultivation substrates. Lunar soil has potential as a cultivation substrate, but its suitability for plant growth must be improved to meet life-support requirements. As a fine-grained, organics-free, in situ resource, lunar soil’s high compaction significantly restricts crops’ root access to oxygen, water, and nutrients. While the addition of organic solid waste—a byproduct of BLSSs—could alleviate compaction, issues such as salinization, incomplete decomposition, and the presence of pathogens pose risks to crop health. In this study, we introduced earthworms into wheat cultivation systems to gradually digest, transfer (as vermicompost), and mix solid waste with a lunar soil simulant substrate. We set five experimental groups: a positive control group using vermiculite (named as V) as the optimal growth substrate, a negative control group using pure lunar soil simulant (LS), and three treatment groups using lunar soil simulant with solid waste and 15 (LS+15ew), 30 (LS+30ew), and 45 (LS+45ew) earthworms added. Our results demonstrated significant improvements in both compaction (e.g., bulk density, hydraulic conductivity) and salinization (e.g., salinity, electrical conductivity), likely due to the improved soil aggregate structures, which increased the porosity and ion adsorption capacity of the soil. Additionally, the microbial community within the substrate shifted toward a cooperative pattern dominated by significantly enriched plant probiotics. Consequently, the cultivated wheat achieved approximately 80% of the growth parameters (including production) compared to the control group grown in vermiculite with nutrient solution (representing ideal cultivation conditions), indicating sufficient nutrient supply from the mineralized waste. We can conclude that the earthworms “complementarily” improved the lunar soil simulant and organic waste by addressing compaction and salinization, respectively, leading to comprehensive improvements in key parameters, including the microbial environment. This study proposes a conceptual framework for improving lunar soil for crop cultivation, and it innovatively introduces earthworms as a preliminary yet effective solution. These findings provide a feasible and inspiring foundation for future lunar agriculture. Full article
Show Figures

Figure 1

10 pages, 1430 KiB  
Proceeding Paper
Improvement of PNT Performances Using DLCNS in the Lunar Navigation System
by Andrea Massaccesi, Marco Fortunato, Jacopo Capolicchio and Lorenzo Marchionne
Eng. Proc. 2025, 88(1), 18; https://doi.org/10.3390/engproc2025088018 - 25 Mar 2025
Viewed by 328
Abstract
The increasing complexity of lunar exploration missions necessitates stricter navigation requirements, especially when human life is involved. Extensive research is currently being conducted on various positioning systems suitable for the lunar environment. These include both the exploitation of terrestrial GNSS (Global Navigation Satellite [...] Read more.
The increasing complexity of lunar exploration missions necessitates stricter navigation requirements, especially when human life is involved. Extensive research is currently being conducted on various positioning systems suitable for the lunar environment. These include both the exploitation of terrestrial GNSS (Global Navigation Satellite System) signals, and the deployment of a lunar-dedicated satellite system known as the Lunar Communication and Navigation Service (LCNS). In order to meet the demanding navigation requirements, the usage of one or more lunar beacons to enhance Positioning, Navigation, and Timing (PNT) performance for different assets is under investigation to complement the LCNS system. This research aims to demonstrate the improvement of PNT accuracy by exploiting Differential LCNS (DLCNS) positioning techniques. To this end, both Single Point Positioning (SPP) and DLCNS techniques along with estimation algorithms such as Weighted Least Squares (WLS) and Extended Kalman Filter (EKF) were developed in a simulated lunar environment to assess their performances. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

40 pages, 14878 KiB  
Article
Selection of Landing Sites for the Chang’E-7 Mission Using Multi-Source Remote Sensing Data
by Fei Zhao, Pingping Lu, Tingyu Meng, Yanan Dang, Yao Gao, Zihan Xu, Robert Wang and Yirong Wu
Remote Sens. 2025, 17(7), 1121; https://doi.org/10.3390/rs17071121 - 21 Mar 2025
Cited by 1 | Viewed by 1660
Abstract
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both [...] Read more.
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both a safe landing and the successful achievement of its scientific objectives. This study presents a method for landing site selection in the challenging environment of the lunar south pole, utilizing multi-source remote sensing data. First, the likelihood of water ice in all cold traps within 85°S is assessed and prioritized using neutron spectrometer and hyperspectral data, with the most promising cold traps selected for sampling by CE-7’s mini-flying probe. Slope and illumination data are then used to screen feasible landing sites in the south polar region. Feasible landing sites near cold traps are aggregated into larger landing regions. Finally, high-resolution illumination maps, along with optical and radar images, are employed to refine the selection and identify the optimal landing sites. Six potential landing sites around the de Gerlache crater, an unnamed cold trap at (167.10°E, 88.71°S), Faustini crater, and Shackleton crater are proposed. It would be beneficial for CE-7 to prioritize mapping these sites post-launch using its high-resolution optical camera and radar for further detailed landing site investigation and evaluation. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

21 pages, 8195 KiB  
Article
Application of Response Surface Methodology in Lunar Deep Rock Layer Drilling Experiments in Low-Temperature and Anhydrous Environments
by Xinyue Zou, Qian Li and Lanlan Xie
Aerospace 2025, 12(3), 254; https://doi.org/10.3390/aerospace12030254 - 18 Mar 2025
Viewed by 333
Abstract
The Chang’e project has completed a sampling mission of the shallow lunar soil layer; however, the exploration of the deep lunar rock layer remains unaddressed. To further investigate the feasibility of deep lunar rock drilling and identify the factors affecting the rate of [...] Read more.
The Chang’e project has completed a sampling mission of the shallow lunar soil layer; however, the exploration of the deep lunar rock layer remains unaddressed. To further investigate the feasibility of deep lunar rock drilling and identify the factors affecting the rate of penetration (ROP) and power in low-temperature, H2O less environment, a model was developed. This study utilized the Box–Behnken method to design a response surface experiment, where the number of polycrystalline diamond compact (PDC) cutters, the backward inclination angle, the chip removal conditions, and the temperature were considered as the key influencing factors. A response surface model for ROP and power was established. The results indicated that the number of PDC cutters, the backward inclination angle, the chip removal conditions, and the temperature significantly affected both ROP and power, with the interaction between the temperature and the backward inclination angle having a particularly strong impact on the ROP. The regression model demonstrated high predictive accuracy for both ROP and power, with goodness of fit (R2) values of 0.95 and 0.96, respectively. The optimal combination of the backward inclination angle, number of PDC cutters, temperature, and chip removal conditions, derived from the response surface experiment, was 25°, four, −15 °C, and 1, respectively, which resulted in high drilling efficiency and low power consumption. This study offers new insights for the design of deep lunar drilling experiments, as well as support for the future optimization of drilling tools. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

10 pages, 3964 KiB  
Proceeding Paper
Thermal Interaction of Mobile Ground Systems with Boulders on the Lunar Surface
by Joel Guetzlaff, Philipp Reiss and Markus Czupalla
Eng. Proc. 2025, 90(1), 35; https://doi.org/10.3390/engproc2025090035 - 13 Mar 2025
Viewed by 230
Abstract
The paper at hand evaluates the necessity of depicting topographic features like boulders on the lunar environment in thermal analyses for a size of up to 6.5 m in diameter. The question regarding the thermal influence becomes relevant when analysing a technical system [...] Read more.
The paper at hand evaluates the necessity of depicting topographic features like boulders on the lunar environment in thermal analyses for a size of up to 6.5 m in diameter. The question regarding the thermal influence becomes relevant when analysing a technical system within the lunar environment. This influence on the thermal behaviour of a test object is investigated in sensitivity studies. It is shown that the local surroundings can significantly alter a system’s net heat flux and can lead to overheating or critically cooling down instead of theoretically surviving when not considering local topographic features. Especially for small and lightweight systems ≤20 kg, like micro rovers, the effect of the surrounding on the system’s temperature becomes critical due to the low thermal capacity. Thus, it is a substantial aspect to be accounted for during the design phase as well as in mission operation. Full article
Show Figures

Figure 1

Back to TopTop