Space Demonstration of All-Solid-State Lithium-Ion Batteries Aboard the International Space Station
Abstract
1. Introduction
2. Fundamental Properties of All-Solid-State Lithium-Ion Batteries
2.1. Charge–Discharge Characteristics
2.2. Environmental Tests
2.2.1. Vibration Tests
2.2.2. High-Temperature Storage Tests
2.2.3. High-Temperature Charge–Discharge Tests Under Vacuum
2.2.4. Low-Temperature Storage Tests
2.2.5. Simulated Lunar Surface Operation Test
2.2.6. Gamma-Ray Irradiation Test
3. Space Demonstration Experiment
3.1. Overview of the Space Demonstration Experiment
- Charging function: CC charging control at rates of 0.1 C and 0.2 C.
- Discharge function: Constant resistance discharge control at rates of 0.1 C, 0.5 C, and 1.0 C.
- Continuous charge–discharge operation.
- Battery safety protection: Overcurrent protection, overcharge protection, and overdischarge protection.
- Battery temperature control function.
- The 360° camera imaging function, powered by the demonstration battery.
- Power and communication interface functions with ISS/SPySE.
3.2. Operation of the Space Demonstration
4. Results
4.1. Fundamental Charge–Discharge Characteristics
4.2. Continuous Charge–Discharge Cycle Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Creech, S.; Guidi, J.; Elburn, D. Artemis: An overview of NASA’s activities to return humans to the MOON. In Proceedings of the 2022 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2022. [Google Scholar]
- NASA. Moon to Mars Architecture. Available online: https://www.nasa.gov/moontomarsarchitecture/ (accessed on 3 March 2025).
- Pathak, A.D.; Saha, A.; Bharti, V.K.; Gaikwad, M.M.; Sharma, C.S. A review on battery technology for space application. J. Energy Storage 2023, 61, 106792. [Google Scholar] [CrossRef]
- Williams, J.P.; Paige, D.A.; Greenhagen, B.T.; Sefton-Nash, E. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus 2017, 283, 300–325. [Google Scholar] [CrossRef]
- Chatain, A.; Spiga, A.; Banfield, D.; Forget, F.; Murdoch, N. Seasonal Variability of the Daytime and Nighttime Atmospheric Turbulence Experienced by InSight on Mars. Geophys. Res. Lett. 2021, 48, e2021GL095453. [Google Scholar] [CrossRef]
- Na, D.; Kampara, R.K.; Yu, D.; Yoon, B.; Martin, S.W.; Seo, I. Li1.4Al0.4Ti1.6(PO4)3 inorganic solid electrolyte for all-solid-state Li–CO2 batteries with MWCNT and Ru nanoparticle catalysts. Mater. Today Energy 2023, 38, 101418. [Google Scholar] [CrossRef]
- Zhu, Q.-C.; Ma, J.; Huang, J.-H.; Mao, D.-Y.; Wang, K.-X. Realizing long-cycling solid-state Li–CO2 batteries using Zn-doped LATP ceramic electrolytes. Chem. Eng. J. 2024, 482, 148977. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, W.Q. From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. Nano-Micro Lett. 2024, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Machín, A.; Morant, C.; Márquez, F. Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations. Batteries 2024, 10, 29. [Google Scholar] [CrossRef]
- Toyota, H.; Miyazawa, Y.; Kanaya, S.; Kukita, A.; Kondo, H.; Koide, K.; Kuhara, T.; Nakamura, K.; Kawano, T.; Naito, H.; et al. Development of Lithium-ion Pouch Cell Using Stainless Steel Laminated Film for JAXA’s Lunar Lander SLIM. Trans. Jpn. Soc. Aero. Space Sci. 2023, 66, 199–208. [Google Scholar] [CrossRef]
- Reddy, M.V.; Julien, C.M.; Mauger, A.; Zaghib, K. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials 2020, 10, 1606. [Google Scholar] [CrossRef] [PubMed]
- Naito, H.; Shimada, T.; Shimada, S.; Yamada, C.; Hoshino, T. Assessment of All Solid State Battery for Spacecraft. Ceramics 2019, 54, 316–320. [Google Scholar]
- Kanadevia. All-Solid-State Lithium-Ion Batteries. Available online: https://www.kanadevia.com/english/business/field/functional/as-lib.html (accessed on 3 March 2025).
- Shulman, H.; Ginell, S.W. Nuclear and Space Radiation Effects on materials. NASA SP-8053 1970. Available online: https://ntrs.nasa.gov/citations/19710015558 (accessed on 3 March 2025).
- Leita, G.; Bozzini, B. Impact of space radiation on lithium-ion batteries: A review from a radiation electrochemistry perspective. J. Energy Storage 2024, 100, 113406. [Google Scholar] [CrossRef]
- Tan, C.; Lyons, D.J.; Pan, K.; Leung, K.Y.; Chuirazzi, W.C.; Canova, M.; Co, A.C.; Cao, L.R. Radiation effects on the electrode and electrolyte of a lithium-ion battery. J. Power Sources 2016, 318, 242–250. [Google Scholar] [CrossRef]
- Nikicio, A.N.; Loke, W.-T.; Kamdar, H.; Goh, C.-H. Radiation Analysis and Mitigation Framework for LEO Small Satellites. In Proceedings of the 2017 IEEE International Conference on Communication, Networks and Satellite, Semarang, Indonesia, 5–7 October 2017. [Google Scholar]
- Mazur, J.E.; Zeitlin, C.; Schwadron, N.; Looper, M.D.; Townsend, L.W.; Blake, J.B.; Spence, H. Update on Radiation Dose From Galacticand Solar Protons at the Moon Usingthe LRO/CRaTER Microdosimeter. Space Weather. 2015, 13, 363–364. [Google Scholar] [CrossRef]
- Kodaira, S.; Naito, M.; Uchihori, Y.; Hashimoto, H.; Yano, H.; Yamagishi, A. Space Radiation Dosimetry at the Exposure Facility of the International Space Station for the Tanpopo Mission. Astrobiology 2021, 21, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Eight Nations Sign Artemis According on Space Exploration. Available online: https://www.mext.go.jp/en/news/topics/detail/mext_00032.html (accessed on 3 March 2025).
Property | Specification |
---|---|
Cathode Active Materials | NCM (nickel–cobalt–manganese) |
Anode Active Material | Graphite-based |
Solid Electrolyte | Sulfide type (Li6PS5X) |
Dimensions | 5 mm × 65.5 mm × 2.7 mm |
Weight | 25 g |
Voltage Range | 2.70–4.15 V |
Nominal Voltage | 3.65 V |
Capacity | 140 mAh |
MAX Charge–Discharge Rate (Recommended) | Charge: 0.1 C Discharge: max. 1.0 C |
Operation Temperature Range (Recommended) | Charge: +20~+120 °C Discharge: −40~+120 °C |
Frequency | Level | |
---|---|---|
Sinusoidal vibration test | 5–27.9 Hz | Maximum amplitude: 6.4 mm |
27.9–100 Hz | 196 m/s2 | |
Random vibration test | 20–58 Hz | +6 dB/oct. |
58–700 Hz | 48.02 m2/s3 | |
700–2000 Hz | −6 dB/oct. | |
23.63 g |
Temp | Charge Rate | Cut-Off Voltage | Discharge Rate | Cut-Off Voltage | |
---|---|---|---|---|---|
Charge–discharge characteristics | 20 °C, 23 °C, 40 °C | 0.1 C, 0.2 C | 4.15 V | 0.1 C, 0.5 C, 1 C | 2.70 V |
Continuous cycle characteristics | 20 °C | 0.2 C | 4.15 V | 0.5 C | 2.70 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyazawa, Y.; Shimada, T.; Fuse, T.; Shimada, S.; Nishiura, S.; Okamoto, H.; Okawa, T.; Hoshino, T.; Kawasaki, O.; Naito, H. Space Demonstration of All-Solid-State Lithium-Ion Batteries Aboard the International Space Station. Aerospace 2025, 12, 514. https://doi.org/10.3390/aerospace12060514
Miyazawa Y, Shimada T, Fuse T, Shimada S, Nishiura S, Okamoto H, Okawa T, Hoshino T, Kawasaki O, Naito H. Space Demonstration of All-Solid-State Lithium-Ion Batteries Aboard the International Space Station. Aerospace. 2025; 12(6):514. https://doi.org/10.3390/aerospace12060514
Chicago/Turabian StyleMiyazawa, Yu, Takanobu Shimada, Tetsuhito Fuse, Shuhei Shimada, Sousuke Nishiura, Hidetake Okamoto, Tetsuya Okawa, Takeshi Hoshino, Osamu Kawasaki, and Hitoshi Naito. 2025. "Space Demonstration of All-Solid-State Lithium-Ion Batteries Aboard the International Space Station" Aerospace 12, no. 6: 514. https://doi.org/10.3390/aerospace12060514
APA StyleMiyazawa, Y., Shimada, T., Fuse, T., Shimada, S., Nishiura, S., Okamoto, H., Okawa, T., Hoshino, T., Kawasaki, O., & Naito, H. (2025). Space Demonstration of All-Solid-State Lithium-Ion Batteries Aboard the International Space Station. Aerospace, 12(6), 514. https://doi.org/10.3390/aerospace12060514