Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = low-salinity water flood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3723 KB  
Article
Micron CT Study of Pore Structure Changes and Micro-Scale Remaining Oil Distribution Characteristics During Low-Mineralization Water Flooding in Sandstone Reservoirs
by Liang Huang, Tiancong Mao, Xiaoli Xiao, Hongying Zhang, Minghai Zhang and Lei Tang
Energies 2025, 18(24), 6377; https://doi.org/10.3390/en18246377 - 5 Dec 2025
Viewed by 292
Abstract
Low-salinity water flooding is a commonly used method to enhance oil recovery. At the microscopic scale, changes in pore structure and the distribution of remaining oil are critical to the effectiveness of water flooding. However, current research on the relationship between pore structure [...] Read more.
Low-salinity water flooding is a commonly used method to enhance oil recovery. At the microscopic scale, changes in pore structure and the distribution of remaining oil are critical to the effectiveness of water flooding. However, current research on the relationship between pore structure and remaining oil distribution is relatively limited. Therefore, this study employed micro-CT technology to analyze changes in pore structure and the distribution characteristics of remaining oil in sandstone cores during the water flooding process. Micron CT technology provides non-destructive, high-resolution three-dimensional imaging, clearly revealing the dynamic changes in the oil-water interface and remaining oil. The experiments included water saturation, oil saturation, and multi-stage water displacement processes in sandstone cores with different permeability values. The results show that the oil saturation in the rock core decreases during water flooding, and the morphology of remaining oil changes with increasing water flooding volume: cluster-like remaining oil decreases rapidly, while porous and membrane-like remaining oil gradually transforms, and columnar and droplet-like remaining oil increases under specific conditions. The study results indicate that at 1 PV flooding volume, the crude oil recovery rate reaches 57.56%; at 5 PV, the recovery rate increases to 64.00%; and at 100 PV, the recovery rate reaches 75.53%. This indicates that water flooding significantly improves recovery rates by enhancing wettability and capillary forces. Meanwhile, pore connectivity decreases, and particle migration becomes prominent, especially for particles smaller than 20 μm. These changes have significant impacts on remaining oil distribution and recovery rates. This study provides microscopic evidence for optimizing reservoir development strategies and holds important implications for enhancing recovery rates in mature oilfields. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

22 pages, 4279 KB  
Article
Development and Mechanism of the Graded Polymer Profile-Control Agent for Heterogeneous Heavy Oil Reservoirs Under Water Flooding
by Tiantian Yu, Wangang Zheng, Xueqian Guan, Aifen Li, Dechun Chen, Wei Chu and Xin Xia
Gels 2025, 11(11), 856; https://doi.org/10.3390/gels11110856 - 26 Oct 2025
Viewed by 456
Abstract
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, [...] Read more.
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, resulting in a limited effective radius and short functional duration—this study developed a polymeric graded profile-control agent suitable for highly heterogeneous conditions. The physicochemical properties of the system were comprehensively evaluated through systematic testing of its apparent viscosity, salt tolerance, and anti-aging performance. The microscopic oil displacement mechanisms in porous media were elucidated by combining CT scanning and microfluidic visual displacement experiments. Experimental results indicate that the agent exhibits significant hydrophobic association behavior, with a critical association concentration of 1370 mg·L−1, and demonstrates a “low viscosity at low temperature, high viscosity at high temperature” rheological characteristic. At a concentration of 3000 mg·L−1, the apparent viscosity of the solution is 348 mPa·s at 30 °C, rising significantly to 1221 mPa·s at 70 °C. It possesses a salinity tolerance of up to 50,000 mg·L−1, and a viscosity retention rate of 95.4% after 90 days of high-temperature aging, indicating good injectivity, reservoir compatibility, and thermal stability. Furthermore, within a concentration range of 500–3000 mg·L−1, the agent can effectively emulsify Gudao heavy oil, forming O/W emulsion droplets with sizes ranging from 40 to 80 μm, enabling effective plugging of pore throats of corresponding sizes. CT scanning and microfluidic displacement experiments further reveal that the agent possesses a graded control function: in the near-wellbore high-concentration zone, it primarily relies on its aqueous phase viscosity-increasing capability to control the mobility ratio; upon entering the deep reservoir low-concentration zone, it utilizes “emulsion plugging” to achieve fluid diversion, thereby expanding the sweep volume and extending the effective treatment period. This research outcome provides a new technical pathway for the efficient development of highly heterogeneous heavy oil reservoirs. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

19 pages, 3706 KB  
Article
Synergy of Low Injection Resistance and High Plugging in a High-Strength Nanobentonite/Amphoteric Polymer Gel
by Huaizhu Liu, Guiqiang Fei, Kaiping Tian, Zhao Zhu, Donghang Ji and Houyong Luo
Gels 2025, 11(11), 847; https://doi.org/10.3390/gels11110847 - 23 Oct 2025
Viewed by 323
Abstract
Long-term water flooding development has exacerbated reservoir heterogeneity, and traditional polymer gels are unable to simultaneously meet the requirements of high injectability and strong plugging strength. If the viscosity of the polymer is high, its injectability will be poor; on the contrary the [...] Read more.
Long-term water flooding development has exacerbated reservoir heterogeneity, and traditional polymer gels are unable to simultaneously meet the requirements of high injectability and strong plugging strength. If the viscosity of the polymer is high, its injectability will be poor; on the contrary the viscosity is low, the plugging strength will be poor, which severely restricts the oil recovery effect. This study synthesized an NBAP through free radical polymerization followed by a substitution reaction, and a plugging system (NBAP-B1) was subsequently formed by combining the polymer with a Cr3+ crosslinking agent. Rheological experiments demonstrated that the system exhibited significant shear thinning behavior, as well as excellent temperature and salt resistance. Gelation experiments indicated that the NBAP-B1 system featured controllable gelation time (20~150 h) and high gelation strength (J grade), along with excellent resistance to both high temperature and high salinity. Microscopic analysis revealed that the gel formed by NBAP-B1 possessed a dense and uniform three-dimensional network structure. Injection and plugging experiments demonstrated that NBAP-B1 exhibited optimal injectability and outstanding plugging performance. Additionally, profile control and displacement tests revealed a 18.37% enhancement in oil recovery efficiency by water flooding after the application of NBAP-B1 for conformance control. Collectively, these results demonstrate that the NBAP exhibits significantly superior performance compared to single component systems. It combines excellent injectability with high strength plugging capability, offering an effective approach for enhancing oil recovery in low permeability reservoirs. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

34 pages, 15906 KB  
Article
Investigation of the Relationship Between Reservoir Sensitivity and Injectivity Impedance in Low-Permeability Reservoirs
by Baolei Liu, Youqi Wang, Hongmin Yu, Xiang Li and Lingfeng Zhao
Processes 2025, 13(10), 3283; https://doi.org/10.3390/pr13103283 - 14 Oct 2025
Viewed by 485
Abstract
In low-permeability reservoirs, studying reservoir sensitivity is crucial for optimizing water flooding, as it identifies detrimental mineral-fluid interactions that can cause formation damage and reduce injection efficiency. However, existing diagnostic methods for sensitivity-induced damage rely on post-facto pressure monitoring and lack a quantitative [...] Read more.
In low-permeability reservoirs, studying reservoir sensitivity is crucial for optimizing water flooding, as it identifies detrimental mineral-fluid interactions that can cause formation damage and reduce injection efficiency. However, existing diagnostic methods for sensitivity-induced damage rely on post-facto pressure monitoring and lack a quantitative relationship between sensitivity factors and water injectivity impairment. Furthermore, correlating microscale interactions with macroscopic injectivity parameters remains challenging, causing current models to inadequately represent actual injection behavior. This study combines microscopic techniques (e.g., SEM, XRD, NMR) with macroscopic core flooding experiments under various sensitivity-inducing conditions to analyze the influence of reservoir mineral composition on flow capacity, evaluate formation sensitivity, and assess the dynamic impact on water injectivity. The quantitative relationship between clay minerals and injectivity impairment in low-permeability reservoirs is also investigated. The results indicate that flow capacity is predominantly governed by the type and content of sensitive minerals. In water-sensitive reservoirs, water injection induces clay swelling and migration, leading to flow path reconfiguration and water-blocking effects. In salt-sensitive formations, high-salinity water promotes salt precipitation within pore throats, reducing permeability. In velocity-sensitive formations, fine particle migration causes flow resistance to initially increase slightly and then gradually decline with continued injection. Acidizing generally enhances pore connectivity but induces pore-throat plugging in chlorite-rich reservoirs. Alkaline fluids can exacerbate heterogeneity and generate precipitates, though appropriate concentrations may improve connectivity. Under low effective stress, rock dilation increases porosity and permeability, while elevated stress causes compaction, increasing flow impedance. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

15 pages, 4175 KB  
Article
Mapping the Impact of Salinity Derived by Shrimp Culture Ponds Using the Frequency-Domain EM Induction Method
by Albert Casas-Ponsatí, José A. Beltrão-Sabadía, Evanimek B. Sabino da Silva, Lucila C. Monte-Egito, Anderson de Medeiros-Souza, Josefina C. Tapias, Alex Sendrós and Francisco Pinheiro Lima-Filho
Water 2025, 17(19), 2903; https://doi.org/10.3390/w17192903 - 7 Oct 2025
Viewed by 614
Abstract
This study investigates groundwater salinization in a section of a coastal aquifer in Rio Grande do Norte, Brazil, using frequency-domain electromagnetic (FDEM) measurements. With the global expansion of shrimp farming in ecologically sensitive coastal regions, there is an urgent need to assess associated [...] Read more.
This study investigates groundwater salinization in a section of a coastal aquifer in Rio Grande do Norte, Brazil, using frequency-domain electromagnetic (FDEM) measurements. With the global expansion of shrimp farming in ecologically sensitive coastal regions, there is an urgent need to assess associated risks and promote sustainable management practices. A key concern is the prolonged flooding of shrimp ponds, which accelerates saltwater infiltration into surrounding areas. To better delineate salinization plumes, we analyzed direct groundwater salinity measurements from 14 wells combined with 315 subsurface apparent conductivity measurements obtained using the FDEM method. Correlating these datasets improved the accuracy of salinity mapping, as evidenced by reduced variance in kriging interpolation. By integrating hydrogeological, hydrogeochemical, and geophysical approaches, this study provides a comprehensive characterization of groundwater salinity in the study area. Hydrogeological investigations delineated aquifer properties and flow dynamics; hydrogeochemical analyses identified salinity levels and water quality indicators; and geophysical surveys provided spatially extensive conductivity measurements essential for detecting and mapping saline intrusions. The combined insights from these methodologies enable a more precise assessment of salinity sources and support the development of more effective groundwater management strategies. Our findings demonstrate the effectiveness of integrating geophysical surveys with hydrogeological and hydrogeochemical data, confirming that shrimp farm ponds are a significant source of groundwater contamination. This combined methodology offers a low-impact, cost-effective approach that can be applied to other coastal regions facing similar environmental challenges. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 5930 KB  
Article
Modulating Mechanisms of Surfactants on Fluid/Fluid/Rock Interfacial Properties for Enhanced Oil Recovery: A Multi-Scale Evaluation from SARA-Based Experiments to Atomistic Simulations
by Yiming Wang, Xinru Liang, Jinze Du, Yuxing Tan, Yu Sun, Gaobo Yu, Jinjian Hou, Zhenda Tan and Jiacheng Li
Coatings 2025, 15(10), 1146; https://doi.org/10.3390/coatings15101146 - 2 Oct 2025
Viewed by 519
Abstract
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in [...] Read more.
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in carbonate reservoirs through laboratory analyses and displacement experiments. Results show that oil recovery efficiency is largely driven by rock–fluid interactions rather than fluid–fluid interactions, with optimal brine concentrations enhancing wettability alteration, boundary flexibility, and mineral leaching. These findings highlight the importance of considering both fluid–rock interactions and mineral reactivity, rather than attributing recovery to a single mechanism. Molecular dynamics simulations further supported the experimental observations. Overall, the study emphasizes that early and well-designed low-salinity injection strategies can maximize LSWF performance. The results elucidate the key interaction mechanisms between surfactants and the various components of heavy oil through atomic-scale precision modeling and dynamic process tracking. These simulations clarify, at the microscopic level, the differences in displacement dynamics and efficiency of organic solvent systems toward different hydrocarbon components. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

25 pages, 4329 KB  
Article
Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs
by Min Sun and Yuetian Liu
Processes 2025, 13(10), 3135; https://doi.org/10.3390/pr13103135 - 30 Sep 2025
Viewed by 656
Abstract
Temperature is a key factor in regulating interfacial behaviors and enhancing oil recovery during low-salinity water flooding in tight sandstone reservoirs. This study systematically investigates the synergistic mechanisms of temperature and salinity on ion exchange, wettability alteration, interfacial tension, and crude oil desorption. [...] Read more.
Temperature is a key factor in regulating interfacial behaviors and enhancing oil recovery during low-salinity water flooding in tight sandstone reservoirs. This study systematically investigates the synergistic mechanisms of temperature and salinity on ion exchange, wettability alteration, interfacial tension, and crude oil desorption. The experimental results show that elevated temperature significantly strengthens the oil–water–rock interactions induced by low-salinity water, thereby improving oil recovery. At 70 °C, the release of divalent cations such as Ca2+ and Mg2+ from the rock surface is notably enhanced. Simultaneously, the increase in interfacial electrostatic repulsion is evidenced by a shift in the rock–brine zeta potential from −3.14 mV to −6.26 mV. This promotes the desorption of polar components, such as asphaltenes, from the rock surface, leading to a significant change in wettability. The wettability alteration index increases to 0.4647, indicating a strong water-wet condition. Additionally, the reduction in oil–water interfacial zeta potential and the enhancement in interfacial viscoelasticity contribute to a further decrease in interfacial tension. Under conditions of 0.6 PW salinity and 70 °C, non-isothermal core flooding experiments demonstrate that rock–fluid interactions are the dominant mechanism responsible for enhanced oil recovery. By applying a staged injection strategy, where 0.6 PW is followed by 0.4 PW, the oil recovery reaches 34.89%, which is significantly higher than that achieved with high-salinity water flooding. This study provides critical mechanistic insights and optimized injection strategies for the development of high-temperature tight sandstone reservoirs using low-temperature waterflooding. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

40 pages, 855 KB  
Article
Integrated Equilibrium-Transport Modeling for Optimizing Carbonated Low-Salinity Waterflooding in Carbonate Reservoirs
by Amaury C. Alvarez, Johannes Bruining and Dan Marchesin
Energies 2025, 18(17), 4525; https://doi.org/10.3390/en18174525 - 26 Aug 2025
Viewed by 634
Abstract
Low-salinity waterflooding (LSWF) enhances oil recovery at low cost in carbonate reservoirs, but its effectiveness requires the precise control of injected water chemistry and interaction with reservoir minerals. This study specifically investigates carbonated low-salinity waterflooding (CLSWF), where dissolved CO2 modulates geochemical processes. [...] Read more.
Low-salinity waterflooding (LSWF) enhances oil recovery at low cost in carbonate reservoirs, but its effectiveness requires the precise control of injected water chemistry and interaction with reservoir minerals. This study specifically investigates carbonated low-salinity waterflooding (CLSWF), where dissolved CO2 modulates geochemical processes. This study develops an integrated transport model coupling geochemical surface complexation modeling (SCM) with multiphase compositional dynamics to quantify wettability alteration during CLSWF. The framework combines PHREEQC-based equilibrium calculations of the Total Bond Product (TBP)—a wettability indicator derived from oil–calcite ionic bridging—with Corey-type relative permeability interpolation, resolved via COMSOL Multiphysics. Core flooding simulations, compared with experimental data from calcite systems at 100 C and 220 bar, reveal that magnesium ([Mg2+]) and sulfate ([SO42]) concentrations modulate the TBP, reducing oil–rock adhesion under controlled low-salinity conditions. Parametric analysis demonstrates that acidic crude oils (TAN higher than 1 mg KOH/g) exhibit TBP values approximately 2.5 times higher than those of sweet crudes, due to carboxylate–calcite bridging, while pH elevation (higher than 7.5) amplifies wettability shifts by promoting deprotonated -COO interactions. The model further identifies synergistic effects between ([Mg2+]) (ranging from 50 to 200 mmol/kgw) and ([SO42]) (higher than 500 mmol/kgw), which reduce (Ca2+)-mediated oil adhesion through competitive mineral surface binding. By correlating TBP with fractional flow dynamics, this framework could support the optimization of injection strategies in carbonate reservoirs, suggesting that ion-specific adjustments are more effective than bulk salinity reduction. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

23 pages, 6843 KB  
Review
Injectivity, Potential Wettability Alteration, and Mineral Dissolution in Low-Salinity Waterflood Applications: The Role of Salinity, Surfactants, Polymers, Nanomaterials, and Mineral Dissolution
by Hemanta K. Sarma, Adedapo N. Awolayo, Saheed O. Olayiwola, Shasanowar H. Fakir and Ahmed F. Belhaj
Processes 2025, 13(8), 2636; https://doi.org/10.3390/pr13082636 - 20 Aug 2025
Cited by 1 | Viewed by 877
Abstract
Waterflooding, a key method for secondary hydrocarbon recovery, has been employed since the early 20th century. Over time, the role of water chemistry and ions in recovery has been studied extensively. Low-salinity water (LSW) injection, a common technique since the 1930s, improves oil [...] Read more.
Waterflooding, a key method for secondary hydrocarbon recovery, has been employed since the early 20th century. Over time, the role of water chemistry and ions in recovery has been studied extensively. Low-salinity water (LSW) injection, a common technique since the 1930s, improves oil recovery by altering the wettability of reservoir rocks and reducing residual oil saturation. Recent developments emphasize the integration of LSW with various recovery methods such as CO2 injections, surfactants, alkali, polymers, and nanoparticles (NPs). This article offers a comprehensive perspective on how LSW injection is combined with these enhanced oil recovery (EOR) techniques, with a focus on improving oil displacement and recovery efficiency. Surfactants enhance the effectiveness of LSW by lowering interfacial tension (IFT) and improving wettability, while ASP flooding helps reduce surfactant loss and promotes in situ soap formation. Polymer injections boost oil recovery by increasing fluid viscosity and improving sweep efficiency. Nevertheless, challenges such as fine migration and unstable flow persist, requiring additional optimization. The combination of LSW with nanoparticles has shown potential in modifying wettability, adjusting viscosity, and stabilizing emulsions through careful concentration management to prevent or reduce formation damage. Finally, building on discussions around the underlying mechanisms involved in improved oil recovery and the challenges associated with each approach, this article highlights their prospects for future research and field implementation. By combining LSW with advanced EOR techniques, the oil industry can improve recovery efficiency while addressing both environmental and operational challenges. Full article
Show Figures

Figure 1

13 pages, 2898 KB  
Article
Vertical Distribution Profiling of E. coli and Salinity in Tokyo Coastal Waters Following Rainfall Events Under Various Tidal Conditions
by Chomphunut Poopipattana, Manish Kumar and Hiroaki Furumai
J. Mar. Sci. Eng. 2025, 13(8), 1581; https://doi.org/10.3390/jmse13081581 - 18 Aug 2025
Viewed by 731
Abstract
Urban estuarine environments face increasing water safety risks due to microbial contamination from combined sewer overflows (CSOs), particularly during heavy rainfall events. In megacities like Tokyo, where waterfronts are widely used for recreation, such contamination poses significant public health risks. The challenge is [...] Read more.
Urban estuarine environments face increasing water safety risks due to microbial contamination from combined sewer overflows (CSOs), particularly during heavy rainfall events. In megacities like Tokyo, where waterfronts are widely used for recreation, such contamination poses significant public health risks. The challenge is compounded by the variability in both intensity and spatial distribution of rainfall across the catchment, combined with complex tidal dynamics making effective water quality management difficult. To address this challenge, we conducted a series of hydrodynamic–microbial fate simulations to examine the spatial and vertical behavior of Escherichia coli (E. coli) under different rainfall–tide conditions. Focusing on the Sumida River estuary, rainfall data from eight drainage areas were classified into six event types using cluster analysis. Two contrasting events were selected for detailed analysis: a light rainfall (G2, 15 mm over 13 h) and an intense event (G6, 272 mm over 34 h). Vertical water quality profiling was performed along an 8.5 km transect from the Kanda–Sumida River confluence to the Tokyo Bay Tunnel, illustrating E. coli and salinity. The results showed that the rainfall intensity and tidal phase at the event onset are critical in shaping both the magnitude and vertical distribution of microbial contamination. The intense event (G6) led to deep microbial intrusion (up to 6–7 m) and major salinity disruption, while the lighter event (G2) showed surface-layer confinement. Salinity gradients were more strongly affected during G6, indicating freshwater intrusion. Tidal phase also influenced transport: the flood-high condition retained E. coli, whereas ebb-low tides facilitated downstream flushing. These findings highlight the influence of rainfall intensity and tidal timing on microbial distribution and support the use of vertical profiling in estuarine water quality management. They also support the development of dynamic, event-based water quality risk assessment tools. With appropriate local calibration, the modeling framework is transferable to other urban estuarine systems to support proactive and adaptive water quality management. Full article
(This article belongs to the Special Issue Coastal Water Quality Observation and Numerical Modeling)
Show Figures

Figure 1

20 pages, 9728 KB  
Article
The Response of the Functional Traits of Phragmites australis and Bolboschoenus planiculmis to Water and Saline–Alkaline Stresses
by Lili Yang, Yanjing Lou and Zhanhui Tang
Plants 2025, 14(14), 2112; https://doi.org/10.3390/plants14142112 - 9 Jul 2025
Viewed by 887
Abstract
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration [...] Read more.
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration levels as stress factors to assess eight key functional traits of Phragmites australis and Bolboschoenus planiculmis, dominant species in the salt marsh wetlands in the western region of Jilin province, China. The study aimed to evaluate how these factors influence the functional traits of P. australis and B. planiculmis. Our results showed that the leaf area, root biomass, and clonal biomass of P. australis significantly increased, and the leaf area of B. planiculmis significantly decreased under low and medium saline–alkaline concentration treatments, while the plant height, ramet number, and aboveground biomass of P. australis and the root biomass, clonal biomass, and clonal/belowground biomass ratio of B. planiculmis were significantly reduced and the ratio of belowground to aboveground biomass of B. planiculmis significantly increased under high saline–alkaline concentration treatment. The combination of drought conditions with medium and high saline–alkaline treatments significantly reduced leaf area, ramet number, and clonal biomass in both species. The interaction between flooding water level and medium and high saline–alkaline treatments significantly suppressed the plant height, root biomass, and aboveground biomass of both species, with the number of ramets having the greatest contribution. These findings suggest that the effects of water levels and saline–alkaline stress on the functional traits of P. australis and B. planiculmis are species-specific, and the ramet number–plant height–root biomass (RHR) strategy may serve as an adaptive mechanism for wetland clones to environmental changes. This strategy could be useful for predicting plant productivity in saline–alkaline wetlands. Full article
Show Figures

Figure 1

17 pages, 2493 KB  
Article
Comparative Evaluation of Xanthan Gum, Guar Gum, and Scleroglucan Solutions for Mobility Control: Rheological Behavior, In-Situ Viscosity, and Injectivity in Porous Media
by Jose Maria Herrera Saravia and Rosangela Barros Zanoni Lopes Moreno
Polymers 2025, 17(13), 1742; https://doi.org/10.3390/polym17131742 - 23 Jun 2025
Viewed by 1018
Abstract
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility [...] Read more.
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility ratio. In this work, we compare three biopolymers (i.e., Xanthan Gum, Scleroglucan, and Guar Gum) using a core flood test on Indiana Limestone with 16–19% porosity and 180–220 mD permeability at 60 °C and 30,905 mg/L of salinity. We injected solutions at 100–1500 ppm and 0.5–6 cm3/min to measure the Resistance Factor (RF), Residual Resistance Factor (RRF), in situ viscosity, and relative injectivity. All polymers behaved as pseudoplastic fluids with no shear thickening. The RF rose from ~1.1 in the dilute regime to 5–16 in the semi-dilute regime, and the RRF spanned 1.2–5.8, indicating moderate, reversible permeability impairment. In-site viscosity reached up to eight times that of brine, while relative injectivity remained 0.5. Xanthan Gum delivered the highest viscosity boost and strongest shear thinning, Scleroglucan offered a balance of stable viscosity and a moderate RF, and Guar Gum gave predictable but lower viscosity enhancement. These results establish practical guidelines for selecting polymer types, concentration, and flow rate in reservoir-condition polymer flood designs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2683 KB  
Article
Study on Mechanism of Surfactant Adsorption at Oil–Water Interface and Wettability Alteration on Oil-Wet Rock Surface
by Xinyu Tang, Yaoyao Tong, Yuhui Zhang, Pujiang Yang, Chuangye Wang and Jinhe Liu
Molecules 2025, 30(12), 2541; https://doi.org/10.3390/molecules30122541 - 10 Jun 2025
Cited by 1 | Viewed by 3132
Abstract
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification [...] Read more.
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification of heavy oil. Consequently, investigating the adsorption behavior of surfactants at oil–water interfaces and the underlying mechanisms of wettability alteration is of considerable importance. In this study, the surface tension of four surfactants and their interfacial tension with Gudao heavy oil were measured. Among these, BS-12 exhibited a critical micelle concentration (CMC) of 6.26 × 10−4 mol·dm−3, a surface tension of 30.15 mN·m−1 at the CMC, and an adsorption efficiency of 4.54. In low-salinity systems, BS-12 achieved an ultralow interfacial tension on the order of 10−3 mN·m−1, demonstrating excellent surface activity. Therefore, BS-12 was selected as the preferred emulsifier for Gudao heavy oil recovery. Additionally, FT-IR, SEM, and contact angle measurements were used to elucidate the interfacial adsorption mechanism between BS-12 and aged cores. The results indicate that hydrophobic interactions between the hydrophobic groups of BS-12 and the adsorbed crude oil fractions play a key role. Core flooding experiments, simulating the formation of low-viscosity oil-in-water (O/W) emulsions under reservoir conditions, showed that at low flow rates, crude oil and water interact more effectively within the pores. The extended contact time between heavy oil and the emulsifier led to significant changes in rock wettability, enhanced interfacial activity, improved oil recovery efficiency, and increased oil content in the emulsion. This study analyzes the role of surfactants in interfacial adsorption and the multiphase flow behavior of emulsions, providing a theoretical basis for surfactant-enhanced oil recovery. Full article
Show Figures

Figure 1

23 pages, 5125 KB  
Article
Development of a Water-Sensitive Self-Thickening Emulsion Temporary Plugging Diverting Agent for High-Temperature and High-Salinity Reservoirs
by Chong Liang, Ning Qi, Liqiang Zhao, Xuesong Li and Zhenliang Li
Polymers 2025, 17(11), 1543; https://doi.org/10.3390/polym17111543 - 1 Jun 2025
Cited by 1 | Viewed by 792
Abstract
In oil and gas production, reservoir heterogeneity causes plugging removal fluids to preferentially enter high-permeability zones, hindering effective production enhancement in low-permeability reservoirs. Traditional chemical diverting agents exhibit insufficient stability in high-temperature, high-salinity environments, risking secondary damage. To address these challenges, this study [...] Read more.
In oil and gas production, reservoir heterogeneity causes plugging removal fluids to preferentially enter high-permeability zones, hindering effective production enhancement in low-permeability reservoirs. Traditional chemical diverting agents exhibit insufficient stability in high-temperature, high-salinity environments, risking secondary damage. To address these challenges, this study developed a water-sensitive self-thickening emulsion, targeting improved high-temperature stability, selective plugging, and easy flowback performance. Formulation optimization was achieved via orthogonal experiments and oil–water ratio adjustment, combined with particle size regulation and viscosity characterization. Core plugging experiments demonstrated the new emulsion system’s applicability and diverting effects. Results showed that under 150 °C and 15 × 104 mg/L NaCl, the emulsion maintained a stable viscosity of above 302.7 mPa·s, with particle size D50 increasing from 31.1 μm to 71.2 μm, exceeding API RP 13A’s 100 mPa·s threshold for acidizing diverters, providing an efficient plugging solution for high-temperature, high-salinity reservoirs. The injection pressure difference in high-permeability cores stabilized at 2.1 MPa, significantly enhancing waterflood sweep efficiency. The self-thickening mechanism, driven by salt-induced droplet coalescence, enables selective plugging in heterogeneous formations, as validated by core flooding tests showing a 40% higher pressure differential in high-permeability zones compared to conventional systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 3181 KB  
Article
Study on Oil Displacement Mechanism of Betaine/Polymer Binary Flooding in High-Temperature and High-Salinity Reservoirs
by Xiuyu Zhu, Qun Zhang, Changkun Cheng, Lu Han, Hai Lin, Fan Zhang, Jian Fan, Lei Zhang, Zhaohui Zhou and Lu Zhang
Molecules 2025, 30(5), 1145; https://doi.org/10.3390/molecules30051145 - 3 Mar 2025
Cited by 1 | Viewed by 1012
Abstract
As an efficient and economical method to enhance oil recovery (EOR), it is very important to explore the applicability of chemical flooding under harsh reservoir conditions, such as high temperature and high salinity. We designed microscopic visualization oil displacement experiments to comprehensively evaluate [...] Read more.
As an efficient and economical method to enhance oil recovery (EOR), it is very important to explore the applicability of chemical flooding under harsh reservoir conditions, such as high temperature and high salinity. We designed microscopic visualization oil displacement experiments to comprehensively evaluate the oil displacement performance of the zwitterionic surfactant betaine (BSB), a temperature- and salinity-resistant hydrophobically modified polymer (BHR), and surfactant–polymer (SP) binary systems. Based on macroscopic properties and microscopic oil displacement effects, we confirmed that the BSB/BHR binary solution has the potential to synergistically improve oil displacement efficiency and quantified the reduction in residual oil and oil displacement efficiency within the swept range. The experimental results show that after water flooding, a large amount of residual oil remains in the porous media in the form of clusters, porous structures, and columnar formations. After water flooding, only slight emulsification occurred after the injection of BSB solution, and the residual oil could not be activated. The injection of polymer after water flooding can expand the swept range to a certain extent. However, the distribution of residual oil in the swept range is similar to that of water flooding, and the oil washing efficiency is low. The SP binary flooding process can expand sweep coverage and effectively decompose large oil clusters simultaneously. This enhances the oil washing efficiency within the swept area and can significantly improve oil recovery. Finally, we obtained the microscopic oil displacement mechanism of BSB/BHR binary system to synergistically increase the swept volume and effectively activate the residual oil after water flooding. It is the result of the combined action of low interfacial tension (IFT) and suitable bulk viscosity. These findings provide critical insights for optimizing chemical flooding strategies in high-temperature and high-salinity reservoirs, significantly advancing EOR applications in harsh environments. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

Back to TopTop