Mapping the Impact of Salinity Derived by Shrimp Culture Ponds Using the Frequency-Domain EM Induction Method
Abstract
1. Introduction
2. Study Area and Regional Setting
2.1. Geographic and Environmental Conditions
2.2. Geological and Climatic Conditions
3. Materials and Methods
3.1. Hydrogeological Investigation
3.2. Hydrogeochemical Analysis
3.3. Geophysical Survey
4. Results
4.1. Hydrogeological Results
4.2. Hydrogeochemical Results
4.3. Geophysical Results
5. Discussion
5.1. Comparison of Hydrogeochemical and Geophysical Findings
5.2. Methodological Integration and Data Correlation
6. Conclusions
6.1. Key Findings and Their Significance
6.2. Future Research
- -
- Longitudinal Studies: Conducting extended temporal studies to track the progression of saline plume development and assess the long-term impacts of shrimp farming on aquifers.
- -
- Alternative Sustainable Aquaculture Techniques: Investigating eco-friendly aquaculture methods, such as integrated multi-trophic aquaculture (IMTA) systems, which can reduce environmental harm while maintaining productivity.
- -
- Hydrogeological Modeling: Developing advanced hydrogeological models that simulate the movement of saline plumes and predict future contamination scenarios under different management strategies.
- -
- Climate Change Impacts: Examining how climate change variables, such as sea-level rise and changing precipitation patterns, may exacerbate or mitigate the effects of shrimp farming on groundwater salinization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Custodio, E.; Bruggerman, G.A. Groundwater Problems in Coastal Areas; UNESCO: Paris, France, 1987; ISBN 978-92-3-102415-3. [Google Scholar]
- Mastrocicco, M.; Colombani, N. The issue of groundwater salinization in coastal areas of the mediterranean region: A review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Páez-Osuna, F. The environmental impact of shrimp aquaculture: A global perspective. Environ. Pollut. 2001, 112, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yang, J.; Russoniello, C.J.; Zheng, T.; Wu, M.-L.; Yu, X. Impacts of coastal shrimp ponds on saltwater intrusion and submarine groundwater discharge. Water Resour. Res. 2022, 58, e2021WR031866. [Google Scholar] [CrossRef]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean. Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Callaghan, D.P.; Bouma, T.J.; Klaassen, P.; van der Wal, D.; Stive, M.J.F.; Herman, P.M.J. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuar. Coast. Shelf Sci. 2010, 89, 73–88. [Google Scholar] [CrossRef]
- Roversi, F.; van Maanen, B.; Colonna Rosman, P.C.; Neves, C.F.; Scudelari, A.C. Numerical Modeling Evaluation of the Impacts of Shrimp Farming Operations on Long-term Coastal Lagoon Morphodynamics. Estuaries Coasts 2020, 43, 1853–1872. [Google Scholar] [CrossRef]
- Jablonski, S.; Filet, M. Coastal management in Brazil—A political riddle. Ocean. Coast. Manag. 2008, 51, 536–543. [Google Scholar] [CrossRef]
- Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W.; Cavalli, R.O. Aquaculture in Brazil: Past, present and future. Aquac. Rep. 2021, 19, 100611. [Google Scholar] [CrossRef]
- Andrade Silva, S.; Navoni, J.A.; Lins Oliveira, J.E. Impact of shrimp farming effluents on estuarine areas: A study in the Guaraíras Lagoon region, Rio Grande Do Norte—Brazilian Northeast. Aquacult Int. 2025, 33, 68. [Google Scholar] [CrossRef]
- Tho, N.; Merckx, R.; Ut, V.N. Impacts of saline water irrigation and shrimp pond discharges on the surrounding waters of a coastal district in the Mekong delta of Vietnam. Environ. Earth Sci. 2014, 71, 2015–2027. [Google Scholar] [CrossRef]
- Rahman, A.K.M.M.; Ahmed, K.M.; Butler, A.P.; Hoque, M.A. Influence of surface geology and micro-scale land use on the shallow subsurface salinity in deltaic coastal areas: A case from southwest Bangladesh. Environ. Earth Sci. 2018, 77, 423. [Google Scholar] [CrossRef]
- Rekha, P.N.; Gangadharan, R.; Ravichandran, P.; Mahalakshmi, P.; Panigrahi, A.; Pillai, S.M. Assessment of impact of shrimp farming on coastal groundwater using Geographical Information System based Analytical Hierarchy Process. Aquaculture 2015, 448, 491–506. [Google Scholar] [CrossRef]
- Beltrão-Sabadía, J.A.; Casas-Ponsatí, A.; Sabino da Silva, E.B.; Sendrós, A.; Tapias, J.C.; Pinheiro Lima-Filho, F. Assessing the Origin and Mapping the Extension of Salinity Around Shrimp Culture Ponds in Rio Grande Do Norte (Brazil). Hydrology 2024, 11, 188. [Google Scholar] [CrossRef]
- Tabosa, W.F. Dinâmica Costeira da Região de São Bento do Norte e Caiçara do Norte—RN. Master’s Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brasil, 2000. [Google Scholar]
- Bezerra, F.H.R.; Barreto, A.M.F.; Suguio, K. Holocene sea-level history on the Rio Grande do Norte State coast, Brazil. Mar. Geol. 2003, 196, 73–89. [Google Scholar] [CrossRef]
- Neto, P.; Soares, U.; Silva, J.G.; Roesner, E.H.H.; Florencio, C.P.P.; Souza, C.A.V.A.V.; Neto, O.C. Bacia Potiguar. Bol. Geociências Petrobras 2007, 15, 357–369. [Google Scholar]
- Melo, A.H.; Andrade, P.R.O.; Magalhães, A.J.C.; Fragoso, D.G.C.; Lima-Filho, F.P. Stratigraphic evolution from the early Albian to late Campanian of the Potiguar Basin, Northeast Brazil: An approach in seismic scale. Basin Res. 2020, 32, 1054–1080. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Stewart, M.T. Evaluation of electromagnetic methods for rapid mapping of salt-water interfaces in coastal aquifers. Groundwater 1982, 20, 538–545. [Google Scholar] [CrossRef]
- Himi, M.; Tapias, J.C.; Benabdelouahab, S.; Salhi, A.; Rivero, L.; Elgettafi, M.; El Mandour, A.; Stitou, J.; Casas, A. Geophysical characterization of saltwater intrusion in a coastal aquifer: The case of Martil-Alila plain (North Morocco). J. Afr. Earth Sci. 2017, 126, 136–147. [Google Scholar] [CrossRef]
- Nenna, V.; Herckenrath, D.; Knight, R.; Odlum, N.; McPhee, D. Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California. Geophysics 2013, 78, B77–B88. [Google Scholar] [CrossRef]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurements at Low Induction Numbers; Technical Note TN-6; Geonics, Ltd.: Mississauga, ON, Canada, 1980. [Google Scholar]
- McNeill, J.D. EM34–3 Survey Interpretation Techniques; Technical Note TN-5; Geonics, Ltd.: Mississauga, ON, Canada, 1980. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid to determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Eng. 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Hill, H.; Milburn, J. Effect of clay and water salinity on electrochemical behavior of reservoir rocks. Trans. Am. Inst. Min. Metall. Eng. 1956, 207, 31–38. [Google Scholar] [CrossRef]
- Amini, H.; Ashrafzadeh, A.; Khaledian, M. Enhancing groundwater salinity estimation through integrated GMDH and geostatistical techniques to minimize Kriging interpolation error. Earth Sci. Inform. 2024, 17, 283–297. [Google Scholar] [CrossRef]
- Braaten, R.O.; Flaherty, M. Salt balances of inland shrimp ponds in Thailand: Implications for land and water salinization. Environ. Conserv. 2001, 28, 357–367. [Google Scholar] [CrossRef]
- Agbasi, J.C.; Abu, M.; Pande, C.B.; Uwajingba, H.C.; Abba, S.I.; Egbueri, J.C. Groundwater salinization in coastal regions and the control mechanisms: Insights for sustainable groundwater development and management. In Sustainable Groundwater and Environment: Challenges and Solutions; Springer Nature: Cham, Switzerland, 2025; pp. 165–191. [Google Scholar]
- Nagaraju, T.V.; Sri Bala, G.; Ramanjaneya Raju, E.; Shukla, S.K. Enhancing Sustainability of Inland Aquaculture Ponds Using Geosynthetics. In Inland Aquaculture Sustainability and Effective Water Management Strategies: Optimizing Resources for Environmental Harmony; Springer Nature: Cham, Switzerland, 2025; pp. 99–109. [Google Scholar]
- Tiwari, P.; Rupesh, R.; Sharma, S.P. Integrated geophysical characterization of saltwater intrusion: An insight into coastal aquifers of West Bengal, India. Near Surf. Geophys. 2025, 23, 343–364. [Google Scholar] [CrossRef]
- Ahmed, R. Eco-Friendly Shrimp Farming: Balancing Economic Growth and Environmental Sustainability in Agriculture. Int. J. Sci. Educ. Sci. 2025, 2, 61–68. [Google Scholar] [CrossRef]
- Tran, T.; Duong, D.V.; Le, T.D.; Loc, H.H.; Chau, L.T.; Le, L.T.; Bui, X.T. Promoting sustainable shrimp farming: Balancing environmental goals, awareness, and socio-cultural factors in the Mekong Delta aquaculture. Aquac. Int. 2025, 33, 119. [Google Scholar] [CrossRef]
- Woźniacka, K.; Bickley, L.K.; Heal, R.D.; Maclean, I.M.; Hasan, N.A.; Haque, M.M.; Stentiford, G.D.; Early, R.; Devlin, M.; Tyler, C.R. Seeking environmentally sustainable solutions for inland aquaculture in Bangladesh. Environ. Chall. 2025, 18, 101062. [Google Scholar] [CrossRef]
Well | HCO3− | SO42− | Cl− | Ca+ | Mg2+ | Na+ | Fe2+ | K+ | EC |
---|---|---|---|---|---|---|---|---|---|
meq/L | meq/L | meq/L | meq/L | meq/L | meq/L | meq/L | meq/L | µS/cm | |
PZ-09 | 3.8 | 10.6 | 281.8 | 34.4 | 33.8 | 136.7 | 0.55 | 1.8 | 17,090 |
PZ-10 | 3.5 | 15.1 | 273.4 | 38.2 | 34.3 | 151.0 | 0.02 | 1.5 | 18,068 |
PZ-11 | 4.5 | 15.0 | 245.8 | 30.5 | 31.3 | 141.9 | 0.01 | 1.3 | 16,677 |
PZ-12 | 1.8 | 14.9 | 1121.0 | 156.5 | 162.0 | 465.8 | 3.89 | 5.6 | 79,855 |
PZ-13 | 3.7 | 3.1 | 135.7 | 22.0 | 17.8 | 62.1 | 0.11 | 2.2 | 10,421 |
PZ-14 | 5.5 | 23.8 | 658.9 | 20.8 | 63.7 | 528.0 | 0.20 | 12.1 | 52,330 |
PZ-15 | 1.7 | 0.0 | 0.8 | 0.5 | 0.4 | 0.4 | 0.02 | 0.0 | 222 |
PZ-16 | 4.4 | 3.7 | 61.9 | 3.7 | 6.0 | 50.3 | 0.04 | 1.2 | 5927 |
PZ-17 | 6.9 | 0.2 | 4.2 | 2.0 | 1.3 | 2.3 | 0.84 | 0.9 | 944 |
PZ-18 | 2.8 | 3.0 | 66.3 | 7.1 | 8.3 | 40.4 | 0.01 | 1.3 | 5530 |
PZ-19 | 7.6 | 9.4 | 149.5 | 21.2 | 21.5 | 83.9 | 0.03 | 1.5 | 11,825 |
PZ-20 | 3.0 | 6.0 | 55.1 | 8.0 | 7.5 | 34.8 | 0.75 | 1.1 | 5232 |
PZ-21 | 15.0 | 11.1 | 181.9 | 27.4 | 25.1 | 103.5 | 0.04 | 1.5 | 13,622 |
PZ-22 | 2.2 | 0.0 | 0.6 | 0.8 | 0.4 | 0.4 | 0.00 | 0.0 | 261 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Ponsatí, A.; Beltrão-Sabadía, J.A.; Sabino da Silva, E.B.; Monte-Egito, L.C.; de Medeiros-Souza, A.; Tapias, J.C.; Sendrós, A.; Lima-Filho, F.P. Mapping the Impact of Salinity Derived by Shrimp Culture Ponds Using the Frequency-Domain EM Induction Method. Water 2025, 17, 2903. https://doi.org/10.3390/w17192903
Casas-Ponsatí A, Beltrão-Sabadía JA, Sabino da Silva EB, Monte-Egito LC, de Medeiros-Souza A, Tapias JC, Sendrós A, Lima-Filho FP. Mapping the Impact of Salinity Derived by Shrimp Culture Ponds Using the Frequency-Domain EM Induction Method. Water. 2025; 17(19):2903. https://doi.org/10.3390/w17192903
Chicago/Turabian StyleCasas-Ponsatí, Albert, José A. Beltrão-Sabadía, Evanimek B. Sabino da Silva, Lucila C. Monte-Egito, Anderson de Medeiros-Souza, Josefina C. Tapias, Alex Sendrós, and Francisco Pinheiro Lima-Filho. 2025. "Mapping the Impact of Salinity Derived by Shrimp Culture Ponds Using the Frequency-Domain EM Induction Method" Water 17, no. 19: 2903. https://doi.org/10.3390/w17192903
APA StyleCasas-Ponsatí, A., Beltrão-Sabadía, J. A., Sabino da Silva, E. B., Monte-Egito, L. C., de Medeiros-Souza, A., Tapias, J. C., Sendrós, A., & Lima-Filho, F. P. (2025). Mapping the Impact of Salinity Derived by Shrimp Culture Ponds Using the Frequency-Domain EM Induction Method. Water, 17(19), 2903. https://doi.org/10.3390/w17192903