Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,631)

Search Parameters:
Keywords = low-g

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6114 KB  
Article
Hydrogen Storage on Activated Carbons from Avocado Biomass Residues: Synthesis Route Assessment, Surface Properties and Multilayer Adsorption Modeling
by Zayda V. Herrera-Cuadrado, Lizeth J. Bastidas-Solarte, Erwin García-Hernández, Adrián Bonilla-Petriciolet, Carlos J. Duran-Valle, Didilia I. Mendoza-Castillo, Hilda E. Reynel-Ávila, Ma. del Rosario Moreno-Virgen, Gloria Sandoval-Flores and Sofía Alvarado-Reyna
C 2026, 12(1), 5; https://doi.org/10.3390/c12010005 (registering DOI) - 12 Jan 2026
Abstract
This manuscript reports the preparation, surface characterization, and modeling of chars and activated carbons obtained from avocado biomass for hydrogen storage. Activated carbons were prepared from avocado biomass via the following stages: (a) pyrolysis of avocado biomass, (b) impregnation of the avocado-based char [...] Read more.
This manuscript reports the preparation, surface characterization, and modeling of chars and activated carbons obtained from avocado biomass for hydrogen storage. Activated carbons were prepared from avocado biomass via the following stages: (a) pyrolysis of avocado biomass, (b) impregnation of the avocado-based char using an aqueous lithium solution, and (c) thermal activation of lithium-loaded avocado char. The synthesis conditions of char and activated carbon samples were tailored to maximize their hydrogen adsorption properties at 77 K, where the impact of both pyrolysis and activation conditions was assessed. The hydrogen storage mechanism was discussed based on computational chemistry calculations and multilayer adsorption simulation. The modelling focuses on the analysis of the saturation of activated carbon active sites via the adsorption of multiple hydrogen molecules. The results showed that the activated carbon samples displayed adsorption capacities higher than their char counterparts by 71–91% because of the proposed activation protocol. The best activated carbon obtained from avocado residues showed a maximum hydrogen adsorption capacity of 142 cm3/g, and its storage performance can compete with other carbonaceous adsorbents reported in the literature. The hydrogen adsorption mechanism implied the formation of 2–4 layers on activated carbon surface, where physical interactions via oxygenated functionalities played a relevant role in the binding of hydrogen dimers and trimers. The results of this study contribute to the application of low-cost activated carbons from residual biomass as a storage medium in the green hydrogen supply chain. Full article
Show Figures

Graphical abstract

30 pages, 4603 KB  
Article
Joint Optimization of Storage Assignment and Order Batching for Efficient Heterogeneous Robot G2P Systems
by Li Li, Yan Wei, Yanjie Liang and Jin Ren
Sustainability 2026, 18(2), 743; https://doi.org/10.3390/su18020743 (registering DOI) - 11 Jan 2026
Abstract
Currently, with the widespread popularization of e-commerce systems, enterprises have increasingly high requirements for the timeliness of order fulfillment. It has become particularly critical to enhance the operational efficiency of heterogeneous robotic “goods-to-person” (G2P) systems in book e-commerce fulfillment, reduce enterprise operational costs, [...] Read more.
Currently, with the widespread popularization of e-commerce systems, enterprises have increasingly high requirements for the timeliness of order fulfillment. It has become particularly critical to enhance the operational efficiency of heterogeneous robotic “goods-to-person” (G2P) systems in book e-commerce fulfillment, reduce enterprise operational costs, and achieve highly efficient, low-carbon, and sustainable warehouse management. Therefore, this study focuses on determining the optimal storage location assignment strategy and order batching method. By comprehensively considering the characteristics of book e-commerce, such as small-batch, high-frequency orders and diverse SKU requirements, as well as existing system issues including uncoordinated storage assignment and order processing, and differences in the operational efficiency of heterogeneous robots, this study proposes a joint optimization framework for storage location assignment and order batching centered on a multi-objective model. The framework integrates the time costs of robot picking operations, SKU turnover rates, and inter-commodity correlations, introduces the STCSPBC storage strategy to optimize storage location assignment, and designs the SA-ANS algorithm to solve the storage assignment problem. Meanwhile, order batching optimization is based on dynamic inventory data, and the S-O Greedy algorithm is adopted to find solutions with lower picking costs. This achieves the joint optimization of storage location assignment and order batching, improves the system’s picking efficiency, reduces operational costs, and realizes green and sustainable management. Finally, validation via a spatiotemporal network model shows that the proposed joint optimization framework outperforms existing benchmark methods, achieving a 45.73% improvement in average order hit rate, a 48.79% reduction in total movement distance, a 46.59% decrease in operation time, and a 24.04% reduction in conflict frequency. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

28 pages, 1060 KB  
Review
Application of Reproductive Toxicity Caused by Endocrine Disruptors in Rotifers: A Review
by Guangyan Liang, Shenyu Liu, Shan Wang and Yuxue Qin
Biology 2026, 15(2), 128; https://doi.org/10.3390/biology15020128 (registering DOI) - 11 Jan 2026
Abstract
Endocrine-disrupting chemicals (EDCs), widespread in aquatic environments, interfere with endocrine function in organisms and threaten ecosystem stability. Rotifers, critical live feed for marine fish, shrimp, and crab larvae, link EDC-induced reproductive impairment to marine ecosystem stability and aquaculture sustainability. This PRISMA-compliant review synthesizes [...] Read more.
Endocrine-disrupting chemicals (EDCs), widespread in aquatic environments, interfere with endocrine function in organisms and threaten ecosystem stability. Rotifers, critical live feed for marine fish, shrimp, and crab larvae, link EDC-induced reproductive impairment to marine ecosystem stability and aquaculture sustainability. This PRISMA-compliant review synthesizes key findings, consequences, and gaps in EDC–rotifer reproductive toxicity research. Traditional EDCs (heavy metals, per- and polyfluoroalkyl substances (PFASs), phenols, phthalate esters, polybrominated diphenyl ethers (PBDEs), and steroid hormones) and emerging EDCs (disinfection byproducts, microplastics, pharmaceutical metabolites) induce distinct reproductive harm—e.g., Hg2+ shows extreme toxicity (24 h LC50 = 4.51 μg L−1 in Brachionus plicatilis), BDE-47 damages ovaries, and microplastics cause transgenerational delays. Rotifer species and exposure duration affect sensitivity (e.g., BDE-47: 96 h LC50 = 0.163 mg L−1 vs. 24 h LC50 > 22 mg L−1 in B. plicatilis). Oxidative stress is a universal mechanism, and combined EDC exposure produces context-dependent synergistic/antagonistic effects. EDC-induced impairment reduces rotifer population density, alters structure, and propagates through food webs, threatening aquaculture and biodiversity; transgenerational toxicity (e.g., 4-nonylphenol: F1 inhibition 28% vs. 12% in F0) weakens resilience. This review supports EDC risk assessment, with gaps including long-term low-concentration data, transgenerational mechanisms, EDC–microbiome interactions, and emerging PFAS toxicity—priorities for future research. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
11 pages, 1689 KB  
Article
Seed Coat Color-Mediated Differences in Nutritional Composition and Antioxidant Activity of Mung Bean
by Miaomiao Wu, Qianyu Tao, Suhua Wang, Yang Yao and Lixia Wang
Agronomy 2026, 16(2), 180; https://doi.org/10.3390/agronomy16020180 - 11 Jan 2026
Abstract
The mung bean (Vigna radiata) is rich in nutrients and bioactive compounds and is valuable for its antioxidant content in functional food development. However, mung bean seed coats are discarded or used as a low-value feed owing to their coarse texture. [...] Read more.
The mung bean (Vigna radiata) is rich in nutrients and bioactive compounds and is valuable for its antioxidant content in functional food development. However, mung bean seed coats are discarded or used as a low-value feed owing to their coarse texture. Here, 12 homozygous mung bean lines with different seed coat colors were selected from six recombinant inbred lines. The seed coats and cotyledons were separated and quantitatively analyzed for protein, starch, dietary fiber, polyphenols, flavonoids, vitexin, isovitexin, and antioxidant activities using standard chemical assays and HPLC, followed by statistical analysis and principal component analysis. The cotyledons contained more protein (26.97–28.34%) and starch (50.40–56.25%), whereas the seed coat contained more dietary fiber (74.17–79.93 g/100 g) and bioactive compounds. Polyphenolic compounds were significantly higher in the seed coat than in the cotyledons (p < 0.05) and were positively correlated with seed coat darkness, indicating that the black mung bean had higher bioactive functions. This study provides evidence for mung bean variety improvement and functional food development. Full article
(This article belongs to the Special Issue Cultivar Development of Pulses Crop—2nd Edition)
Show Figures

Figure 1

20 pages, 347 KB  
Article
Vitamin D Deficiency Mediates the Link Between Dietary Patterns, Inflammatory Biomarkers, and Iron Status Indicators (Ferritin and Hemoglobin) in Metabolic Syndrome
by Salma I. Cortes-Álvarez, Iván Delgado-Enciso, Gustavo A. Hernández-Fuentes, José Guzmán-Esquivel, Janet Diaz-Martinez, Alejandrina Rodríguez-Hernández, Margarita L. Martinez-Fierro, Iram P. Rodríguez-Sánchez, Valery Melnikov, Yunue Flores-Ruelas, Idalia Garza-Veloz, Miriam De la Cruz-Ruiz, Ángel A. Ramos-Organillo and Carmen A. Sánchez-Ramírez
Nutrients 2026, 18(2), 224; https://doi.org/10.3390/nu18020224 - 10 Jan 2026
Abstract
Background/Objectives: Chronic low-grade inflammation and nutritional deficiencies, particularly vitamin D deficiency, have emerged as important contributors to Metabolic syndrome (MetS) pathogenesis but remain underexplored. This study aimed to comprehensively evaluate the associations between dietary intake, vitamin D status, and inflammatory biomarkers (high-sensitivity [...] Read more.
Background/Objectives: Chronic low-grade inflammation and nutritional deficiencies, particularly vitamin D deficiency, have emerged as important contributors to Metabolic syndrome (MetS) pathogenesis but remain underexplored. This study aimed to comprehensively evaluate the associations between dietary intake, vitamin D status, and inflammatory biomarkers (high-sensitivity C-reactive protein -CRP- and ferritin) in patients with MetS. Methods: A cross-sectional observational study was conducted on 141 adult MetS patients at a Mexican hospital. Clinical, anthropometric, dietary (using a validated food frequency questionnaire), and biochemical data including serum 25-hydroxyvitamin D, CRP, ferritin, and neutrophil-to-lymphocyte ratio (NLR) were collected. Vitamin D deficiency was defined as serum 25(OH)D < 20 ng/mL, and high inflammation as CRP ≥ 3 mg/L. Logistic regression models adjusted for confounders were used to analyze associations. Mediation analysis assessed whether vitamin D deficiency mediated the link between dietary intake and high CRP or ferritin. Results: Patients with elevated CRP had significantly lower serum vitamin D levels (14.0 ± 5.1 vs. 22.1 ± 7.0 ng/mL; p < 0.001). Multivariable analysis showed vitamin D deficiency (adjusted OR 7.1; 95% CI 2.5–19.4; p < 0.001) and hyperferritinemia (ferritin ≥ 200 μg/L; aOR 8.0, 95% CI 3.5–18.2, p < 0.001) as predictors of high CRP. Conversely, hyperferritinemia was predicted by vitamin D deficiency (aOR 24.69; 95% CI 3.76–162.16; p = 0.001), elevated CRP (aOR 5.06; p = 0.014), Hb (aOR 63.23; p < 0.001), and inversely by grade 2 obesity (aOR 0.11; 95% CI 0.02–0.60; p = 0.03), confirming bidirectional CRP-ferritin associations and hyperferritinemia as an inflammation marker rather than iron overload indicator. Although Hb > 14.3 g/dL associated with hyperferritinemia, it did not independently predict CRP in multivariate analyses. Frequent consumption of vitamin D-rich foods (milk, fish, Manchego and Oaxaca cheese) was associated with lower inflammation. Mediation analysis confirmed that vitamin D deficiency mediated dietary intake-CRP and dietary intake-ferritin links (Sobel test p < 0.05). Conclusions: Vitamin D deficiency is a key mediator linking inadequate dietary vitamin D intake to systemic inflammation in MetS. Nutritional strategies emphasizing vitamin D repletion and consumption of vitamin D fortified foods may effectively reduce chronic inflammation and improve metabolic outcomes. Full article
24 pages, 2699 KB  
Article
Durability of Structures Made of Solid Wood Based on the Technical Condition of Selected Historical Timber Churches
by Jacek Hulimka, Marta Kałuża and Magda Tunkel
Sustainability 2026, 18(2), 728; https://doi.org/10.3390/su18020728 (registering DOI) - 10 Jan 2026
Abstract
In modern construction, natural materials with a low carbon footprint and full recyclability are becoming increasingly important. A typical group here is products made from solid wood, including glued wood, plywood, and wood-based composites. With their many advantages, however, they all burden the [...] Read more.
In modern construction, natural materials with a low carbon footprint and full recyclability are becoming increasingly important. A typical group here is products made from solid wood, including glued wood, plywood, and wood-based composites. With their many advantages, however, they all burden the environment with the costs of production processes, as well as the need to use harmful chemicals (adhesives and impregnants). Solid wood is devoid of these disadvantages; however, it is often treated as a rather archaic material. One of the arguments here is its low durability compared to, e.g., glued wood. The article discusses the durability of solid wood using the example of a group of wooden churches preserved in Poland, in Upper Silesia. Some of these buildings are over five hundred years old, making them a reliable source of information about the durability of the material from which they were built. A total of 85 churches, at least 200 years old, were analyzed, evaluating the technical state of the main load-bearing elements of their structures. In view of the number of facilities and the inability to conduct tests in most of them, the assessment was limited to a visual inspection of the technical condition, carried out by an experienced building expert. The assessment estimated the area of corrosion damage, probed its depth, and measured the depth of cracks. The relationship between their technical condition and the environmental conditions in which they were used was described and discussed. In this way, both the threats to the durability of solid wood and the ways to keep it in good condition for hundreds of years were identified, refuting the thesis that solid wood is a material with low durability. Its use in structural elements therefore supports efficient resource management and contributes to sustainable construction, especially in small and medium-sized buildings. Full article
20 pages, 4633 KB  
Article
Teleoperation System for Service Robots Using a Virtual Reality Headset and 3D Pose Estimation
by Tiago Ribeiro, Eduardo Fernandes, António Ribeiro, Carolina Lopes, Fernando Ribeiro and Gil Lopes
Sensors 2026, 26(2), 471; https://doi.org/10.3390/s26020471 (registering DOI) - 10 Jan 2026
Abstract
This paper presents an immersive teleoperation framework for service robots that combines real-time 3D human pose estimation with a Virtual Reality (VR) interface to support intuitive, natural robot control. The operator is tracked using MediaPipe for 2D landmark detection and an Intel RealSense [...] Read more.
This paper presents an immersive teleoperation framework for service robots that combines real-time 3D human pose estimation with a Virtual Reality (VR) interface to support intuitive, natural robot control. The operator is tracked using MediaPipe for 2D landmark detection and an Intel RealSense D455 RGB-D (Red-Green-Blue plus Depth) camera for depth acquisition, enabling 3D reconstruction of key joints. Joint angles are computed using efficient vector operations and mapped to the kinematic constraints of an anthropomorphic arm on the CHARMIE service robot. A VR-based telepresence interface provides stereoscopic video and head-motion-based view control to improve situational awareness during manipulation tasks. Experiments in real-world object grasping demonstrate reliable arm teleoperation and effective telepresence; however, vision-only estimation remains limited for axial rotations (e.g., elbow and wrist yaw), particularly under occlusions and unfavorable viewpoints. The proposed system provides a practical pathway toward low-cost, sensor-driven, immersive human–robot interaction for service robotics in dynamic environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

34 pages, 4692 KB  
Article
YOLO-SMD: A Symmetrical Multi-Scale Feature Modulation Framework for Pediatric Pneumonia Detection
by Linping Du, Xiaoli Zhu, Zhongbin Luo and Yanping Xu
Symmetry 2026, 18(1), 139; https://doi.org/10.3390/sym18010139 - 10 Jan 2026
Abstract
Pediatric pneumonia detection faces the challenge of pathological asymmetry, where immature lung tissues present blurred boundaries and lesions exhibit extreme scale variations (e.g., small viral nodules vs. large bacterial consolidations). Conventional detectors often fail to address these imbalances. In this study, we propose [...] Read more.
Pediatric pneumonia detection faces the challenge of pathological asymmetry, where immature lung tissues present blurred boundaries and lesions exhibit extreme scale variations (e.g., small viral nodules vs. large bacterial consolidations). Conventional detectors often fail to address these imbalances. In this study, we propose YOLO-SMD, a detection framework built upon a symmetrical design philosophy to enforce balanced feature representation. We introduce three architectural innovations: (1) DySample (Content-Aware Upsampling): To address the blurred boundaries of pediatric lesions, this module replaces static interpolation with dynamic point sampling, effectively sharpening edge details that are typically smoothed out by standard upsamplers; (2) SAC2f (Cross-Dimensional Attention): To counteract background interference, this module enforces a symmetrical interaction between spatial and channel dimensions, allowing the model to suppress structural noise (e.g., rib overlaps) in low-contrast X-rays; (3) SDFM (Adaptive Gated Fusion): To resolve the extreme scale disparity, this unit employs a gated mechanism that symmetrically balances deep semantic features (crucial for large bacterial shapes) and shallow textural features (crucial for viral textures). Extensive experiments on a curated subset of 2611 images derived from the Chest X-ray Pneumonia Dataset demonstrate that YOLO-SMD achieves competitive performance with a focus on high sensitivity, attaining a Recall of 86.1% and an mAP@0.5 of 84.3%, thereby outperforming the state-of-the-art YOLOv12n by 2.4% in Recall under identical experimental conditions. The results validate that incorporating symmetry principles into feature modulation significantly enhances detection robustness in primary healthcare settings. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Image Processing and Computer Vision)
17 pages, 1013 KB  
Article
Maternal Immunization with VP8* mRNA Vaccine Yields Superior Passive Transfer of Rotavirus-Neutralizing Antibodies to Foals
by Karin E. R. Borba, Rebecca M. Legere, Nathan M. Canaday, Jill W. Skrobarczyk, Zachary W. T. Arnold, Elena Cotton-Betteridge, Cristina Poveda, Michael F. Criscitiello, Angela I. Bordin, Luc R. Berghman, Jeroen B. K. Pollet and Noah D. Cohen
Vaccines 2026, 14(1), 76; https://doi.org/10.3390/vaccines14010076 (registering DOI) - 9 Jan 2026
Abstract
Background: Despite the availability of a killed whole-virus (KV) vaccine, diarrhea caused by equine rotavirus group A (ERVA) remains a significant health concern for foals in the United States. The vaccine is administered to pregnant mares, with foals protected by passive transfer of [...] Read more.
Background: Despite the availability of a killed whole-virus (KV) vaccine, diarrhea caused by equine rotavirus group A (ERVA) remains a significant health concern for foals in the United States. The vaccine is administered to pregnant mares, with foals protected by passive transfer of colostral antibodies. However, KV-induced immunity is only partially protective and maternal antibody levels in foals are often low and wane rapidly. To address these limitations, we developed a mRNA-based ERVA vaccine encoding the highly conserved VP8* protein to evaluate whether it can provide improved immune protection. Methods: Pregnant mares (n=12 per group) were immunized either at months 8 and 10 of gestation with the VP8* mRNA or at months 8, 9, and 10 of gestation with the KV. Serum samples were collected from mares before and after immunization and from their foals at ages 1, 35, and 49 days. Serum samples were tested by indirect ELISA for VP8*-specific relative antibody concentrations and relative concentrations were compared for effects of study group and sample-time using linear mixed-effects regression. To detect functional antibodies against ERVA, a virus neutralization titer assay was performed to compare titers between mares vaccinated with the mRNA vaccine (and their foals) and unvaccinated control mares (and their foals). Results: Mares vaccinated with VP8* mRNA had significantly (P < 0.05) higher antibody concentrations after foaling than mares in the KV group, and foals of VP8* mRNA-vaccinated mares had significantly (P < 0.05) higher concentrations through age 49 days than foals in the KV group. In addition, the VP8* mRNA vaccine elicited higher titers of ERVA-neutralizing antibodies against both G3 and G14 strains. Conclusion: Longer-lasting, higher concentrations of virus-neutralizing antibodies might provide superior duration of immunity to ERVA in foals from mares vaccinated with VP8* mRNA. Full article
(This article belongs to the Section Veterinary Vaccines)
24 pages, 1257 KB  
Article
Solvatochromic Polarity, Physicochemical Properties, and Spectral Analysis of New Triple NADES-Based on Urea–Glycerol
by Sezan Ahmed, Dimitar Bojilov, Ginka Exner, Soleya Dagnon, Stanimir Manolov and Iliyan Ivanov
Molecules 2026, 31(2), 233; https://doi.org/10.3390/molecules31020233 - 9 Jan 2026
Abstract
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and [...] Read more.
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and solvatochromic properties were determined using Nile Red, betaine 30, and Kamlet–Taft parameters. The densities of the systems (1.243–1.361 g/cm3) and the high values of molar refraction and polarizability indicate the formation of highly organized hydrogen-bonded networks, with the incorporated carboxyl and hydroxyl groups enhancing the structural compactness of the NADES. Surface tension varied significantly (46.9–80.3 mN/m), defining systems with low, medium, and high polarity. Solvatochromic analysis revealed high ENR, ET(30), and ETN values, positioning all NADES as highly polar media, comparable or close to water, but with distinguishable H-bond donating/accepting ability depending on the third component. The normalized Kamlet–Taft parameters show that the NADES cover a broad solvent spectrum—from highly H-bond accepting to strongly H-bond donating or dipolar systems—highlighting the potential for fine-tuning the solvent according to target applications. The obtained results highlight the applicability of these NADESs as green, tunable media for the extraction and solvation of bioactive compounds. Full article
Show Figures

Figure 1

22 pages, 18075 KB  
Article
Geodynamic Characterization of Hydraulic Structures in Seismically Active Almaty Using Lineament Analysis
by Dinara Talgarbayeva, Andrey Vilayev, Tatyana Dedova, Oxana Kuznetsova, Larissa Balakay and Aibek Merekeyev
GeoHazards 2026, 7(1), 11; https://doi.org/10.3390/geohazards7010011 - 9 Jan 2026
Abstract
Monitoring the stability of hydraulic structures such as dams and reservoirs in seismically active regions is essential for ensuring their safety and operational reliability. This study presents a comprehensive geospatial approach combining lineament analysis and geodynamic zoning to assess the structural stability of [...] Read more.
Monitoring the stability of hydraulic structures such as dams and reservoirs in seismically active regions is essential for ensuring their safety and operational reliability. This study presents a comprehensive geospatial approach combining lineament analysis and geodynamic zoning to assess the structural stability of the Voroshilov and Priyut reservoirs located in the Almaty region, Kazakhstan. A regional lineament map was generated using ASTER GDEM data, while ALOS PALSAR data were used for detailed local analysis. Lineaments were extracted and analyzed through automated processing in PCI Geomatica. Lineament density maps and azimuthal rose diagrams were constructed to identify zones of tectonic weakness and assess regional structural patterns. Integration of lineament density, GPS velocity fields, InSAR deformation data, and probabilistic seismic hazard maps enabled the development of a detailed geodynamic zoning model. Results show that the studied sites are located within zones of low local geodynamic activity, with lineament densities of 0.8–1.2 km/km2, significantly lower than regional averages of 3–4 km/km2. GPS velocities in the area do not exceed 4 mm/year, and InSAR analysis indicates minimal surface deformation (<5 mm/year). Despite this apparent local stability, the 2024 Voroshilov Dam failure highlights the cumulative effect of regional seismic stresses (PGA up to 0.9 g) and localized filtration along fracture zones as critical risk factors. The proposed geodynamic zoning correctly identified the site as structurally stable under normal conditions but indicates that even low-activity zones are vulnerable under cumulative seismic loading. This demonstrates that an integrated approach combining remote sensing, geodetic, and seismic data can provide quantitative assessments for dam safety, predict potential high-risk zones, and support preventive monitoring in tectonically active regions. Full article
Show Figures

Figure 1

19 pages, 2890 KB  
Article
Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes
by Xin Luo, Wenxia Zhao, Lin Fu, Yun Deng, Weijie Xue, Changbo Zhang, Ian Beadham, Zhongyan Lu, Yuyao Liu, Fanshu Bi and Qingshuai Wang
Toxics 2026, 14(1), 64; https://doi.org/10.3390/toxics14010064 - 9 Jan 2026
Abstract
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional [...] Read more.
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional hydrochloric acid (HCl) and sodium hydroxide (NaOH, as traditional modification reagents), were compared in modifying non-carbonized BR for Congo Red (CR) adsorption. Comprehensive characterizations and adsorption tests revealed that each modifier exerted unique effects: NaOH only caused mild surface etching with limited performance improvement; AAILs achieved moderate adsorption capacity via a green, mild route; while HCl modification (BR-HCl) stood out with the most superior performance through a “selective dissolution-pore reconstruction” mechanism. Notably, despite a modest specific surface area increase to 12.05 m2/g, BR-HCl’s high CR adsorption capacity (120.21 mg/g at 45 °C) originated from the synergy of chemical bonding and enhanced electrostatic attraction—its isoelectric point (pHPZC ≈ 9.02) was significantly higher than that of AAIL- and NaOH-modified samples, enabling strong affinity for anionic CR across a wide pH range. BR-HCl attained over 99% CR removal at a dosage of 0.4 g/L, fitted well with Langmuir isotherm and pseudo-second-order kinetic models (confirming monolayer chemisorption), and retained 82% of its initial capacity after five regeneration cycles. These results demonstrate that while AAILs show promise as green modifiers and NaOH serves as a baseline, the facile, low-cost HCl modification offers the most pragmatic pathway to unlock BR’s potential for sustainable wastewater treatment. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

17 pages, 4456 KB  
Article
Sustainable Adsorption of Rhodamine B and Heavy Metals Using Sewage Sludge-Derived Biochar
by Yerkanat N. Kanafin, Assylzhan Mukhametrakhimova, Rauza Turpanova and Stavros G. Poulopoulos
ChemEngineering 2026, 10(1), 11; https://doi.org/10.3390/chemengineering10010011 - 9 Jan 2026
Abstract
The sustainable management of sewage sludge remains a key environmental challenge for rapidly urbanizing regions such as Kazakhstan. This study explores the potential of sewage sludge-derived biochar as an efficient, low-cost adsorbent for removing Rhodamine B (RhB) dye and toxic metals from water. [...] Read more.
The sustainable management of sewage sludge remains a key environmental challenge for rapidly urbanizing regions such as Kazakhstan. This study explores the potential of sewage sludge-derived biochar as an efficient, low-cost adsorbent for removing Rhodamine B (RhB) dye and toxic metals from water. Sewage sludge was pyrolyzed at 700 °C (BC) and subsequently activated with hydrochloric acid (BCH) and sodium hydroxide (BCN) to improve its surface functionality and porosity. The morphology, surface area, porosity, and functional groups of the obtained biochars were characterized using SEM-EDS, BET, FTIR, and XRD analyses. Batch adsorption experiments demonstrated that the pseudo-second-order kinetic model (R2 = 0.99) best described the data, indicating chemisorption-controlled uptake. Experimental RhB adsorption capacity was 14.53 mg/g for BCH at RhB concentration of 75 mg/L after 120 min. Moreover, BCH exhibited enhanced metal adsorption capacities of 22.85 mg/g (Cu2+), 17.55 mg/g (Zn2+), 15.08 mg/g (Cd2+), 7.97 mg/g (Cr3+), and 3.68 mg/g (As3+). These results confirm that acid activation significantly improves adsorption efficiency compared with pristine biochar due to increased surface area and the introduction of oxygen-containing functional groups. Overall, sewage sludge-derived biochar shows strong potential as a sustainable adsorbent for dye and heavy metal removal. Full article
Show Figures

Figure 1

42 pages, 3502 KB  
Review
Nanostructured Silicon Anodes for Lithium-Ion Batteries: Advances, Challenges, and Future Prospects
by Alexander A. Pavlovskii, Konstantin Pushnitsa, Alexandra Kosenko, Pavel Novikov and Anatoliy A. Popovich
Materials 2026, 19(2), 281; https://doi.org/10.3390/ma19020281 - 9 Jan 2026
Abstract
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries (LIBs) because of its very high theoretical specific capacity (≈3579 mAh·g−1). However, its practical application is limited by severe volume expansion (>300%), an unstable solid electrolyte interphase [...] Read more.
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries (LIBs) because of its very high theoretical specific capacity (≈3579 mAh·g−1). However, its practical application is limited by severe volume expansion (>300%), an unstable solid electrolyte interphase (SEI), and low electronic conductivity. Recent progress in nanostructuring has significantly improved the electrochemical performance and durability of silicon anodes. In particular, nanosilicon particles, porous structures, and Si–carbon composites enhance structural stability, cycling life, and coulombic efficiency. These improvements arise from better mechanical integrity and more stable electrode–electrolyte interfaces. This review summarizes recent advances in nanostructured silicon anodes, focusing on particle size control, pore design, composite architectures, and interfacial engineering. We discuss how these nanoscale strategies reduce mechanical degradation and improve lithiation kinetics while also addressing the remaining challenges. Finally, future research directions and industrial prospects for the practical use of nanostructured silicon anodes in next-generation LIBs are outlined. Full article
(This article belongs to the Section Electronic Materials)
17 pages, 2667 KB  
Article
Topical CCL3 Is Well-Tolerated and Improves Liver Function in Diabetic Mice: Evidence from a 14-Day Toxicity Study
by Deepa Dehari, Rajalekshmy Padmakumari, Getnet Tesfaw, Fernando A. Fierro, Guillermo A. Ameer and Sasha H. Shafikhani
Cells 2026, 15(2), 120; https://doi.org/10.3390/cells15020120 - 9 Jan 2026
Viewed by 12
Abstract
Diabetic wounds exhibit impaired immune function, delayed neutrophils recruitment, and heightened infection risk which compromises early infection control and delays healing. We have demonstrated that topical CCL3 treatment restores neutrophil influx, reduces bacterial infection by ~99%, and accelerates wound healing in diabetic mice. [...] Read more.
Diabetic wounds exhibit impaired immune function, delayed neutrophils recruitment, and heightened infection risk which compromises early infection control and delays healing. We have demonstrated that topical CCL3 treatment restores neutrophil influx, reduces bacterial infection by ~99%, and accelerates wound healing in diabetic mice. As per Food and Drug Administration (FDA) Guidelines for Investigational New Drug (IND), we conducted a 14-day acute toxicity study in diabetic mice following a single topical administration of CCL3 at effective low dose (1 µg) and high dose (10 µg) per wound. Mice were monitored for clinical signs, body weight, and food intake throughout the study period. On day 14, serum biochemistry (ALT, AST, BUN, creatinine, metabolic markers) and histopathology of major organs (liver, kidney, heart, lungs, spleen) were assessed. CCL3-treated diabetic mice exhibited no adverse clinical effects. Hematological and biochemical parameters remained within normal limits, and histopathological analyses revealed no additional organ injury in CCL3-treated groups compared to diabetic control mice. Intriguingly, CCL3-treated mice showed improved ALT levels and reduced hepatic pathology, suggesting hepatoprotective effects and reduced serum IgG, indicating reduced systemic inflammation. Overall, our study demonstrates that diabetic mice tolerate topical CCL3 at doses up to 10 times the effective therapeutic concentration without evidence of systemic organ toxicity. These findings provide strong preclinical support for the translational development of CCL3 as a novel therapy for diabetic wound care. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Wound Repair)
Show Figures

Figure 1

Back to TopTop