Abstract
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries (LIBs) because of its very high theoretical specific capacity (≈3579 mAh·g−1). However, its practical application is limited by severe volume expansion (>300%), an unstable solid electrolyte interphase (SEI), and low electronic conductivity. Recent progress in nanostructuring has significantly improved the electrochemical performance and durability of silicon anodes. In particular, nanosilicon particles, porous structures, and Si–carbon composites enhance structural stability, cycling life, and coulombic efficiency. These improvements arise from better mechanical integrity and more stable electrode–electrolyte interfaces. This review summarizes recent advances in nanostructured silicon anodes, focusing on particle size control, pore design, composite architectures, and interfacial engineering. We discuss how these nanoscale strategies reduce mechanical degradation and improve lithiation kinetics while also addressing the remaining challenges. Finally, future research directions and industrial prospects for the practical use of nanostructured silicon anodes in next-generation LIBs are outlined.