Vitamin D Deficiency Mediates the Link Between Dietary Patterns, Inflammatory Biomarkers, and Iron Status Indicators (Ferritin and Hemoglobin) in Metabolic Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Population and Sample
2.3. Clinical and Anthropometric Data Collection
2.4. Dietary Assessment: SNUT Questionnaire
2.5. Assessment of Sun Exposure and Photoprotection
2.6. Biological Sample Collection and Laboratory Analyses
2.7. Statistical Analysis
3. Results
3.1. Sample Characteristics and Inflammation Status
3.2. Risk Factors Associated with Elevated C-Reactive Protein
3.3. Predictors of Hyperferritinemia
3.4. Nutritional and Lifestyle Factors Associated with Vitamin D Deficiency
3.5. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, S.M.; Shalaby, M.A.; El-Shiekh, R.A.; El-Banna, H.A.; Emam, S.R.; Bakr, A.F. Metabolic Syndrome: Risk Factors, Diagnosis, Pathogenesis, and Management with Natural Approaches. Food Chem. Adv. 2023, 3, 100335. [Google Scholar] [CrossRef]
- Islam, M.S.; Wei, P.; Suzauddula, M.; Nime, I.; Feroz, F.; Acharjee, M.; Pan, F. The Interplay of Factors in Metabolic Syndrome: Understanding Its Roots and Complexity. Mol. Med. 2024, 30, 279. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, H.; Sun, W.; An, X.; Lian, F. Triglyceride Glucose (TyG) Index: A Promising Biomarker for Diagnosis and Treatment of Different Diseases. Eur. J. Intern. Med. 2025, 131, 3–14. [Google Scholar] [CrossRef]
- Xia, J.; Ding, L.; Liu, G. Metabolic Syndrome and Dermatological Diseases: Association and Treatment. Nutr. Metab. 2025, 22, 36. [Google Scholar] [CrossRef] [PubMed]
- Geddo, F.; Antoniotti, S.; Querio, G.; Gallo, M.P. Tracing the Path from Obesity to Diabetes: How S-Allyl Cysteine Shapes Metabolic Health. Nutrients 2025, 17, 3394. [Google Scholar] [CrossRef]
- Soto González, A.; Bellido Guerrero, D.; Buño Soto, M.; Pértega Díaz, S.; Martinez-Olmos, M.; Vidal, O. Metabolic Syndrome, Insulin Resistance and the Inflammation Markers C-Reactive Protein and Ferritin. Eur. J. Clin. Nutr. 2006, 60, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Haffner, S.M. The Metabolic Syndrome: Inflammation, Diabetes Mellitus, and Cardiovascular Disease. Am. J. Cardiol. 2006, 97, 3–11. [Google Scholar] [CrossRef]
- Florez, H.; Castillo-Florez, S.; Mendez, A.; Casanova-Romero, P.; Larreal-Urdaneta, C.; Lee, D.; Goldberg, R. C-Reactive Protein Is Elevated in Obese Patients with the Metabolic Syndrome. Diabetes Res. Clin. Pr. 2006, 71, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Lopes, C.; Guimarães, J.T.; Barros, H. Central Obesity as a Major Determinant of Increased High-Sensitivity C-Reactive Protein in Metabolic Syndrome. Int. J. Obes. 2005, 29, 1452–1456. [Google Scholar] [CrossRef]
- Wu, L.; Han, D.; Xue, Y.; He, S.; Ma, Z.; Su, S.; Li, P.; Liu, S.; Zhou, H. Association between the C-Reactive Protein–Albumin–Lymphocyte Index and Metabolic Syndrome: Evidence from the 2003–2010 National Health and Nutrition Examination Survey. Diabetol. Metab. Syndr. 2025, 17, 39. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; García-Recio, E.; De Luna-Bertos, E.; Ruiz, C.; Illescas-Montes, R. Role of Vitamin D in the Metabolic Syndrome. Nutrients 2021, 13, 830. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Meng, X. Vitamin D and Neurodegenerative Diseases. Heliyon 2023, 9, e12877. [Google Scholar] [CrossRef]
- Guo, J.; Lovegrove, J.A.; Givens, D.I. 25(OH)D3 -Enriched or Fortified Foods Are More Efficient at Tackling Inadequate Vitamin D Status than Vitamin D3. Proc. Nutr. Soc. 2018, 77, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.T.; Zhu, Y.; Froicu, M.; Wittke, A. Vitamin D Status, 1,25-Dihydroxyvitamin D3, and the Immune System. Am. J. Clin. Nutr. 2004, 80, 1717S–1720S. [Google Scholar] [CrossRef]
- Bujtor, M.; Turner, A.I.; Torres, S.J.; Esteban-Gonzalo, L.; Pariante, C.M.; Borsini, A. Associations of Dietary Intake on Biological Markers of Inflammation in Children and Adolescents: A Systematic Review. Nutrients 2021, 13, 356. [Google Scholar] [CrossRef]
- Hart, M.J.; Torres, S.J.; McNaughton, S.A.; Milte, C.M. Dietary Patterns and Associations with Biomarkers of Inflammation in Adults: A Systematic Review of Observational Studies. Nutr. J. 2021, 20, 24. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Koelman, L.; Egea Rodrigues, C.; Aleksandrova, K. Effects of Dietary Patterns on Biomarkers of Inflammation and Immune Responses: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2021, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef]
- Huang, P.L. A Comprehensive Definition for Metabolic Syndrome. DMM Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef]
- Obeidat, A.A.; Ahmad, M.N.; Ghabashi, M.A.; Alazzeh, A.Y.; Habib, S.M.; Abu Al-Haijaa, D.; Azzeh, F.S. Developmental Trends of Metabolic Syndrome in the Past Two Decades: A Narrative Review. J. Clin. Med. 2025, 14, 2402. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and Management of the Metabolic Syndrome. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Tárraga Marcos, P.J.; López-González, Á.A.; Martínez-Almoyna Rifá, E.; Paublini Oliveira, H.; Martorell Sánchez, C.; Tárraga López, P.J.; Ramírez-Manent, J.I. The Prevalence of Metabolic Syndrome and Hypertri-glyceridemic Waist Based on Sociodemographic Variables and Healthy Habits in Healthcare Workers: A Retrospective Study. Life 2025, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Hume, P.A.; Stewart, A.; International Society for the Advancement of Kinanthropometry (ISAK). Kinanthropometry XI: 2008 Pre-Olympic Congress—Anthropometry Research; Sport Performance Research Institute New Zealand, Auckland University of Technology: Auckland, New Zealand, 2009; ISBN 978-0-473-15761-6. [Google Scholar]
- Denova-Gutiérrez, E.; Ramírez-Silva, I.; Rodríguez-Ramírez, S.; Jiménez-Aguilar, A.; Shamah-Levy, T.; Rivera-Dommarco, J.A. Validity of a Food Frequency Questionnaire to Assess Food Intake in Mexican Adolescent and Adult Population. Salud Publica Mex. 2016, 58, 617–628. [Google Scholar] [CrossRef]
- Lucassen, D.A.; Willemsen, R.F.; Geelen, A.; Brouwer-Brolsma, E.M.; Feskens, E.J.M. The Accuracy of Portion Size Estimation Using Food Images and Textual Descriptions of Portion Sizes: An Evaluation Study. J. Hum. Nutr. Diet. 2021, 34, 945. [Google Scholar] [CrossRef]
- Ngo, J.; Engelen, A.; Molag, M.; Roesle, J.; García-Segovia, P.; Serra-Majem, L. A Review of the Use of Information and Communication Technologies for Dietary Assessment. Br. J. Nutr. 2009, 101, S102–S112. [Google Scholar] [CrossRef] [PubMed]
- Timon, C.M.; Van Den Barg, R.; Blain, R.J.; Kehoe, L.; Evans, K.; Walton, J.; Flynn, A.; Gibney, E.R. A Review of the Design and Validation of Web- and Computer-Based 24-h Dietary Recall Tools. Nutr. Res. Rev. 2016, 29, 268–280. [Google Scholar] [CrossRef]
- Bailey, R.L. Overview of Dietary Assessment Methods for Measuring Intakes of Foods, Beverages, and Dietary Supplements in Research Studies. Curr. Opin. Biotechnol. 2021, 70, 91. [Google Scholar] [CrossRef]
- Antonov, D.; Hollunder, M.; Schliemann, S.; Elsner, P. Ultraviolet Exposure and Protection Behavior in the General Population: A Structured Interview Survey. Dermatology 2016, 232, 11–16. [Google Scholar] [CrossRef]
- Widemar, K.; Falk, M. Sun Exposure and Protection Index (SEPI) and Self-Estimated Sun Sensitivity. J. Prim. Prev. 2018, 39, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Detert, H.; Hedlund, S.; Anderson, C.D.; Rodvall, Y.; Festin, K.; Whiteman, D.C.; Falk, M. Validation of Sun Exposure and Protection Index (SEPI) for Estimation of Sun Habits. Cancer Epidemiol. 2015, 39, 986–993. [Google Scholar] [CrossRef]
- Morales-Villar, A.B.; Maldonado-Hernández, J.; Eduardo Álvarez-Licona, N.; Piña-Aguero, M.I.; Villalpando-Hernández, S.; Robledo-Pérez, R.M.; Díaz-Rangel, I.; de Lourdes Barbosa-Cortés, M.; Núñez-García, B.A. Determinants of Vitamin D Status in Healthy Young Adults from Mexico City. Arch. Med. Res. 2024, 55. [Google Scholar] [CrossRef]
- Sarejloo, S.; Dehesh, M.; Fathi, M.; Khanzadeh, M.; Lucke-Wold, B.; Ghaedi, A.; Khanzadeh, S. Meta-Analysis of Differences in Neutrophil to Lymphocyte Ratio between Hypertensive and Non-Hypertensive Individuals. BMC Cardiovasc. Disord. 2023, 23, 283. [Google Scholar] [CrossRef]
- Sánchez, A.; Mirabel, J.L.; Barrenechea, E.; Eugui, J.; Puelles, A.; Castañeda, A. Evaluation of an Improved Immunoturbidimetic Assay for Serum C-Reactive Protein on a COBAS INTEGRA 400 Analyzer. Clin. Lab. 2002, 48, 313–317. [Google Scholar] [PubMed]
- He, C.-S.; Gleeson, M.; Fraser, W.D. Measurement of Circulating 25-Hydroxy Vitamin D Using Three Commercial Enzyme-Linked Immunosorbent Assay Kits with Comparison to Liquid Chromatography: Tandem Mass Spectrometry Method. ISRN Nutr. 2013, 2013, 723139. [Google Scholar] [CrossRef]
- Ricós, C.; Fernández-Calle, P.; Perich, C.; Sandberg, S. Control Externo de La Calidad En Medicina Del Laboratorio. Avances y Futuro. Adv. Lab. Med. 2022, 3, 232–242. [Google Scholar] [CrossRef]
- Ehrmeyer, S.S.; Laessig, R.H. Interlaboratory Proficiency-Testing Programs: A Computer Model to Assess Their Capability to Correctly Characterize Intralaboratory Performance. Clin. Chem. 1987, 33, 784–787. [Google Scholar] [CrossRef] [PubMed]
- Ricós, C.; Fernández-Calle, P.; Perich, C.; Sandberg, S. External Quality Control in Laboratory Medicine. Progresses and Future. Adv. Lab. Med. 2022, 3, 221. [Google Scholar] [CrossRef]
- Westgard, J.O.; Seehafer, J.J.; Barry, P.L. Allowable Imprecision for Laboratory Tests Based on Clinical and Analytical Test Outcome Criteria. Clin. Chem. 1994, 40, 1909–1914. [Google Scholar] [CrossRef]
- White, G.H.; Farrance, I. AACB Uncertainty of Measurement Working Group. Uncertainty of Measurement in Quantitative Medical Testing: A Laboratory Implementation Guide. Clin. Biochem. Rev. 2004, 25, S1. [Google Scholar]
- Ameen, I.A.; Hussein, A.H.S.; Hasan, E.K. The Clinical Applications of Ferritin. World J. Biol. Pharm. Health Sci. 2022, 12, 137–147. [Google Scholar] [CrossRef]
- Zhou, A.; Hypponen, E. Vitamin D Deficiency and C-Reactive Protein: A Bidirectional Mendelian Randomization Study. Int. J. Epidemiol. 2023, 52, 260–271. [Google Scholar] [CrossRef]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Huang, C.; Xu, C.; Xu, Y. Predictive Role of Neutrophil-to-Lymphocyte Ratio in Metabolic Syndrome: Meta-Analysis of 70,937 Individuals. BMC Endocr. Disord. 2024, 24, 155. [Google Scholar] [CrossRef] [PubMed]
- Ezzelle, J.; Rodriguez-Chavez, I.R.; Darden, J.M.; Stirewalt, M.; Kunwar, N.; Hitchcock, R.; Walter, T.; D’Souza, M.P. Guidelines on Good Clinical Laboratory Practice: Bridging Operations between Research and Clinical Research Laboratories. J. Pharm. Biomed. Anal. 2007, 46, 18. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B. Fundamentals of Biostatistics, 7th ed.; Cengage Learning, Inc.: Boston, MA, USA, 2010; Volume 1. [Google Scholar]
- OpenEpi—Sample Size for Unmatched Case-Control Studies. Available online: https://www.openepi.com/SampleSize/SSCC.htm (accessed on 19 November 2025).
- ClinCalc.com » Statistics » Post-hoc Power Calculator Post-Hoc Power Calculator. Evaluate Statistical Power of an Existing Study. Available online: https://clincalc.com/stats/Power.aspx (accessed on 28 April 2023).
- Interactive Mediation Tests. Available online: https://quantpsy.org/sobel/sobel.htm (accessed on 19 November 2025).
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, S31. [Google Scholar] [CrossRef]
- Pearson, H.A.; Kalinyak, K.A. Chronic Anemia. Pediatrics 2023, 1065–1071. [Google Scholar] [CrossRef]
- Martini, L.A.; Wood, R.J. Vitamin D Status and the Metabolic Syndrome. Nutr. Rev. 2006, 64, 479–486. [Google Scholar] [CrossRef]
- Osei, K. 25-OH Vitamin D: Is It the Universal Panacea for Metabolic Syndrome and Type 2 Diabetes? J. Clin. Endocrinol. Metab. 2010, 95, 4220–4222. [Google Scholar] [CrossRef]
- Khademi, Z.; Hamedi-Shahraki, S.; Amirkhizi, F. Vitamin D Insufficiency Is Associated with Inflammation and Deregulation of Adipokines in Patients with Metabolic Syndrome. BMC Endocr. Disord. 2022, 22, 223. [Google Scholar] [CrossRef]
- Hertiš Petek, T.; Homšak, E.; Svetej, M.; Marčun Varda, N. Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity. Int. J. Mol. Sci. 2024, 25, 10599. [Google Scholar] [CrossRef] [PubMed]
- Theik, N.W.Y.; Raji, O.E.; Shenwai, P.; Shah, R.; Kalluri, S.R.; Bhutta, T.H.; Hannoodee, H.; Al Khalili, M.; Khan, S. Relationship and Effects of Vitamin D on Metabolic Syndrome: A Systematic Review. Cureus 2021. [Google Scholar] [CrossRef]
- Abboud, M.; Rizk, R.; Haidar, S.; Mahboub, N.; Papandreou, D. Association between Serum Vitamin D and Metabolic Syndrome in a Sample of Adults in Lebanon. Nutrients 2023, 15, 1129. [Google Scholar] [CrossRef] [PubMed]
- Yunpeng, P.; Shangnan, D.; Di, W.; Chaoqun, H.; Wanli, G.; Qiang, L.; Feng, G. The U-Shaped Correlation between Serum VD Concentration and Systemic Immune-Inflammatory Index: Results from the NHANES Database Prospective Cohort Study. BMC Public Health 2024, 24, 3570. [Google Scholar] [CrossRef] [PubMed]
- Sotoudeh, G.; Raisi, F.; Amini, M.; Majdzadeh, R.; Hosseinzadeh, M.; Khorram Rouz, F.; Khosravi, M.; Khosravi, M. Vitamin D Deficiency Mediates the Relationship between Dietary Patterns and Depression: A Case–Control Study. Ann. Gen. Psychiatry 2020, 19, 37. [Google Scholar] [CrossRef]
- Schmitt, E.B.; Nahas-Neto, J.; Bueloni-Dias, F.; Poloni, P.F.; Orsatti, C.L.; Petri Nahas, E.A. Vitamin D Deficiency Is Associated with Metabolic Syndrome in Postmenopausal Women. Maturitas 2018, 107, 97–102. [Google Scholar] [CrossRef]
- Foroughi, M.; Maghsoudi, Z.; Ghiasvand, R.; Iraj, B.; Askari, G. Effect of Vitamin D Supplementation on C-Reactive Protein in Patients with Nonalcoholic Fatty Liver. Int. J. Prev. Med. 2014, 5, 969. [Google Scholar]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D Deficiency 2.0: An Update on the Current Status Worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Liss, Y.; Frishman, W.H. Vitamin D: A Cardioprotective Agent? Cardiol. Rev. 2012, 20, 38–44. [Google Scholar] [CrossRef]
- Witham, M.D. Vitamin D in Chronic Heart Failure. Curr. Heart Fail. Rep. 2011, 8, 123–130. [Google Scholar] [CrossRef]
- Deepika; Kumari, A.; Singh, S.; Ahmad, M.F.; Chaki, D.; Poria, V.; Kumar, S.; Saini, N.; Yadav, N.; Sangwan, N.; et al. Vitamin D: Recent Advances, Associated Factors, and Its Role in Combating Non-Communicable Diseases. npj Sci. Food 2025, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Ghaseminejad-Raeini, A.; Ghaderi, A.; Sharafi, A.; Nematollahi-Sani, B.; Moossavi, M.; Derakhshani, A.; Sarab, G.A. Immunomodulatory Actions of Vitamin D in Various Immune-Related Disorders: A Comprehensive Review. Front. Immunol. 2023, 14, 950465. [Google Scholar] [CrossRef]
- Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The Role of Vitamin D in the Immune System as a Pro-Survival Molecule. Clin. Ther. 2017, 39, 894–916. [Google Scholar] [CrossRef]
- Argano, C.; Mirarchi, L.; Amodeo, S.; Orlando, V.; Torres, A.; Corrao, S. The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and Cardiovascular Disease: State of the Art. Int. J. Mol. Sci. 2023, 24, 15485. [Google Scholar] [CrossRef] [PubMed]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of Vitamins in Skin Health: A Systematic Review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef]
- Krist, A.H.; Davidson, K.W.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Epling, J.W.; Kubik, M.; et al. Screening for Vitamin D Deficiency in Adults: US Preventive Services Task Force Recommendation Statement. JAMA—J. Am. Med. Assoc. 2021, 325, 1436–1442. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, J.; Li, S.; Shen, J.; Luo, X.; Yao, Y.; Shi, H. Combined Effects of Vitamin D Deficiency and Systemic Inflammation on All-Cause Mortality and Cause-Specific Mortality in Older Adults. BMC Geriatr. 2024, 24, 122. [Google Scholar] [CrossRef]
- Barrea, L.; Verde, L.; Annunziata, G.; Antiga, E.; Camajani, E.; Caprio, M.; Carbonelli, M.G.; Carducci, A.; Cava, E.; Di Marco, G.; et al. Medical Nutrition Therapy in Dermatological Diseases: A Joint Consensus Statement of the Italian Association of Dietetics and Clinical Nutrition (ADI), the Italian Society of Dermatology and Sexually Transmitted Diseases (SIDeMaST), the Italian Society of Nutraceuticals (SINut), Club Ketodiets and Nutraceuticals “KetoNut-SINut” and the Italian Society of Endocrinology (SIE), Club Nutrition, Hormones and Metabolism. Curr. Obes. Rep. 2025, 14, 42. [Google Scholar] [CrossRef]
- Wagner, D.; Sidhom, G.; Whiting, S.J.; Rousseau, D.; Vieth, R. The Bioavailability of Vitamin D from Fortified Cheeses and Supplements Is Equivalent in Adults. J. Nutr. 2008, 138, 1365–1371. [Google Scholar] [CrossRef]
- Butler, G.; Nielsen, J.H.; Slots, T.; Seal, C.; Eyre, M.D.; Sanderson, R.; Leifert, C. Fatty Acid and Fat-Soluble Antioxidant Concentrations in Milk from High- and Low-Input Conventional and Organic Systems: Seasonal Variation. J. Sci. Food Agric. 2008, 88, 1431–1441. [Google Scholar] [CrossRef]
- Król, J.; Wawryniuk, A.; Brodziak, A.; Barłowska, J.; Kuczyńska, B. The Effect of Selected Factors on the Content of Fat-Soluble Vitamins and Macro-Elements in Raw Milk from Holstein-Friesian and Simmental Cows and Acid Curd Cheese (Tvarog). Animals 2020, 10, 1800. [Google Scholar] [CrossRef]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Barłowska, J. Differences in Bioactive Protein and Vitamin Status of Milk from Certified Organic and Conventional Farms. Int. J. Dairy. Technol. 2018, 71, 321–332. [Google Scholar] [CrossRef]
- Henry, K.M.; Kon, S.K. The Vitamin D Content of English Butter Fat throughout the Year. Biochem. J. 1942, 36, 456. [Google Scholar] [CrossRef]
- Booth, R.G.; Henry, K.M.; Kon, S.K. A Study of the Antirachitic Effect of Fat on Rats Receiving High Calcium-Low Phosphorus Rachitogenic Diets. Biochem. J. 1942, 36, 445–455. [Google Scholar] [CrossRef]
- Brouwer-Brolsma, E.M.; Vaes, A.M.M.; van der Zwaluw, N.L.; van Wijngaarden, J.P.; Swart, K.M.A.; Ham, A.C.; van Dijk, S.C.; Enneman, A.W.; Sohl, E.; van Schoor, N.M.; et al. Relative Importance of Summer Sun Exposure, Vitamin D Intake, and Genes to Vitamin D Status in Dutch Older Adults: The B-PROOF Study. J. Steroid Biochem. Mol. Biol. 2016, 164, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Dimakopoulos, I.; Magriplis, E.; Mitsopoulou, A.V.; Karageorgou, D.; Bakogianni, I.; Micha, R.; Michas, G.; Chourdakis, M.; Ntouroupi, T.; Tsaniklidou, S.M.; et al. Association of Serum Vitamin D Status with Dietary Intake and Sun Exposure in Adults. Clin. Nutr. ESPEN 2019, 34, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Pischon, T.; Boeing, H.; Hoffmann, K.; Bergmann, M.; Schulze, M.B.; Overvad, K.; van der Schouw, Y.T.; Spencer, E.; Moons, K.G.M.; Tjønneland, A.; et al. General and Abdominal Adiposity and Risk of Death in Europe. N. Engl. J. Med. 2008, 359, 2105–2120. [Google Scholar] [CrossRef]
- Kotla, N.K.; Dutta, P.; Parimi, S.; Das, N.K. The Role of Ferritin in Health and Disease: Recent Advances and Understandings. Metabolites 2022, 12, 609. [Google Scholar] [CrossRef]
- Kappus, H. Oxidative Stress in Chemical Toxicity. Arch. Toxicol. 1987, 60, 144–149. [Google Scholar] [CrossRef]
- Clasen, S.J.; Ley, R.E. Iron Deficiency Causes Wrinkles in Host-Commensal Relationships. Cell Metab. 2020, 31, 8–10. [Google Scholar] [CrossRef]
- Ameka, M.; Hasty, A.H. Paying the Iron Price: Liver Iron Homeostasis and Metabolic Disease. Compr. Physiol. 2022, 12, 3641–3663. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Aguree, S. Iron–Inflammasome Crosstalk in Adipose Tissue: Unresolved Roles of NLRP3 and IL-1β in Metabolic Inflammation. Int. J. Mol. Sci. 2025, 26, 8304. [Google Scholar] [CrossRef]
- Abril-Ulloa, V.; Flores-Mateo, G.; Solà-Alberich, R.; Manuel-Y-Keenoy, B.; Arija, V. Ferritin Levels and Risk of Metabolic Syndrome: Meta-Analysis of Observational Studies. BMC Public Health 2014, 14, 483. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, S.K.; Mir, I.A.; Bansal, N.; Singh, P.K.; Kumari, R.; Deshmukh, A. Serum Ferritin in Metabolic Syndrome—Mechanisms and Clinical Applications. Pathophysiology 2022, 29, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.J.; Huang, M.C.; Chang, W.T.; Chung, H.F.; Wu, C.Y.; Shin, S.J.; Hsu, C.C. Increased Ferritin Concentrations Correlate with Insulin Resistance in Female Type 2 Diabetic Patients. Ann. Nutr. Metab. 2012, 61, 32–40. [Google Scholar] [CrossRef]
- Levi, S.; Ripamonti, M.; Dardi, M.; Cozzi, A.; Santambrogio, P. Mitochondrial Ferritin: Its Role in Physiological and Pathological Conditions. Cells 2021, 10, 1969. [Google Scholar] [CrossRef]
- He, S.; Gu, H.; Yang, J.; Su, Q.; Li, X.; Qin, L. Hemoglobin Concentration Is Associated with the Incidence of Metabolic Syndrome. BMC Endocr. Disord. 2021, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Tapio, J.; Vähänikkilä, H.; Kesäniemi, Y.A.; Ukkola, O.; Koivunen, P. Higher Hemoglobin Levels Are an Independent Risk Factor for Adverse Metabolism and Higher Mortality in a 20-Year Follow-Up. Sci. Rep. 2021, 11, 19936. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.Q.; Yang, Z.G.; Hu, B.Y.; Shi, K.; Wang, J.; Li, X.M.; Zhang, G.; Li, W.R.; Xu, R.; et al. Higher Hemoglobin Levels Are Associated with Impaired Left Ventricular Global Strains in Metabolic Syndrome: A 3.0 T CMR Feature Tracking Study. Cardiovasc. Diabetol. 2025, 24, 123. [Google Scholar] [CrossRef] [PubMed]
- Ul Hussain, H.; Kumar, K.A.; Zahid, M.; Husban Burney, M.; Khan, Z.; Asif, M.; Rehan, S.T.; Ahmad Cheema, H.; Swed, S.; Yasmin, F.; et al. Neutrophil to Lymphocyte Ratio as a Prognostic Marker for Cardiovascular Outcomes in Patients with ST-Segment Elevation Myocardial Infarction after Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Medicine 2024, 103, e38692. [Google Scholar] [CrossRef]
- Dabaghi, G.G.; Rad, M.R.; Mortaheb, M.; Darouei, B.; Amani-Beni, R.; Mazaheri-Tehrani, S.; Izadan, M.; Touhidi, A. The Neutrophil-to-Lymphocyte Ratio Predicts Cardiovascular Outcomes in Patients With Diabetes: A Systematic Review and Meta-Analysis. Cardiol. Rev. 2025, 33, 202–211. [Google Scholar] [CrossRef]
- Cavestro, C. Metabolic Dysfunction and Dietary Interventions in Migraine Management: The Role of Insulin Resistance and Neuroinflammation—A Narrative and Scoping Review. Brain Sci. 2025, 15, 474. [Google Scholar] [CrossRef]
- Noerman, S.; Landberg, R. Blood Metabolite Profiles Linking Dietary Patterns with Health—Toward Precision Nutrition. J. Intern. Med. 2023, 293, 408–432. [Google Scholar] [CrossRef]
- Alencastro, J.A.P.; Lucero, D.A.S.; Solis, R.P.; Giron, C.G.H.; López, A.S.E.; Suárez, P.X.A. Molecular Mechanisms and Emerging Precision Therapeutics in the Gut Microbiota-Cardiovascular Axis. Cureus 2025, 17, e83022. [Google Scholar] [CrossRef] [PubMed]
- Zeilstra, D.; Younes, J.A.; Brummer, R.J.; Kleerebezem, M. Perspective: Fundamental Limitations of the Randomized Controlled Trial Method in Nutritional Research: The Example of Probiotics. Adv. Nutr. 2018, 9, 561–571. [Google Scholar] [CrossRef] [PubMed]
| Variable | All (n = 141) | CRP < 3 mg/L (n = 77) | CRP ≥ 3 mg/L (n = 64) | p-Value |
|---|---|---|---|---|
| Age (years) | 49.21 ± 9.85 | 49.60 ± 9.67 | 48.73 ± 10.11 | 0.606 |
| Female (%) | 68.10 | 62.30 | 75.00 | 0.146 |
| BMI (kg/m2) | 33.61 ± 7.92 | 32.10 ± 7.16 | 35.42 ± 8.46 | 0.013 |
| Systolic BP (mmHg) | 137.83 ± 18.89 | 136.27 ± 20.82 | 139.70 ± 16.24 | 0.285 |
| Diastolic BP (mmHg) | 83.11 ± 11.15 | 81.75 ± 10.60 | 84.73 ± 11.65 | 0.114 |
| Exercise (days/week) | 1.42 ± 1.89 | 1.16 ± 1.80 | 1.73 ± 1.97 | 0.071 |
| SEPI Total Score | 12.50 ± 4.24 | 12.70 ± 4.20 | 12.25 ± 4.31 | 0.531 |
| Serum Vitamin D (ng/mL) | 18.43 ± 7.40 | 22.09 ± 7.04 | 14.04 ± 5.08 | <0.001 |
| Dietary Vitamin D intake (IU/month) | 3068.0 (2259.5–5207.5) a | 3676.0 (2490.0–6297.0) a | 2604.0 (2010.0–3967.2) a | 0.001 * |
| Hemoglobin (g/dL) | 14.11 ± 0.82 | 13.71 + 0.76 | 14.59 + 0.63 | <0.001 |
| Glucose (mg/dL) | 204.29 ± 85.39 | 214.22 ± 91.46 | 192.35 ± 76.47 | 0.131 |
| HDL (mg/dL) | 38.59 ± 21.73 | 38.40 ± 27.51 | 38.81 ± 11.68 | 0.913 |
| Total Cholesterol (mg/dL) | 237.97 ± 51.74 | 214.83 ± 49.25 | 265.81 ± 39.76 | <0.001 |
| Triglycerides (mg/dL) | 214.0 (156.0–314.5) a | 232.0 (155.5–310.5) a | 202.5 (167.5–315.2) a | 0.791 * |
| NLR | 2.80 ± 1.20 | 2.47 ± 0.85 | 3.20 ± 1.42 | <0.001 |
| Food Item | All (n = 141) | CRP < 3 mg/L (n = 77) | CRP ≥ 3 mg/L (n = 64) | p-Value |
|---|---|---|---|---|
| Milk | 2.49 ± 1.96 | 2.90 ± 2.12 | 2.00 ± 1.63 | 0.006 |
| Cottage cheese | 0.94 ± 0.94 | 0.97 ± 1.03 | 0.89 ± 0.84 | 0.603 |
| Fresh cheese | 1.70 ± 1.05 | 2.00 ± 1.04 | 1.34 ± 0.95 | <0.001 |
| Manchego-type cheese | 1.62 ± 1.10 | 1.82 ± 1.10 | 1.38 ± 1.06 | 0.017 |
| Cream | 1.12 ± 0.81 | 1.19 ± 0.86 | 1.03 ± 0.76 | 0.237 |
| Yogurt | 2.30 ± 2.00 | 2.69 ± 2.20 | 1.84 ± 1.63 | 0.012 |
| Ice cream | 1.30 ± 0.70 | 1.45 ± 0.66 | 1.13 ± 0.70 | 0.005 |
| Eggs | 3.28 ± 1.65 | 3.38 ± 1.75 | 3.17 ± 1.53 | 0.465 |
| Tuna | 1.84 ± 1.23 | 2.04 ± 1.29 | 1.59 ± 1.11 | 0.032 |
| Chicken liver | 0.89 ± 0.78 | 0.99 ± 0.80 | 0.78 ± 0.74 | 0.120 |
| Fish | 1.86 ± 1.05 | 2.05 ± 1.16 | 1.63 ± 0.86 | 0.016 |
| Seafood | 0.96 ± 0.71 | 1.00 ± 0.74 | 0.91 ± 0.66 | 0.434 |
| Butter | 1.59 ± 0.99 | 1.48 ± 0.94 | 1.72 ± 1.03 | 0.154 |
| Chicken | 2.59 ± 1.44 | 2.69 ± 1.49 | 2.47 ± 1.39 | 0.371 |
| Ham | 1.58 ± 1.06 | 1.36 ± 1.06 | 1.84 ± 1.01 | 0.007 |
| Beef | 2.80 ± 0.90 | 2.88 ± 0.86 | 2.70 ± 0.95 | 0.241 |
| Pork | 2.89 ± 1.01 | 2.86 ± 0.85 | 2.92 ± 1.17 | 0.706 |
| Beans | 3.61 ± 2.09 | 3.38 ± 1.98 | 3.89 ± 2.20 | 0.147 |
| Peas | 1.00 ± 0.77 | 0.90 ± 0.66 | 1.13 ± 0.86 | 0.077 |
| Green fava beans | 0.79 ± 0.69 | 0.84 ± 0.71 | 0.72 ± 0.68 | 0.288 |
| Lentils | 1.04 ± 0.83 | 1.09 ± 0.86 | 0.98 ± 0.79 | 0.448 |
| Chickpeas | 0.97 ± 0.78 | 0.94 ± 0.83 | 1.02 ± 0.72 | 0.545 |
| Oats | 0.99 ± 0.90 | 0.90 ± 0.91 | 1.11 ± 0.88 | 0.161 |
| Spinach/leafy greens | 0.92 ± 0.70 | 0.87 ± 0.68 | 0.98 ± 0.72 | 0.335 |
| Variable | Bivariate OR | 95% CI | p-Value | Adjusted OR | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| Age ≥ 54 years | 1.06 | 0.54–2.06 | 0.866 | — | — | — |
| Female sex | 1.81 | 0.87–3.76 | 0.110 | — | — | — |
| ≥3 days/week of exercise | 1.40 | 0.69–2.85 | 0.351 | — | — | — |
| SEPI score ≥ median (≥12) | 0.91 | 0.47–1.76 | 0.770 | — | — | — |
| Obesity grade II or higher | 2.44 | 1.16–5.15 | 0.019 | — | — | — |
| Vitamin D deficiency (<20 ng/mL) | 15.97 | 6.39–39.92 | <0.001 | 7.11 | 2.59–19.48 | <0.001 |
| Vitamin D intake < 3281 IU/month | 0.56 | 0.28–1.10 | 0.094 | — | — | — |
| Hemoglobin ≥ 14.3 g/L | 10.65 | 4.84–23.46 | <0.001 | — | — | — |
| Ferritin ≥ 200 mg/L | 16.25 | 7.04–37.50 | <0.001 | 8.00 | 3.21–19.91 | <0.001 |
| High systolic BP | 1.31 | 0.65–2.62 | 0.450 | — | — | — |
| High diastolic BP | 1.53 | 0.78–3.03 | 0.217 | — | — | — |
| Hypertriglyceridemia | 1.05 | 0.45–2.44 | 0.913 | — | — | — |
| Hyperglycemia | 1.05 | 0.45–2.44 | 0.913 | — | — | — |
| Total cholesterol ≥ 200 mg/dL | 8.06 | 3.11–20.89 | <0.001 | — | — | — |
| Low HDL | 0.72 | 0.27–1.88 | 0.497 | — | — | — |
| NLR ≥ 3.5 | 2.76 | 1.26–6.05 | 0.011 | — | — | — |
| Variable | Bivariate OR | 95% CI | p-Value | Adjusted OR | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| Age ≥ 54 years | 0.73 | 0.37–1.44 | 0.364 | — | — | — |
| Female sex | 1.02 | 0.50–2.09 | 0.957 | — | — | — |
| ≥3 days/week of exercise | 1.12 | 0.55–2.29 | 0.756 | — | — | — |
| SEPI score ≥ median (≥12) | 0.63 | 0.32–1.24 | 0.181 | — | — | — |
| Obesity grade II or higher | 1.08 | 0.52–2.25 | 0.836 | 0.11 | 0.02–0.60 | 0.011 |
| Vitamin D deficiency (<20 ng/mL) | 16.14 | 6.19–42.06 | <0.001 | 24.69 | 3.76–162.16 | 0.001 |
| Vitamin D intake < 3281 IU/month | 0.55 | 0.28–1.08 | 0.084 | — | — | — |
| Hemoglobin ≥ 14.3 g/L | 51.70 | 18.69–143.01 | <0.001 | 63.23 | 13.00–307.50 | <0.001 |
| CRP ≥ 3 mg/L | 16.25 | 7.04–37.50 | <0.001 | 5.06 | 1.38–18.47 | 0.014 |
| High systolic BP | 1.24 | 0.62–2.50 | 0.547 | — | — | — |
| High diastolic BP | 1.15 | 0.58–2.28 | 0.684 | — | — | — |
| Hypertriglyceridemia | 0.91 | 0.39–2.12 | 0.825 | — | — | — |
| Hyperglycemia | 0.88 | 0.26–3.03 | 0.839 | — | — | — |
| Total cholesterol ≥ 200 mg/dL | 16.79 | 4.86–58.04 | <0.001 | |||
| Low HDL | 0.38 | 0.14–1.03 | 0.057 | |||
| NLR ≥ 3.5 | 2.37 | 1.09–5.13 | 0.028 |
| Variable | Bivariate Model OR | 95% CI | p-Value | Multivariable Model AdOR | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| Female | 1.40 | 0.68–2.85 | 0.362 | — | — | — |
| Age ≥ 54 years | 0.60 | 0.31–1.19 | 0.145 | — | — | — |
| Obesity grade II or higher | 4.12 | 1.73–9.81 | 0.001 | — | — | — |
| ≥3 days/week of exercise | 1.23 | 0.59–2.54 | 0.579 | — | — | — |
| SEPI ≥ median (≥12) | 0.49 | 0.25–0.97 | 0.040 | 0.38 | 0.16–0.92 | 0.033 |
| Milk ≥ 3 servings/week | 0.16 | 0.08–0.34 | <0.001 | 0.37 | 0.14–0.96 | 0.040 |
| Oaxaca cheese ≥ 3 servings/week | 0.17 | 0.07–0.39 | <0.001 | — | — | — |
| Manchego/cottage-type cheese ≥ 3 servings/week | 0.09 | 0.03–0.26 | <0.001 | 0.20 | 0.06–0.68 | 0.010 |
| Cream cheese ≥ 3 servings/week | 0.18 | 0.04–0.90 | 0.037 | — | — | — |
| Yogurt ≥ 3 servings/week | 0.18 | 0.09–0.38 | <0.001 | — | — | — |
| Ice cream ≥ 3 servings/week | 0.34 | 0.03–3.86 | 0.385 | — | — | — |
| Eggs ≥ 3 servings/week | 0.72 | 0.36–1.45 | 0.358 | — | — | — |
| Seafood ≥ 3 servings/week | 1.00 | 1.00–1.00 | 0.999 | — | — | — |
| Butter ≥ 3 servings/week | 3.37 | 1.18–9.58 | 0.023 | 4.36 | 1.18–16.16 | 0.027 |
| Chicken ≥ 3 servings/week | 0.75 | 0.38–1.47 | 0.404 | — | — | — |
| Ham ≥ 3 servings/week | 1.33 | 0.56–3.14 | 0.516 | — | — | — |
| Beef ≥ 3 servings/week | 0.39 | 0.17–0.88 | 0.023 | — | — | — |
| Pork ≥ 3 servings/week | 0.49 | 0.22–1.08 | 0.077 | — | — | — |
| Beans ≥ 3 servings/week | 0.91 | 0.45–1.85 | 0.788 | — | — | — |
| Fava beans ≥ 3 servings/week | 1.00 | 1.00–1.00 | 0.999 | — | — | — |
| Lentils ≥ 3 servings/week | 0.68 | 0.16–2.85 | 0.602 | — | — | — |
| Chickpeas ≥ 3 servings/week | 1.05 | 0.17–6.49 | 0.958 | — | — | — |
| Oats ≥ 3 servings/week | 3.65 | 0.42–32.13 | 0.243 | — | — | — |
| Spinach ≥ 3 servings/week | 1.00 | 1.00–1.00 | 0.999 | — | — | — |
| Cottage cheese ≥ 3 servings/week | 0.08 | 0.01–0.63 | 0.017 | — | — | — |
| Tuna ≥ 3 servings/week | 0.17 | 0.07–0.41 | <0.001 | — | — | — |
| Fish ≥ 3 servings/week | 0.07 | 0.03–0.19 | <0.001 | 0.15 | 0.05–0.45 | 0.001 |
| Green peas ≥ 3 servings/week | 1.00 | 1.00–1.00 | 0.999 | — | — | — |
| Model | Independent Variable | Dependent Variable | B Coefficient | Standard Error | OR | 95% CI for OR | p-Value | Comments |
|---|---|---|---|---|---|---|---|---|
| Model A * | Deficient Vitamin D Intake | Vitamin D Deficiency | 2.036 | 0.538 | 7.662 | 2.669–21.995 | <0.001 | “a” Path |
| Model B ** | Vitamin D Deficiency | High CRP | 2.462 | 0.768 | 11.731 | 2.603–52.875 | 0.001 | “b” Path, adjusted for X |
| Direct Effect *** | Deficient Vitamin D Intake | High CRP | −0.616 | 0.484 | 0.54 | 0.209–1.394 | 0.203 | Direct effect with mediator included |
| Indirect Effect (Sobel Test) | – | – | 2.446 | 2.049 | – | – | 0.014 | Mediation effect |
| Model | Independent Variable | Dependent Variable | B Coefficient | Standard Error | OR | 95% CI for OR | p-Value | Comments |
|---|---|---|---|---|---|---|---|---|
| Model A * | Deficient Vitamin D Intake | Vitamin D Deficiency | 2.036 | 0.538 | 7.662 | 2.669–21.995 | <0.001 | “a” Path |
| Model B ** | Vitamin D Deficiency | High Ferritin | 3.013 | 0.947 | 20.357 | 3.181–130.255 | 0.001 | “b” Path, adjusted for X |
| Direct Effect *** | Deficient Vitamin D Intake | High Ferritin | −0.517 | 0.470 | 0.597 | 0.238–1.498 | 0.272 | Direct effect with mediator included |
| Indirect Effect (Sobel Test) | – | – | 2.435 | 2.518 | – | – | 0.014 | Mediation effect |
| Model | Independent Variable | Dependent Variable | B Coefficient | Standard Error | OR | 95% CI for OR | p-Value | Comments |
|---|---|---|---|---|---|---|---|---|
| Model A * | High Hb | High Ferritin | 4.147 | 0.807 | 63.238 | 13.005–307.502 | <0.001 | “a” Path |
| Model B ** | High Ferritin | High CRP | 2.079 | 0.465 | 8.000 | 3.213–19.918 | <0.001 | “b” Path, adjusted for X |
| Direct Effect *** | High Hb | High CRP | 0.993 | 0.562 | 2.541 | 0.845–7.645 | 0.097 | Direct effect with mediator included |
| Indirect Effect (Sobel Test) | – | – | 3.373 | 2.556 | – | – | <0.001 | Mediation effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cortes-Álvarez, S.I.; Delgado-Enciso, I.; Hernández-Fuentes, G.A.; Guzmán-Esquivel, J.; Diaz-Martinez, J.; Rodríguez-Hernández, A.; Martinez-Fierro, M.L.; Rodríguez-Sánchez, I.P.; Melnikov, V.; Flores-Ruelas, Y.; et al. Vitamin D Deficiency Mediates the Link Between Dietary Patterns, Inflammatory Biomarkers, and Iron Status Indicators (Ferritin and Hemoglobin) in Metabolic Syndrome. Nutrients 2026, 18, 224. https://doi.org/10.3390/nu18020224
Cortes-Álvarez SI, Delgado-Enciso I, Hernández-Fuentes GA, Guzmán-Esquivel J, Diaz-Martinez J, Rodríguez-Hernández A, Martinez-Fierro ML, Rodríguez-Sánchez IP, Melnikov V, Flores-Ruelas Y, et al. Vitamin D Deficiency Mediates the Link Between Dietary Patterns, Inflammatory Biomarkers, and Iron Status Indicators (Ferritin and Hemoglobin) in Metabolic Syndrome. Nutrients. 2026; 18(2):224. https://doi.org/10.3390/nu18020224
Chicago/Turabian StyleCortes-Álvarez, Salma I., Iván Delgado-Enciso, Gustavo A. Hernández-Fuentes, José Guzmán-Esquivel, Janet Diaz-Martinez, Alejandrina Rodríguez-Hernández, Margarita L. Martinez-Fierro, Iram P. Rodríguez-Sánchez, Valery Melnikov, Yunue Flores-Ruelas, and et al. 2026. "Vitamin D Deficiency Mediates the Link Between Dietary Patterns, Inflammatory Biomarkers, and Iron Status Indicators (Ferritin and Hemoglobin) in Metabolic Syndrome" Nutrients 18, no. 2: 224. https://doi.org/10.3390/nu18020224
APA StyleCortes-Álvarez, S. I., Delgado-Enciso, I., Hernández-Fuentes, G. A., Guzmán-Esquivel, J., Diaz-Martinez, J., Rodríguez-Hernández, A., Martinez-Fierro, M. L., Rodríguez-Sánchez, I. P., Melnikov, V., Flores-Ruelas, Y., Garza-Veloz, I., Cruz-Ruiz, M. D. l., Ramos-Organillo, Á. A., & Sánchez-Ramírez, C. A. (2026). Vitamin D Deficiency Mediates the Link Between Dietary Patterns, Inflammatory Biomarkers, and Iron Status Indicators (Ferritin and Hemoglobin) in Metabolic Syndrome. Nutrients, 18(2), 224. https://doi.org/10.3390/nu18020224

