Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = locally resonant materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 257
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

13 pages, 2500 KiB  
Article
The Impact of Gear Meshing in High-Speed EMU Gearboxes on Fatigue Strength of the Gearbox Housing
by Changqing Liu, Shouguang Sun and Qiang Li
Technologies 2025, 13(8), 311; https://doi.org/10.3390/technologies13080311 - 22 Jul 2025
Viewed by 242
Abstract
As high-speed electric multiple units (EMUs) advance in speed and complexity, quasi-static design methods may underestimate the fatigue risks associated with high-frequency dynamic excitations. This study quantifies the contribution of gear meshing-induced vibrations (2512 Hz) to fatigue damage in EMU gearbox housings, revealing [...] Read more.
As high-speed electric multiple units (EMUs) advance in speed and complexity, quasi-static design methods may underestimate the fatigue risks associated with high-frequency dynamic excitations. This study quantifies the contribution of gear meshing-induced vibrations (2512 Hz) to fatigue damage in EMU gearbox housings, revealing resonance amplification of local stresses up to 1.8 MPa at 300 km/h operation. Through integrated field monitoring and bench testing, we demonstrated that gear meshing excites structural modes, generating sustained, very high-cycle stresses (>108 cycles). Crucially, fatigue specimens were directly extracted from in-service gearbox housings—overcoming the limitations of standardized coupons—passing the very high-cycle fatigue (VHCF) test to derive S-N characteristics beyond 108 cycles. Results show a continuous decline in fatigue strength (with no traditional fatigue limit) from 108 to 109 cycles. This work bridges the gap between static design standards (e.g., FKM) and actual dynamic environments, proving that accumulated damage from low-amplitude gear-meshing stresses (3.62 × 1011 cycles over a 12 million km lifespan) contributes to a 16% material utilization ratio. The findings emphasize that even low-magnitude gear-meshing stresses can significantly influence gearbox fatigue life due to their ultra-high frequency, warranting design consideration beyond current standards. Full article
Show Figures

Figure 1

18 pages, 5775 KiB  
Article
Precision Solar Spectrum Filtering in Aerogel Windows via Synergistic ITO-Ag Nanoparticle Doping for Hot-Climate Energy Efficiency
by Huilin Yang, Maoquan Huang, Mingyang Yang, Xuankai Zhang and Mu Du
Gels 2025, 11(7), 553; https://doi.org/10.3390/gels11070553 - 18 Jul 2025
Viewed by 204
Abstract
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant [...] Read more.
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant challenge for material design. We propose a plasma silica aerogel window utilizing the local surface plasmon resonance effect of plasmonic nanoparticles. This design incorporates indium tin oxide (ITO) nanospheres (for broad-band UV/NIR blocking) and silver (Ag) nanocylinders (targeted blocking of the 0.78–0.9 μm NIR band) co-doped into the silica aerogel. This design achieves a visible light transmittance of 0.8, a haze value below 0.12, and a photothermal ratio of 0.91. Building simulations indicate that compared to traditional glass, this window can achieve annual energy savings of 20–40% and significantly reduce the economic losses associated with traditional glass, providing a feasible solution for sustainable buildings. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

12 pages, 2871 KiB  
Article
Multi-Objective Optimization Design of Low-Frequency Band Gap for Local Resonance Acoustic Metamaterials Based on Genetic Algorithm
by Jianjiao Deng, Yunuo Qin, Xi Chen, Yanyong He, Yu Song, Xinpeng Zhang, Wenting Ma, Shoukui Li and Yudong Wu
Machines 2025, 13(7), 610; https://doi.org/10.3390/machines13070610 - 16 Jul 2025
Viewed by 286
Abstract
Driven by the urgent demand for low-frequency vibration and noise control in engineering scenarios such as automobiles, acoustic metamaterials (AMs), as a new class of functional materials, have demonstrated significant application potential. This paper proposes a low-frequency band gap optimization design method for [...] Read more.
Driven by the urgent demand for low-frequency vibration and noise control in engineering scenarios such as automobiles, acoustic metamaterials (AMs), as a new class of functional materials, have demonstrated significant application potential. This paper proposes a low-frequency band gap optimization design method for local resonance acoustic metamaterials (LRAMs) based on a multi-objective genetic algorithm. Within a COMSOL Multiphysics 6.2 with MATLAB R2024b co-simulation framework, a parameterized unit cell model of the metamaterial is constructed. The optimization process targets two objectives: minimizing the band gap’s deviation from the target and reducing the structural mass. A multi-objective fitness function is formulated by incorporating the band gap deviation and structural mass constraints, and non-dominated sorting genetic algorithm II (NSGA-II) is employed to perform a global search over the geometric parameters of the resonant unit. The resulting Pareto-optimal solution set achieves a unit cell mass as low as 26.49 g under the constraint that the band gap deviation does not exceed 2 Hz. The results of experimental validation show that the optimized metamaterial configuration reduces the peak of the low-frequency frequency response function (FRF) at 63 Hz by up to 75% in a car door structure. Furthermore, the simulation predictions exhibit good agreement with the experimental measurements, confirming the effectiveness and reliability of the proposed method in engineering applications. The proposed multi-objective optimization framework is highly general and extensible and capable of effectively balancing between the acoustic performance and structural mass, thus providing an efficient engineering solution for low-frequency noise control problems. Full article
(This article belongs to the Special Issue Intelligent Applications in Mechanical Engineering)
Show Figures

Figure 1

27 pages, 5760 KiB  
Review
Recent Advances in Soft Acoustic Metamaterials: A Comprehensive Review of Geometry, Mechanisms, and System Responsiveness
by Ju-Hee Lee, Haesol Kwak, Eunjik Kim and Min-Woo Han
Appl. Sci. 2025, 15(14), 7910; https://doi.org/10.3390/app15147910 - 16 Jul 2025
Viewed by 879
Abstract
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable [...] Read more.
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable structures to achieve enhanced acoustic functionality. These systems make use of the inherent flexibility of their materials or the deformability of their geometry to support passive, active, and adaptive functions. To capture this structural and functional diversity, we introduce a three-dimensional classification that considers geometry, acoustic control mechanisms, and functional responsiveness as interrelated aspects. The geometry is classified into two-dimensional metasurfaces and three-dimensional bulk structures. The control mechanisms include local resonance, phase modulation, attenuation, and structural reconfiguration. The response type refers to whether the system behaves passively, actively, or adaptively. Using this approach, we provide an overview of representative implementations and compare different design approaches to highlight their working principles and application areas. This review presents a structured classification for soft acoustic metamaterials and offers a foundation for future research, with broad potential in intelligent sound systems, wearable acoustics, and architectural applications. Full article
Show Figures

Figure 1

21 pages, 7602 KiB  
Article
Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation
by Stelios Loukopoulos, Elias Sakellis, Polychronis Tsipas, Spiros Gardelis, Vassilis Psycharis, Marios G. Kostakis, Nikolaos S. Thomaidis and Vlassis Likodimos
Nanomaterials 2025, 15(14), 1076; https://doi.org/10.3390/nano15141076 - 11 Jul 2025
Viewed by 421
Abstract
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 [...] Read more.
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 inverse opal (IO) films that synergistically integrate photonic, plasmonic, and semiconducting functionalities to overcome these limitations. The materials were synthesized via a one-step evaporation-induced co-assembly approach, embedding MoS2 nanosheets and plasmonic nanoparticles (Ag or Au) within a nanocrystalline TiO2 photonic framework. The inverse opal architecture enhances light harvesting through slow-photon effects, while MoS2 and plasmonic nanoparticles improve visible-light absorption and charge separation. By tuning the template sphere size, the photonic band gap was aligned with the TiO2-MoS2 absorption edge and the localized surface plasmon resonance of Ag, enabling optimal spectral overlap. The corresponding Ag/MoS2-TiO2 photonic films exhibited superior photocatalytic and photoelectrocatalytic degradation of tetracycline under visible light. Ultraviolet photoelectron spectroscopy and Mott–Schottky analysis confirmed favorable band alignment and Fermi level shifts that facilitate interfacial charge transfer. These results highlight the potential of integrated photonic–plasmonic-semiconductor architectures for efficient solar-driven water treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

15 pages, 2102 KiB  
Article
MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments
by Yandong Yang, Yajun Zhu, Yifei Wu, Fan Chang, Xu Zhu, Xinyue Zhang, Ning Ma, Yushu Wang and Alaa S. Abd-El-Aziz
Sensors 2025, 25(14), 4273; https://doi.org/10.3390/s25144273 - 9 Jul 2025
Viewed by 416
Abstract
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a [...] Read more.
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a critical step for improving the chip. To address this issue, an electrochemical detection chip was modified using the nanomaterial MXene, known for its large specific surface area, excellent adsorption, good dispersion, and high conductivity. Meanwhile, AgNO3 solution was added to the Ti3C2Tx MXene nanosheet solution, and the AgNP@MXene material was prepared by heating in a water bath. This process further enhances photothermal conversion efficiency due to the localized surface plasmon resonance effect of silver nanoparticles and MXene. This MXene-based photothermally enhanced paper chip exhibits outstanding photothermal conversion performance and sensitive photoelectrochemical responsiveness, along with good cycling stability. Moreover, improved glucose detection sensitivity at low winter temperatures has been achieved, and the ambient temperature range of the paper chip has been expanded to 25–37 °C. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

23 pages, 3988 KiB  
Article
Research on Equivalent One-Dimensional Cylindrical Modeling Method for Lead–Bismuth Fast Reactor Fuel Assemblies
by Jinjie Xiao, Yongfa Zhang, Song Li, Ling Chen, Jiannan Li and Cong Zhang
Energies 2025, 18(13), 3564; https://doi.org/10.3390/en18133564 - 6 Jul 2025
Viewed by 437
Abstract
The lead-cooled fast reactor (LFR), a Generation IV nuclear system candidate, presents unique neutronic characteristics distinct from pressurized water reactors. Its neutron spectrum spans wider energy ranges with fast neutron dominance, exhibiting resonance phenomena across energy regions. These features require a fine energy [...] Read more.
The lead-cooled fast reactor (LFR), a Generation IV nuclear system candidate, presents unique neutronic characteristics distinct from pressurized water reactors. Its neutron spectrum spans wider energy ranges with fast neutron dominance, exhibiting resonance phenomena across energy regions. These features require a fine energy group structure for fuel lattice calculations, significantly increasing computational demands. To balance local heterogeneity modeling with computational efficiency, researchers across the world adopt fuel assembly equivalence methods using 1D cylindrical models through volume equivalence principles. This approach enables detailed energy group calculations in simplified geometries, followed by lattice homogenization for few-group parameter generation, effectively reducing whole-core computational loads. However, limitations emerge when handling strongly heterogeneous components like structural/control rods. This study investigates the 1D equivalence method’s accuracy in lead–bismuth fast reactors under various fuel assembly configurations. Through comprehensive analysis of material distributions and their equivalence impacts, the applicability of the one-dimensional equivalence approach to fuel assemblies of different geometries and material types is analyzed in this paper. The research further proposes corrective solutions for low-accuracy scenarios, enhancing computational method reliability. This paper is significant in its optimization of the physical calculation and analysis process of a new type of fast reactor component and has important engineering application value. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

20 pages, 6286 KiB  
Article
Near-Field Microwave Sensing for Chip-Level Tamper Detection
by Maryam Saadat Safa and Shahin Tajik
Sensors 2025, 25(13), 4188; https://doi.org/10.3390/s25134188 - 5 Jul 2025
Viewed by 386
Abstract
Stealthy chip-level tamper attacks, such as hardware Trojan insertions or security-critical circuit modifications, can threaten modern microelectronic systems’ security. While traditional inspection and side-channel methods offer potential for tamper detection, they may not reliably detect all forms of attacks and often face practical [...] Read more.
Stealthy chip-level tamper attacks, such as hardware Trojan insertions or security-critical circuit modifications, can threaten modern microelectronic systems’ security. While traditional inspection and side-channel methods offer potential for tamper detection, they may not reliably detect all forms of attacks and often face practical limitations in terms of scalability, accuracy, or applicability. This work introduces a non-invasive, contactless tamper detection method employing a complementary split-ring resonator (CSRR). CSRRs, which are typically deployed for non-destructive material characterization, can be placed on the surface of the chip’s package to detect subtle variations in the impedance of the chip’s power delivery network (PDN) caused by tampering. The changes in the PDN’s impedance profile perturb the local electric near field and consequently affect the sensor’s impedance. These changes manifest as measurable variations in the sensor’s scattering parameters. By monitoring these variations, our approach enables robust and cost-effective physical integrity verification requiring neither physical contact with the chips or printed circuit board (PCB) nor activation of the underlying malicious circuits. To validate our claims, we demonstrate the detection of various chip-level tamper events on an FPGA manufactured with 28 nm technology. Full article
(This article belongs to the Special Issue Sensors in Hardware Security)
Show Figures

Figure 1

11 pages, 1841 KiB  
Article
Construction of Silane-Modified Diatomite-Magnetic Nanocomposite Superhydrophobic Coatings Using Multi-Scale Composite Principle
by Dan Li, Mei Wu, Rongjun Xia, Jiwen Hu and Fangzhi Huang
Coatings 2025, 15(7), 786; https://doi.org/10.3390/coatings15070786 - 3 Jul 2025
Viewed by 419
Abstract
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were [...] Read more.
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were functionalized with octyltriethoxysilane (OTS) to prepare superhydrophobic diatomite flakes (ODEM) and OFe3O4 nanoparticles. Following the multi-scale composite principle, ODEM and OFe3O4 nanoparticles were blended and crosslinked via the hydroxyl-initiated ring-opening polymerization of epoxy resin (EP), resulting in an EP/ODEM@OFe3O4 composite coating with hierarchical roughness. Microstructural characterization revealed that the micrometer-scale porous structure of ODEM and the nanoscale protrusions of OFe3O4 form a hierarchical micro–nano topography. The special topography combined with the low surface energy property leads to a contact angle of 158°. Additionally, the narrow bandgap semiconductor characteristic of OFe3O4 induces the localized surface plasmon resonance effect. This enables the coating to attain 80% light absorption across the 350–2500 nm spectrum, and rapidly heat to 45.8 °C within 60 s under 0.5 sun, thereby demonstrating excellent deicing performance. This work provides a theoretical foundation for developing environmentally tolerant superhydrophobic photothermal coatings, which exhibit significant application potential in the field of anti-icing and anti-fouling. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 422
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 473
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

11 pages, 2010 KiB  
Article
Metasurface-Enhanced Infrared Photodetection Using Layered van der Waals MoSe2
by Jinchun Li, Zhixiang Xie, Tianxiang Zhao, Hongliang Li, Di Wu and Xuechao Yu
Nanomaterials 2025, 15(12), 913; https://doi.org/10.3390/nano15120913 - 12 Jun 2025
Viewed by 464
Abstract
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the [...] Read more.
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the bandgap, resulting in a significant attenuation of photoresponse in spectral regions beyond the bandgap. This inherently restricts their broadband photodetection performance. By introducing metasurface structures consisting of subwavelength optical elements, localized plasmon resonance effects can be exploited to overcome this absorption limitation, significantly enhancing the light absorption of TMD films. Additionally, the heterogeneous integration process between the metasurface and two-dimensional materials offers low-temperature compatibility advantages, effectively avoiding the limitations imposed by high-temperature doping processes in traditional semiconductor devices. Here, we systematically investigate metasurface-enhanced two-dimensional MoSe2 photodetectors, demonstrating broadband responsivity extension into the mid-infrared spectrum via precise control of metasurface structural dimensions. The optimized device possesses a wide spectrum response ranging from 808 nm to 10 μm, and the responsivity (R) and specific detection rate (D*) under 4 μm illumination achieve 7.1 mA/W and 1.12 × 108 Jones, respectively. Distinct metasurface configurations exhibit varying impacts on optical absorption characteristics and detection spectral ranges, providing experimental foundations for optimizing high-performance photodetectors. This work establishes a practical pathway for developing broadband optoelectronic devices through nanophotonic structure engineering. Full article
Show Figures

Figure 1

19 pages, 2894 KiB  
Article
Mesoscale Modelling of the Mechanical Behavior of Metaconcretes
by Antonio Martínez Raya, Gastón Sal-Anglada, María Pilar Ariza and Matías Braun
Appl. Sci. 2025, 15(12), 6543; https://doi.org/10.3390/app15126543 - 10 Jun 2025
Viewed by 483
Abstract
Metaconcrete (MC) is a class of engineered cementitious composites that integrates locally resonant inclusions to filter stress waves. While the dynamic benefits are well established, the effect of resonator content and geometry on static compressive resistance remains unclear. This study develops the first [...] Read more.
Metaconcrete (MC) is a class of engineered cementitious composites that integrates locally resonant inclusions to filter stress waves. While the dynamic benefits are well established, the effect of resonator content and geometry on static compressive resistance remains unclear. This study develops the first two-dimensional mesoscale finite-element model that explicitly represents steel cores, rubber coatings, and interfacial transition zones to predict the quasi-static behavior of MC. The model is validated against benchmark experiments, reproducing the 56% loss of compressive strength recorded for a 10.6% resonator volume fraction with an error of less than 1%. A parametric analysis covering resonator ratios from 1.5% to 31.8%, diameters from 16.8 mm to 37.4 mm, and coating thicknesses from 1.0 mm to 4.2 mm shows that (i) strength decays exponentially with volumetric content, approaching an asymptote at ≈20% of plain concrete strength; (ii) larger cores with thinner coatings minimize stiffness loss (<10%) while limiting strength reduction to 15–20%; and (iii) material properties of the resonator have a secondary influence (<6%). Two closed-form expressions for estimating MC strength and Young’s modulus (R2 = 0.83 and 0.94, respectively) are proposed to assist with the preliminary design. The model and correlations lay the groundwork for optimizing MC that balances vibration mitigation with structural capacity. Full article
Show Figures

Figure 1

13 pages, 4266 KiB  
Article
Exciting High-Order Plasmon Mode Using Metal-Insulator-Metal Bowtie Nanoantenna
by Xiaoxin Zhang, Rulin Guan, Qingxiu Ding, Chen Wang, Yaqiong Li, Dengchao Huang, Qigong Chen and Zheng Yang
Nanomaterials 2025, 15(12), 882; https://doi.org/10.3390/nano15120882 - 7 Jun 2025
Viewed by 479
Abstract
Noble metal nanostructures have garnered significant attention for their exceptional optical properties, particularly Localized Surface Plasmon Resonance (LSPR), which enables pronounced near-field electromagnetic enhancements. Among these, bowtie nanoantennas (BNAs) are distinguished by their intense plasmonic coupling within nanogap regions, making them highly effective [...] Read more.
Noble metal nanostructures have garnered significant attention for their exceptional optical properties, particularly Localized Surface Plasmon Resonance (LSPR), which enables pronounced near-field electromagnetic enhancements. Among these, bowtie nanoantennas (BNAs) are distinguished by their intense plasmonic coupling within nanogap regions, making them highly effective for applications such as surface-enhanced Raman scattering (SERS). However, the practical utility of conventional BNAs is often hindered by small hotspot areas and significant scattering losses at their peak near-field enhancement wavelengths. To overcome these limitations, we have designed a novel notch metal-insulator-metal bowtie nanoantenna (NMIM-BNA) structure. This innovative design integrates dielectric materials with Ag-BNA nanostructures and strategically positions arrays of silver (Ag) nanorods within the central nanogap. By coupling the larger NMIM-BNA framework with these smaller Ag nanorod arrays, higher-order plasmon modes (often referred to as dark modes) are effectively excited. Consequently, the NMIM-BNA exhibits substantial electric field enhancement, particularly at the Fano dip wavelength, arising from the efficient coupling of these higher-order plasmon modes with dipole plasmon modes. Compared to conventional Ag-BNA nanoantennas, our NMIM-BNA provides a significantly larger hotspot region and an enhanced near-field amplification factor, underscoring its strong potential for advanced SERS applications. Full article
Show Figures

Figure 1

Back to TopTop