Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,877)

Search Parameters:
Keywords = local optimal solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2859 KiB  
Article
Air Quality Prediction Using Neural Networks with Improved Particle Swarm Optimization
by Juxiang Zhu, Zhaoliang Zhang, Wei Gu, Chen Zhang, Jinghua Xu and Peng Li
Atmosphere 2025, 16(7), 870; https://doi.org/10.3390/atmos16070870 (registering DOI) - 17 Jul 2025
Abstract
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight [...] Read more.
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight particle swarm optimization (AWPSO) algorithm with a back propagation neural network (BPNN). First, the random forest (RF) algorithm is used to scree the influencing factors of AQI concentration. Second, the inertia weights and learning factors of the standard PSO are improved to ensure the global search ability exhibited by the algorithm in the early stage and the ability to rapidly obtain the optimal solution in the later stage; we also introduce an adaptive variation algorithm in the particle search process to prevent the particles from being caught in local optima. Finally, the BPNN is optimized using the AWPSO algorithm, and the final values of the optimized particle iterations serve as the connection weights and thresholds of the BPNN. The experimental results show that the RFAWPSO-BP model reduces the root mean square error and mean absolute error by 9.17 μg/m3, 5.7 μg/m3, 2.66 μg/m3; and 9.12 μg/m3, 5.7 μg/m3, 2.68 μg/m3 compared with the BP, PSO-BP, and AWPSO-BP models, respectively; furthermore, the goodness of fit of the proposed model was 14.8%, 6.1%, and 2.3% higher than that of the aforementioned models, respectively, demonstrating good prediction accuracy. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 21197 KiB  
Article
DLPLSR: Dual Label Propagation-Driven Least Squares Regression with Feature Selection for Semi-Supervised Learning
by Shuanghao Zhang, Zhengtong Yang and Zhaoyin Shi
Mathematics 2025, 13(14), 2290; https://doi.org/10.3390/math13142290 (registering DOI) - 16 Jul 2025
Abstract
In the real world, most data are unlabeled, which drives the development of semi-supervised learning (SSL). Among SSL methods, least squares regression (LSR) has attracted attention for its simplicity and efficiency. However, existing semi-supervised LSR approaches suffer from challenges such as the insufficient [...] Read more.
In the real world, most data are unlabeled, which drives the development of semi-supervised learning (SSL). Among SSL methods, least squares regression (LSR) has attracted attention for its simplicity and efficiency. However, existing semi-supervised LSR approaches suffer from challenges such as the insufficient use of unlabeled data, low pseudo-label accuracy, and inefficient label propagation. To address these issues, this paper proposes dual label propagation-driven least squares regression with feature selection, named DLPLSR, which is a pseudo-label-free SSL framework. DLPLSR employs a fuzzy-graph-based clustering strategy to capture global relationships among all samples, and manifold regularization preserves local geometric consistency, so that it implements the dual label propagation mechanism for comprehensive utilization of unlabeled data. Meanwhile, a dual-feature selection mechanism is established by integrating orthogonal projection for maximizing feature information with an 2,1-norm regularization for eliminating redundancy, thereby jointly enhancing the discriminative power. Benefiting from these two designs, DLPLSR boosts learning performance without pseudo-labeling. Finally, the objective function admits an efficient closed-form solution solvable via an alternating optimization strategy. Extensive experiments on multiple benchmark datasets show the superiority of DLPLSR compared to state-of-the-art LSR-based SSL methods. Full article
(This article belongs to the Special Issue Machine Learning and Optimization for Clustering Algorithms)
Show Figures

Figure 1

23 pages, 2079 KiB  
Article
Offshore Energy Island for Sustainable Water Desalination—Case Study of KSA
by Muhnad Almasoudi, Hassan Hemida and Soroosh Sharifi
Sustainability 2025, 17(14), 6498; https://doi.org/10.3390/su17146498 - 16 Jul 2025
Abstract
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework [...] Read more.
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework was developed to assess site feasibility based on renewable energy potential (solar, wind, and wave), marine traffic, site suitability, planned developments, and proximity to desalination facilities. Data was sourced from platforms such as Windguru and RETScreen, and spatial analysis was conducted using Inverse Distance Weighting (IDW) and Multi-Criteria Decision Analysis (MCDA). Results indicate that the central Red Sea region offers the most favorable conditions, combining high renewable resource availability with existing infrastructure. The estimated regional desalination energy demand of 2.1 million kW can be met using available renewable sources. Integrating these sources is expected to reduce local CO2 emissions by up to 43.17% and global desalination-related emissions by 9.5%. Spatial constraints for offshore installations were also identified, with land-based solar energy proposed as a complementary solution. The study underscores the need for further research into wave energy potential in the Red Sea, due to limited real-time data and the absence of a dedicated wave energy atlas. Full article
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

12 pages, 2871 KiB  
Article
Multi-Objective Optimization Design of Low-Frequency Band Gap for Local Resonance Acoustic Metamaterials Based on Genetic Algorithm
by Jianjiao Deng, Yunuo Qin, Xi Chen, Yanyong He, Yu Song, Xinpeng Zhang, Wenting Ma, Shoukui Li and Yudong Wu
Machines 2025, 13(7), 610; https://doi.org/10.3390/machines13070610 - 16 Jul 2025
Abstract
Driven by the urgent demand for low-frequency vibration and noise control in engineering scenarios such as automobiles, acoustic metamaterials (AMs), as a new class of functional materials, have demonstrated significant application potential. This paper proposes a low-frequency band gap optimization design method for [...] Read more.
Driven by the urgent demand for low-frequency vibration and noise control in engineering scenarios such as automobiles, acoustic metamaterials (AMs), as a new class of functional materials, have demonstrated significant application potential. This paper proposes a low-frequency band gap optimization design method for local resonance acoustic metamaterials (LRAMs) based on a multi-objective genetic algorithm. Within a COMSOL Multiphysics 6.2 with MATLAB R2024b co-simulation framework, a parameterized unit cell model of the metamaterial is constructed. The optimization process targets two objectives: minimizing the band gap’s deviation from the target and reducing the structural mass. A multi-objective fitness function is formulated by incorporating the band gap deviation and structural mass constraints, and non-dominated sorting genetic algorithm II (NSGA-II) is employed to perform a global search over the geometric parameters of the resonant unit. The resulting Pareto-optimal solution set achieves a unit cell mass as low as 26.49 g under the constraint that the band gap deviation does not exceed 2 Hz. The results of experimental validation show that the optimized metamaterial configuration reduces the peak of the low-frequency frequency response function (FRF) at 63 Hz by up to 75% in a car door structure. Furthermore, the simulation predictions exhibit good agreement with the experimental measurements, confirming the effectiveness and reliability of the proposed method in engineering applications. The proposed multi-objective optimization framework is highly general and extensible and capable of effectively balancing between the acoustic performance and structural mass, thus providing an efficient engineering solution for low-frequency noise control problems. Full article
(This article belongs to the Special Issue Intelligent Applications in Mechanical Engineering)
Show Figures

Figure 1

23 pages, 6850 KiB  
Article
Optimizing Energy Consumption in Public Institutions Using AI-Based Load Shifting and Renewable Integration
by Otilia Elena Dragomir, Florin Dragomir and Marius Păun
J. Sens. Actuator Netw. 2025, 14(4), 74; https://doi.org/10.3390/jsan14040074 - 15 Jul 2025
Viewed by 101
Abstract
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption [...] Read more.
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption in public institutions by scheduling electrical appliances during periods of surplus PV energy production. The proposed solution employs a hybrid neuro-fuzzy approach combined with scheduling techniques to intelligently shift loads and maximize the use of locally generated green energy. This enables appliances, particularly schedulable and schedulable non-interruptible ones, to operate during peak PV production hours, thereby minimizing reliance on the national grid and improving overall energy efficiency. This directly reduces the cost of electricity consumption from the national grid. Furthermore, a comprehensive power quality analysis covering variables including harmonic distortion and voltage stability is proposed. The results indicate that while photovoltaic systems, being switching devices, can introduce some harmonic distortion, particularly during peak inverter operation or transient operating regimes, and flicker can exceed standard limits during certain periods, the overall voltage quality is maintained if proper inverter controls and grid parameters are adhered to. The system also demonstrates potential for scalability and integration with energy storage systems for enhanced future performance. Full article
(This article belongs to the Section Network Services and Applications)
Show Figures

Figure 1

21 pages, 877 KiB  
Article
Identity-Based Provable Data Possession with Designated Verifier from Lattices for Cloud Computing
by Mengdi Zhao and Huiyan Chen
Entropy 2025, 27(7), 753; https://doi.org/10.3390/e27070753 - 15 Jul 2025
Viewed by 55
Abstract
Provable data possession (PDP) is a technique that enables the verification of data integrity in cloud storage without the need to download the data. PDP schemes are generally categorized into public and private verification. Public verification allows third parties to assess the integrity [...] Read more.
Provable data possession (PDP) is a technique that enables the verification of data integrity in cloud storage without the need to download the data. PDP schemes are generally categorized into public and private verification. Public verification allows third parties to assess the integrity of outsourced data, offering good openness and flexibility, but it may lead to privacy leakage and security risks. In contrast, private verification restricts the auditing capability to the data owner, providing better privacy protection but often resulting in higher verification costs and operational complexity due to limited local resources. Moreover, most existing PDP schemes are based on classical number-theoretic assumptions, making them vulnerable to quantum attacks. To address these challenges, this paper proposes an identity-based PDP with a designated verifier over lattices, utilizing a specially leveled identity-based fully homomorphic signature (IB-FHS) scheme. We provide a formal security proof of the proposed scheme under the small-integer solution (SIS) and learning with errors (LWE) within the random oracle model. Theoretical analysis confirms that the scheme achieves security guarantees while maintaining practical feasibility. Furthermore, simulation-based experiments show that for a 1 MB file and lattice dimension of n = 128, the computation times for core algorithms such as TagGen, GenProof, and CheckProof are approximately 20.76 s, 13.75 s, and 3.33 s, respectively. Compared to existing lattice-based PDP schemes, the proposed scheme introduces additional overhead due to the designated verifier mechanism; however, it achieves a well-balanced optimization among functionality, security, and efficiency. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

22 pages, 11458 KiB  
Article
Convolutional Neural Networks—Long Short-Term Memory—Attention: A Novel Model for Wear State Prediction Based on Oil Monitoring Data
by Ying Du, Hui Wei, Tao Shao, Shishuai Chen, Jianlei Wang, Chunguo Zhou and Yanchao Zhang
Lubricants 2025, 13(7), 306; https://doi.org/10.3390/lubricants13070306 - 15 Jul 2025
Viewed by 140
Abstract
Wear state prediction based on oil monitoring technology enables the early identification of potential wear and failure risks of friction pairs, facilitating optimized equipment maintenance and extended service life. However, the complexity of lubricating oil monitoring data often poses challenges in extracting discriminative [...] Read more.
Wear state prediction based on oil monitoring technology enables the early identification of potential wear and failure risks of friction pairs, facilitating optimized equipment maintenance and extended service life. However, the complexity of lubricating oil monitoring data often poses challenges in extracting discriminative features, limiting the accuracy of wear state prediction. To address this, a CNN–LSTM–Attention network is specially constructed for predicting wear state, which hierarchically integrates convolutional neural networks (CNNs) for spatial feature extraction, long short-term memory (LSTM) networks for temporal dynamics modeling, and self-attention mechanisms for adaptive feature refinement. The proposed architecture implements a three-stage computational pipeline. Initially, the CNN performs hierarchical extraction of localized patterns from multi-sensor tribological signals. Subsequently, the self-attention mechanism conducts adaptive recalibration of feature saliency, prioritizing diagnostically critical feature channels. Ultimately, bidirectional LSTM establishes cross-cyclic temporal dependencies, enabling cascaded fully connected layers with Gaussian activation to generate probabilistic wear state estimations. Experimental results demonstrate that the proposed model not only achieves superior predictive accuracy but also exhibits robust stability, offering a reliable solution for condition monitoring and predictive maintenance in industrial applications. Full article
Show Figures

Figure 1

25 pages, 693 KiB  
Article
Distributed Interference-Aware Power Optimization for Multi-Task Over-the-Air Federated Learning
by Chao Tang, Dashun He and Jianping Yao
Telecom 2025, 6(3), 51; https://doi.org/10.3390/telecom6030051 - 14 Jul 2025
Viewed by 68
Abstract
Over-the-air federated learning (Air-FL) has emerged as a promising paradigm that integrates communication and learning, which offers significant potential to enhance model training efficiency and optimize communication resource utilization. This paper addresses the challenge of interference management in multi-cell Air-FL systems, focusing on [...] Read more.
Over-the-air federated learning (Air-FL) has emerged as a promising paradigm that integrates communication and learning, which offers significant potential to enhance model training efficiency and optimize communication resource utilization. This paper addresses the challenge of interference management in multi-cell Air-FL systems, focusing on parallel multi-task scenarios where each cell independently executes distinct training tasks. We begin by analyzing the impact of aggregation errors on local model performance within each cell, aiming to minimize the cumulative optimality gap across all cells. To this end, we formulate an optimization framework that jointly optimizes device transmit power and denoising factors. Leveraging the Pareto boundary theory, we design a centralized optimization scheme that characterizes the trade-offs in system performance. Building upon this, we propose a distributed power control optimization scheme based on interference temperature (IT). This approach decomposes the globally coupled problem into locally solvable subproblems, thereby enabling each cell to adjust its transmit power independently using only local channel state information (CSI). To tackle the non-convexity inherent in these subproblems, we first transform them into convex problems and then develop an analytical solution framework grounded in Lagrangian duality theory. Coupled with a dynamic IT update mechanism, our method iteratively approximates the Pareto optimal boundary. The simulation results demonstrate that the proposed scheme outperforms baseline methods in terms of training convergence speed, cross-cell performance balance, and test accuracy. Moreover, it achieves stable convergence within a limited number of iterations, which validates its practicality and effectiveness in multi-task edge intelligence systems. Full article
Show Figures

Figure 1

34 pages, 1456 KiB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 53
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
16 pages, 2721 KiB  
Article
An Adapter and Segmentation Network-Based Approach for Automated Atmospheric Front Detection
by Xinya Ding, Xuan Peng, Yanguang Xue, Liang Zhang, Tianying Wang and Yunpeng Zhang
Appl. Sci. 2025, 15(14), 7855; https://doi.org/10.3390/app15147855 - 14 Jul 2025
Viewed by 68
Abstract
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide [...] Read more.
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide frontal category information without identifying individual frontal systems. Our solution integrates two key innovations: 1. An intelligent adapter module that performs adaptive feature fusion, automatically weighting and combining multi-source meteorological inputs (including temperature, wind fields, and humidity data) to maximize their synergistic effects while minimizing feature conflicts; the utilized network achieves an average improvement of over 4% across various metrics. 2. An enhanced instance segmentation network based on Mask R-CNN architecture that simultaneously achieves (1) precise frontal type classification (cold/warm/stationary/occluded), (2) accurate spatial localization, and (3) identification of distinct frontal systems. Comprehensive evaluation using ERA5 reanalysis data (2009–2018) demonstrates significant improvements, including an 85.1% F1-score, outperforming traditional methods (TFP: 63.1%) and deep learning approaches (Unet: 83.3%), and a 31% reduction in false alarms compared to semantic segmentation methods. The framework’s modular design allows for potential application to other meteorological feature detection tasks. Future work will focus on incorporating temporal dynamics for frontal evolution prediction. Full article
Show Figures

Figure 1

21 pages, 1830 KiB  
Article
Optimization Model of Express–Local Train Schedules Under Cross-Line Operation of Suburban Railway
by Jingyi Zhu, Xin Guo and Jianju Pan
Appl. Sci. 2025, 15(14), 7853; https://doi.org/10.3390/app15147853 - 14 Jul 2025
Viewed by 89
Abstract
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization [...] Read more.
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization of cross-line operation and express–local scheduling by proposing a novel train timetable model. The model determines train service plans and departure times to minimize total system cost, including train operating and passenger travel costs. A space–time network represents integrated train–passenger interactions, and an extended adaptive large neighborhood search (E-ALNS) algorithm is developed to solve the model efficiently. Numerical experiments verify the effectiveness of the proposed approach. The E-ALNS achieves near-optimal solutions with less than 4% deviation from Gurobi. Comparative analysis shows that the proposed hybrid operation mode reduces total passenger travel cost by 6% and improves the cost efficiency ratio by 13% compared to independent operations. Sensitivity analyses further confirm the model’s robustness to variations in transfer walking time, passenger penalties, and waiting thresholds. This study provides a practical and scalable framework for optimizing train timetables in complex cross-line transit systems, offering insights for enhancing system coordination and passenger service quality. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

26 pages, 1735 KiB  
Perspective
Optimizing Adjuvant Care in Early Breast Cancer: Multidisciplinary Strategies and Innovative Models from Canadian Centers
by Angela Chan, Nancy Nixon, Muna Al-Khaifi, Alain Bestavros, Christine Blyth, Winson Y. Cheung, Caroline Hamm, Thomas Joly-Mischlich, Mita Manna, Tom McFarlane, Laura V. Minard, Sarah Naujokaitis, Christine Peragine, Cindy Railton and Scott Edwards
Curr. Oncol. 2025, 32(7), 402; https://doi.org/10.3390/curroncol32070402 - 14 Jul 2025
Viewed by 151
Abstract
The adjuvant treatment landscape for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) early breast cancer (EBC) is rapidly evolving, with a diverse range of therapeutic options—including endocrine therapies, bisphosphonates, ovarian function suppression, olaparib, CDK4/6 inhibitors, and emerging agents such as [...] Read more.
The adjuvant treatment landscape for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) early breast cancer (EBC) is rapidly evolving, with a diverse range of therapeutic options—including endocrine therapies, bisphosphonates, ovarian function suppression, olaparib, CDK4/6 inhibitors, and emerging agents such as immunotherapy. While these advances have markedly improved patient outcomes, they also introduce challenges related to implementation, monitoring, and resource allocation. Notably, therapies like CDK4/6 inhibitors require particularly close monitoring, creating logistical and capacity challenges for medical oncologists, whose workloads are already stretched due to rising cancer incidence and treatment complexities. These challenges underscore the need for innovative care delivery solutions to ensure patients with EBC continue to receive optimal care. This paper offers a comprehensive guide—a playbook—of multidisciplinary-team-based care models designed to optimize adjuvant treatment delivery in EBC. Drawing on real-world evidence and successful applications across Canadian centers, we explore models led by nurses, nurse practitioners (NPs), general practitioners in oncology (GPO), and pharmacists. Each model leverages the unique expertise of its team to manage treatment toxicities, facilitate adherence, and enhance patient education, thereby promoting effective and sustainable care delivery. Importantly, these models are not intended to compete with one another, but rather to serve as a flexible recipe book from which breast cancer care teams can draw strategies tailored to their local resources and patient needs. By detailing implementation strategies, benefits, and challenges—in many instances supported by quantitative metrics and economic evaluations—this work aims to inspire care teams nationwide to optimize the adjuvant management of patients with HR+, HER2– EBC. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

22 pages, 3279 KiB  
Article
HA-CP-Net: A Cross-Domain Few-Shot SAR Oil Spill Detection Network Based on Hybrid Attention and Category Perception
by Dongmei Song, Shuzhen Wang, Bin Wang, Weimin Chen and Lei Chen
J. Mar. Sci. Eng. 2025, 13(7), 1340; https://doi.org/10.3390/jmse13071340 - 13 Jul 2025
Viewed by 156
Abstract
Deep learning models have obvious advantages in detecting oil spills, but the training of deep learning models heavily depends on a large number of samples of high quality. However, due to the accidental nature, unpredictability, and urgency of oil spill incidents, it is [...] Read more.
Deep learning models have obvious advantages in detecting oil spills, but the training of deep learning models heavily depends on a large number of samples of high quality. However, due to the accidental nature, unpredictability, and urgency of oil spill incidents, it is difficult to obtain a large number of labeled samples in real oil spill monitoring scenarios. Surprisingly, few-shot learning can achieve excellent classification performance with only a small number of labeled samples. In this context, a new cross-domain few-shot SAR oil spill detection network is proposed in this paper. Significantly, the network is embedded with a hybrid attention feature extraction block, which consists of a coordinate attention module to perceive the channel information and spatial location information, as well as a global self-attention transformer module capturing the global dependencies and a multi-scale self-attention module depicting the local detailed features, thereby achieving deep mining and accurate characterization of image features. In addition, to address the problem that it is difficult to distinguish between the suspected oil film in seawater and real oil film using few-shot due to the small difference in features, this paper proposes a double loss function category determination block, which consists of two parts: a well-designed category-perception loss function and a traditional cross-entropy loss function. The category-perception loss function optimizes the spatial distribution of sample features by shortening the distance between similar samples while expanding the distance between different samples. By combining the category-perception loss function with the cross-entropy loss function, the network’s performance in discriminating between real and suspected oil films is thus maximized. The experimental results effectively demonstrate that this study provides an effective solution for high-precision oil spill detection under few-shot conditions, which is conducive to the rapid identification of oil spill accidents. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

29 pages, 5277 KiB  
Article
DualHet-YOLO: A Dual-Backbone Heterogeneous YOLO Network for Inspection Robots to Recognize Yellow-Feathered Chicken Behavior in Floor-Raised House
by Yaobo Zhang, Linwei Chen, Hongfei Chen, Tao Liu, Jinlin Liu, Qiuhong Zhang, Mingduo Yan, Kaiyue Zhao, Shixiu Zhang and Xiuguo Zou
Agriculture 2025, 15(14), 1504; https://doi.org/10.3390/agriculture15141504 - 12 Jul 2025
Viewed by 160
Abstract
The behavior of floor-raised chickens is closely linked to their health status and environmental comfort. As a type of broiler chicken with special behaviors, understanding the daily actions of yellow-feathered chickens is crucial for accurately checking their health and improving breeding practices. Addressing [...] Read more.
The behavior of floor-raised chickens is closely linked to their health status and environmental comfort. As a type of broiler chicken with special behaviors, understanding the daily actions of yellow-feathered chickens is crucial for accurately checking their health and improving breeding practices. Addressing the challenges of high computational complexity and insufficient detection accuracy in existing floor-raised chicken behavior recognition models, a lightweight behavior recognition model was proposed for floor-raised yellow-feathered chickens, based on a Dual-Backbone Heterogeneous YOLO Network. Firstly, DualHet-YOLO enhances the feature extraction capability of floor-raised chicken images through a dual-path feature map extraction architecture and optimizes the localization and classification of multi-scale targets using a TriAxis Unified Detection Head. Secondly, a Proportional Scale IoU loss function is introduced that improves regression accuracy. Finally, a lightweight structure Eff-HetKConv was designed, significantly reducing model parameters and computational complexity. Experiments on a private floor-raised chicken behavior dataset show that, compared with the baseline YOLOv11 model, the DualHet-YOLO model increases the mAP for recognizing five behaviors—pecking, resting, walking, dead, and inactive—from 77.5% to 84.1%. Meanwhile, it reduces model parameters by 14.6% and computational complexity by 29.2%, achieving a synergistic optimization of accuracy and efficiency. This approach provides an effective solution for lightweight object detection in poultry behavior recognition. Full article
Show Figures

Figure 1

Back to TopTop