Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,948)

Search Parameters:
Keywords = load tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 519 KiB  
Article
Relative Strength Does Not Influence the Sticking Region Among Recreational Trained Participants in Squat
by Alexander Olsen, Vidar Andersen and Atle Hole Saeterbakken
J. Funct. Morphol. Kinesiol. 2025, 10(3), 321; https://doi.org/10.3390/jfmk10030321 (registering DOI) - 20 Aug 2025
Abstract
Objectives: The barbell back squat is one of the most frequently used exercises to improve lower-body strength and power. The aim of this study was to examine the impact of relative strength on the kinematics in the barbell back squat to a [...] Read more.
Objectives: The barbell back squat is one of the most frequently used exercises to improve lower-body strength and power. The aim of this study was to examine the impact of relative strength on the kinematics in the barbell back squat to a 90-degree angle. Methods: Forty-six recreationally trained men completed five familiarization sessions over three weeks to ensure proper lifting technique. The participants were tested in a ten-repetition maximum (10 RM), during which barbell velocity, acceleration, vertical displacement, and the time of the pre-sticking, sticking, and post-sticking regions were measured. The participants were then categorized into two groups: (1) the above-median group or (2) the below-median group, to examine whether kinematics were affected by relative strength (10 RM load/body weight). Results: The below-median group had a relative strength of 1.37, whereas the above-median group had a relative strength of 1.76. There was a 5.86% non-statistical difference (p = 0.052) in vertical barbell displacement between the groups. There were no significant differences between the groups in barbell velocity or lifting time for the whole movement nor differences between the groups for any of the kinematic variables in the pre-sticking, sticking, or post-sticking regions. When combining the data from the two groups, there was a significant weak negative correlation between relative strength and barbell displacement throughout the whole movement. Conclusions: These findings suggest that distinct levels of relative strength may not influence lifting kinematics in 90-degree back squats among recreationally trained participants. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

24 pages, 9251 KiB  
Article
Shear Lag Effect in Steel-UHPC Composite Girders of Cable-Stayed Bridges Considering Slip Under Asymmetric Axial Loading
by Hua Luo, Qincong She, Bin Li, Wan Wu, Yahua Pan and Chen Yang
Buildings 2025, 15(16), 2945; https://doi.org/10.3390/buildings15162945 (registering DOI) - 20 Aug 2025
Abstract
The study presents an analysis of steel-Ultra-High Performance Concrete (UHPC) composite girders. Five composite girder specimens were designed and tested. Analytical strain solutions for the composite girders under asymmetric axial loading were derived using the energy variation method. Results indicate that asymmetric axial [...] Read more.
The study presents an analysis of steel-Ultra-High Performance Concrete (UHPC) composite girders. Five composite girder specimens were designed and tested. Analytical strain solutions for the composite girders under asymmetric axial loading were derived using the energy variation method. Results indicate that asymmetric axial forces significantly exacerbate the shear lag effect. Decreasing the width-to-span ratio reduces the shear lag coefficient, while reducing the width-to-depth ratio increases it. The parametric analysis indicates that, under asymmetric axial loading, increasing the strength of the concrete is an effective method to reduce the shear lag effect of the composite girders. Increasing the thickness of the UHPC slab proves to be effective in reducing the shear lag effect. Furthermore, the study indicates that when the b2/b1 ratio is less than 1, it has a tiny impact on the shear lag effect; however, when the b2/b1 ratio is greater than 1, the shear lag effect becomes more pronounced with increasing b2/b1. Additionally, the thickness of the flange plate and web plate of the steel girder has no significant effect on the shear lag effect. The results of the analysis can provide references for similar designs and constructions of composite structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 4297 KiB  
Article
Axial Compression Behavior of Steel Angles with Double-Shear Splice Connections in Transmission Towers
by Cheng Xu, Shao-Bo Kang, Lu-Yao Pei, Gen-Sheng Zeng, Hai-Yun Ma, Da-Gang Han and Song-Yang He
Appl. Sci. 2025, 15(16), 9140; https://doi.org/10.3390/app15169140 (registering DOI) - 19 Aug 2025
Abstract
Structural safety of transmission towers is directly influenced by the behavior of bolted connections at discontinuity joints in the main steel angles. Thus, it is essential to investigate the axial compression behavior of double-shear splice connections of main steel angles. In this study, [...] Read more.
Structural safety of transmission towers is directly influenced by the behavior of bolted connections at discontinuity joints in the main steel angles. Thus, it is essential to investigate the axial compression behavior of double-shear splice connections of main steel angles. In this study, a total of 10 groups of discontinuous steel angle specimens with double-shear splice connections, comprising eight groups of specimens with the same upper and lower angles and two groups of specimens with different upper and lower angles, were designed and tested in compression. The axial deformation, out-of-plane deflection, and strain at the mid-height of steel angles were measured to analyze the influence of double-shear splice connections on the compression behavior of steel angles. Moreover, comparisons were made among discontinuous steel angles in terms of the ultimate load and the associated deformation to investigate the effects of splice steel ratio, slenderness, bolt spacing, and bolt torque, respectively. Based on the experimental results of steel angles in compression, comparisons with the values calculated using Chinese design codes suggest that present design methods show limited accuracy in calculating the axial compressive load capacity of steel angles with double-shear spliced connections, indicating the necessity for revising the design methods in relevant codes. Full article
(This article belongs to the Special Issue Design, Fabrication and Applications of Steel Structures)
Show Figures

Figure 1

20 pages, 2614 KiB  
Article
Stator Fault Diagnostics in Asymmetrical Six-Phase Induction Motor Drives with Model Predictive Control Applicable During Transient Speeds
by Hugo R. P. Antunes, Davide. S. B. Fonseca, João Serra and Antonio J. Marques Cardoso
Machines 2025, 13(8), 740; https://doi.org/10.3390/machines13080740 - 19 Aug 2025
Abstract
Abrupt speed variations and motor start-ups have been pointed out as critical challenges in the framework of fault diagnostics in induction motor drives, namely inter-turn short circuit faults. Generally, abrupt accelerations influence the typical symptoms of the fault, and consequently, the fault detection [...] Read more.
Abrupt speed variations and motor start-ups have been pointed out as critical challenges in the framework of fault diagnostics in induction motor drives, namely inter-turn short circuit faults. Generally, abrupt accelerations influence the typical symptoms of the fault, and consequently, the fault detection becomes ambiguous, impacting prompt and effective decision-making. To overcome this issue, this study proposes an inter-turn short-circuit fault diagnostic technique for asymmetrical six-phase induction motor drives operating under both smooth and abrupt motor accelerations. A time–frequency domain spectrogram of the AC component extracted from the q-axis reference current signal serves as a reliable fault indicator. This technique stands out for the compromise between robustness and computational effort using only one control variable accessible in the model predictive control algorithm, thus discarding both voltage and current signals. Experimental tests involving various load torques and fault severities, in transient regimes, were performed to validate the proposed methodology’s effectiveness thoroughly. Full article
(This article belongs to the Section Electrical Machines and Drives)
24 pages, 2990 KiB  
Article
Self-Healing Asphalt Mixtures Meso-Modelling: Impact of Capsule Content on Stiffness and Tensile Strength
by Gustavo Câmara, Nuno Monteiro Azevedo and Rui Micaelo
Sustainability 2025, 17(16), 7502; https://doi.org/10.3390/su17167502 - 19 Aug 2025
Abstract
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the [...] Read more.
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the isolated effect of incorporating capsules containing encapsulated rejuvenators, at different volume contents, on the stiffness and strength of asphalt mixtures through a three-dimensional discrete-based programme (VirtualPM3DLab), which has been shown to predict well the experimental behaviour of asphalt mixtures. Uniaxial tension–compression cyclic and monotonic tensile tests on notched specimens are carried out for three capsule contents commonly adopted in experimental investigations (0.30, 0.75, and 1.25 wt.%). The results show that the effect on the stiffness modulus progressively increases as the capsule content grows in the asphalt mixture, with a reduction ranging from 4.3% to 12.3%. At the same time, the phase angle is marginally affected. The capsule continuum equivalent Young’s modulus has minimum influence on the overall rheological response, suggesting that the most critical parameter affecting asphalt mixture stiffness is the capsule content. Finally, while the peak tensile strength shows a maximum reduction of 12.4% at the highest capsule content, the stress–strain behaviour and damage evolution of the specimens remain largely unaffected. Most damaged contacts, which mainly include aggregate–mastic and mastic–mastic contacts, are highly localised around the notch tips. Contacts involving capsules remained intact during early and intermediate loading stages and only fractured during the final damage stage, suggesting a delayed activation consistent with the design of healing systems. The findings suggest that capsules within the studied contents may have a moderate impact on the mechanical properties of asphalt mixtures, especially for high-volume contents. For this reason, contents higher than 0.75 wt.% should be applied with caution. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

32 pages, 2115 KiB  
Article
Hardware-Accelerated SMV Subscriber: Energy Quality Pre-Processed Metrics and Analysis
by Mihai-Alexandru Pisla, Bogdan-Adrian Enache, Vasilis Argyriou, Panagiotis Sarigiannidis and George-Calin Seritan
Electronics 2025, 14(16), 3297; https://doi.org/10.3390/electronics14163297 - 19 Aug 2025
Abstract
The paper presents an FPGA-based, hardware-accelerated IEC 61850-9-2 Sampled Measured Values (SMV) subscriber—termed the high-speed SMV subscriber (HS3)—by integrating real-time energy-quality (EQ) analytics directly into the subscriber pipeline while preserving a deterministic, microsecond-scale operation under high stream counts. Building on a prior hardware [...] Read more.
The paper presents an FPGA-based, hardware-accelerated IEC 61850-9-2 Sampled Measured Values (SMV) subscriber—termed the high-speed SMV subscriber (HS3)—by integrating real-time energy-quality (EQ) analytics directly into the subscriber pipeline while preserving a deterministic, microsecond-scale operation under high stream counts. Building on a prior hardware decoder that achieved sub-3 μs SMV parsing for up to 512 subscribed svIDs with modest logic utilization (<8%), the proposed design augments the pipeline with fixed-point RTL modules for single-bin DFT frequency estimation, windowed true-RMS computation, and per-sample active power evaluation, all operating in a streaming fashion with configurable windows and resolutions. A lightweight software layer performs only residual scalar combinations (e.g., apparent power, form factor) on pre-aggregated hardware outputs, thereby minimizing CPU load and memory traffic. The paper’s aim is to bridge the gap between software-centric analytics—common in toolkit-based deployments—and fixed-function commercial firmware, by delivering an open, modular architecture that co-locates SMV subscription and EQ pre-processing in the same hardware fabric. Implementation on an MPSoC platform demonstrates that integrating EQ analytics does not compromise the efficiency or accuracy of the primary decoding path and sustains the latency targets required for protection-and-control use cases, with accuracy consistent with offline references across representative test waveforms. In contrast to existing solutions that either compute PQ metrics post-capture in software or offer limited in-FPGA analytics, the main contributions lie in a cohesive, resource-efficient integration that exposes continuous, per-channel EQ metrics at microsecond granularity, together with an implementation-level characterization (latency, resource usage, and error against reference calculations) evidencing suitability for real-time substation automation. Full article
(This article belongs to the Section Circuit and Signal Processing)
18 pages, 3210 KiB  
Article
Dynamic Deformation Testing and Analysis of Wet Cylinder Liners Using the Eddy Current Method
by Haining He, Lizhong Shen, Song Zu, Yuchen Xu, Jianping Song and Yuhua Bi
Energies 2025, 18(16), 4421; https://doi.org/10.3390/en18164421 - 19 Aug 2025
Abstract
Improving the thermal efficiency of internal combustion engines plays a crucial role in reducing fuel consumption and engine emissions. Studies have shown that the friction loss caused by the piston ring–cylinder liner pair accounts for approximately 30–40% of the engine’s total mechanical friction. [...] Read more.
Improving the thermal efficiency of internal combustion engines plays a crucial role in reducing fuel consumption and engine emissions. Studies have shown that the friction loss caused by the piston ring–cylinder liner pair accounts for approximately 30–40% of the engine’s total mechanical friction. The key to improving mechanical and thermal efficiency lies in reducing frictional losses through advanced solutions. However, as engine intensification increases, the growing thermal and mechanical loads lead to out-of-round deformation of the cylinder liner. This deformation reduces the sealing conformity of the piston rings, leading to increased blow-by and elevated particulate matter (PM) emissions. To address this, a dynamic–static deformation testing system for cylinder liners, combined with a multi-physics simulation for data validation, has been developed to achieve energy conservation and emission reduction in engines. Based on established strain gauge and eddy current displacement sensors, this study developed a dynamic deformation testing system, modified for a specific type of diesel engine, and analyzed the cylinder liner deformation under fired conditions. Test results show that under engine speeds ranging from 700 rpm to 1100 rpm, the overall radial out-of-roundness of the cylinder liner increased, with a maximum deformation of 49.2 μm. The second-order component of out-of-roundness also increases with speed, showing a maximum rise of 28.9 μm, while the third-order and fourth-order components exhibit relatively minor changes. These findings suggest that the overall radial deformation under fired conditions is mainly dominated by second-order out-of-roundness, with third-order and fourth-order components contributing marginally. Full article
Show Figures

Figure 1

18 pages, 1114 KiB  
Article
Calibration Procedures for NOx Emissions Model of a High-Speed Marine Diesel Engine Using Optimization Procedures
by Mina Tadros and Evangelos Boulougouris
J. Mar. Sci. Eng. 2025, 13(8), 1585; https://doi.org/10.3390/jmse13081585 - 19 Aug 2025
Abstract
Controlling nitrogen oxide (NOx) emissions is a critical priority for the maritime industry, driven by increasingly stringent international maritime organization (IMO) Tier III regulations and the sector’s broader decarbonization efforts. Accurate prediction and minimization of NOx emissions require well-calibrated engine [...] Read more.
Controlling nitrogen oxide (NOx) emissions is a critical priority for the maritime industry, driven by increasingly stringent international maritime organization (IMO) Tier III regulations and the sector’s broader decarbonization efforts. Accurate prediction and minimization of NOx emissions require well-calibrated engine models that reflect real-world operating behavior under varied conditions. This study presents a robust calibration methodology for the NOx emissions model of a high-speed dual-fuel marine engine, using a 1D engine simulation platform (WAVE 2025.1) integrated with a nonlinear optimization algorithm (fmincon in MATLAB R2025a). The calibration focuses on tuning the extended Zeldovich mechanism by empirically adjusting the Arrhenius equation coefficients to achieve a weighted sum of NOx and unburned hydrocarbon (HC) emissions below the 7.2 g/kWh regulatory threshold. The proposed approach reduces the need for extensive experimental data while maintaining high predictive accuracy. Simulation results confirm compliance with IMO regulations across multiple engine loads defined by the E3 test cycle. A sensitivity analysis further revealed that while the pre-exponent multiplier (ARC1) plays a critical role in influencing NOx emissions at high loads, the exponent multiplier (AERC1) has an even more significant impact across the full load range, making its precise calibration essential for robust emissions modeling. The calibrated NOx emissions model not only ensures realistic emissions estimation but also provides a reliable foundation for further research, such as dual-fuel performance studies, and can be effectively integrated into future engine optimization tasks under different operating conditions. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

12 pages, 3316 KiB  
Article
Nanoscale Insights into the Mechanical and Tribological Properties of a Nanocomposite Coating
by Chun-Wei Yao and Ian Lian
Nanomaterials 2025, 15(16), 1280; https://doi.org/10.3390/nano15161280 - 19 Aug 2025
Abstract
This study investigates the mechanical and tribological behavior of a polydimethylsiloxane (PDMS)–silica nanocomposite coating over the temperature range extending from 24 °C to 120 °C. Nanoindentation tests revealed depth- and temperature-dependent variations in hardness and complex modulus. A time-dependent deformation model accurately captured [...] Read more.
This study investigates the mechanical and tribological behavior of a polydimethylsiloxane (PDMS)–silica nanocomposite coating over the temperature range extending from 24 °C to 120 °C. Nanoindentation tests revealed depth- and temperature-dependent variations in hardness and complex modulus. A time-dependent deformation model accurately captured the viscoelastic and viscoplastic behavior observed during sustained loading, providing predictive insight into the coating’s thermomechanical performance. Tribological evaluation through friction and nanoscratch testing demonstrated a temperature-induced increase in the coefficient of friction. The integration of mechanical and surface metrology and characterization techniques offers a comprehensive understanding of the coating’s behavior under thermal and mechanical stress. These findings support the design of robust nanocomposite coatings with superior functional performance for practical applications requiring enhanced mechanical stability, wear resistance, and thermal tolerance in challenging service environments. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

29 pages, 2173 KiB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

16 pages, 17657 KiB  
Article
Effect of Electrical Load and Operating Conditions on the Hydraulic Performance of a 10 kW Pelton Turbine Micro Hydropower Plant
by Raúl R. Delgado-Currín, Williams R. Calderón-Muñoz, J. C. Elicer-Cortés and Renato Hunter-Alarcón
Energies 2025, 18(16), 4413; https://doi.org/10.3390/en18164413 - 19 Aug 2025
Abstract
Micro-hydroelectric power plants play a fundamental role in microgrid systems and rural electrification projects based on non-conventional renewable energies, where the stability of the electricity supply and load variability are critical factors for efficient operation. This work focuses on analyzing the impact of [...] Read more.
Micro-hydroelectric power plants play a fundamental role in microgrid systems and rural electrification projects based on non-conventional renewable energies, where the stability of the electricity supply and load variability are critical factors for efficient operation. This work focuses on analyzing the impact of electrical load variation on the performance of a 10 kW micro hydroelectric power plant equipped with a Pelton turbine coupled to an electric generator. The main objective is to characterize the behavior of the turbine–generator system under different operating conditions, evaluating the hydraulic performance of the turbine, the electrical performance of the generator, and the overall performance of the micro power plant. Key variables such as flow rate, pressure, shaft speed, mechanical torque, current, and electrical voltage are monitored, considering the effect of electrical consumption on each of them. The experimental methodology includes tests at different electrical loads connected to the generator, using the spear system, which allows the flow rate in the injector to be modulated. The results indicate that reducing the flow rate using the spear increases the torque on the shaft, as well as the electrical current and voltage, for the same energy demand. Likewise, it is observed that the electrical efficiency of the generator remains stable for shaft speeds above 400 rpm, while the overall efficiency of the turbine–generator improves by up to 25% at this same speed. However, a voltage drop of more than 8% is recorded when the electrical power consumption increases from 3 kW to 9 kW, which demonstrates the sensitivity of the system to load variations. This work provides a comprehensive view of the dynamic behavior of micro-hydraulic power plants under realistic operating conditions, proposing an experimental methodology that can be applied to the design, optimization, and control of small-scale hydroelectric systems. These results provide novel experimental evidence on how electrical load variations affect the global performance of P -based micro hydropower systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 4688 KiB  
Article
Evaluation and Optimization of Multi-Interface Lubrication Performance of Oil-Based Drilling Fluids for Extended-Reach Wells
by Wei Liu, Lei Wang, Ming Zheng, Bo Chen, Jian Wang, Fuchang Shu and Xiaoqi Tan
Processes 2025, 13(8), 2620; https://doi.org/10.3390/pr13082620 - 19 Aug 2025
Abstract
Extended-reach drilling (ERD) offers substantial economic and operational benefits by accessing extensive reservoir sections with fewer surface facilities, yet poses significant frictional challenges due to complex wellbore geometries and extreme operating conditions. This study introduces a multi-interface lubrication evaluation framework. It systematically assesses [...] Read more.
Extended-reach drilling (ERD) offers substantial economic and operational benefits by accessing extensive reservoir sections with fewer surface facilities, yet poses significant frictional challenges due to complex wellbore geometries and extreme operating conditions. This study introduces a multi-interface lubrication evaluation framework. It systematically assesses oil-based drilling fluids (OBDFs) across three downhole contact scenarios: metal–rock, metal–mud cake, and metal–metal interfaces under HTHP conditions. We developed a quantitative, normalized scoring system. Benchmarked against distilled water (score 0) and W1-110 mineral oil (score 100), it integrates frictional data from various tests into a unified metric for lubricant comparison. Three candidate lubricants—PF-LUBE EP, PF-LUBE OB, and CX-300—were evaluated at varying dosages, lithologies, and applied loads. Results show that at 2 wt%, PF-LUBE EP achieved the most consistent performance, reducing friction coefficients by 36.8% (metal–rock), 27.5% (metal–mud cake), and 32.5% (metal–metal), with a normalized average score of 155.39, outperforming PF-LUBE OB and CX-300 by 12.5% and 18.3%, respectively. Its superior performance is attributed to a bionic dual-layer film formed by organophosphorus anchoring and alkyl slip layers, enabling self-healing and stability under cyclic loading and HTHP environments. PF-LUBE OB and CX-300 also demonstrated friction reduction but with lower normalized scores (138.06 and 131.27), reflecting less stability across varied conditions. The proposed framework bridges the gap between laboratory testing and field-scale application by capturing multi-interface behaviors, enabling objective lubricant selection and dosage optimization for complex ERD operations. These findings not only validate PF-LUBE EP as a robust additive but also establish a scalable methodology for the development and optimization of next-generation OBDF formulations aimed at reducing torque, drag, and equipment wear in challenging drilling environments. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 1621 KiB  
Article
Evaluation of Ultraviolet Light-Based Oxidative Systems for the Inactivation and Change in Susceptibility of a Fluconazole-Resistant Candida albicans Strain
by Luz Dary Caicedo-Bejarano, Adriana María Correa-Bermúdez, Sandra Patricia Castro-Narváez and Efraím A. Serna-Galvis
Water 2025, 17(16), 2448; https://doi.org/10.3390/w17162448 - 19 Aug 2025
Abstract
Candida albicans, listed by WHO as a priority fungal (yeast) pathogen, can cause invasive infections resistant to drugs, thus demanding novel strategies of disinfection. This study examines the inactivation, reactivation in darkness, and susceptibility to fluconazole of an antifungal-resistant C. albicans strain [...] Read more.
Candida albicans, listed by WHO as a priority fungal (yeast) pathogen, can cause invasive infections resistant to drugs, thus demanding novel strategies of disinfection. This study examines the inactivation, reactivation in darkness, and susceptibility to fluconazole of an antifungal-resistant C. albicans strain through UVC photolysis, chemical oxidation, and photooxidation using hydrogen peroxide (H2O2), peroxydisulfate (PDS), or peroxymonosulfate (PMS). Tests were performed in deionized water over very short treatment times (0–80 s). Also, standardized CLSI methods for antifungal sensitivity studies and morphological microscopic views were carried out. The fungus disinfection order was UVC/H2O2 > UVC/PDS > UVC/PMS > UVC. The photooxidation processes followed pseudo-first-order kinetics, with the highest rate constant for the UVC/H2O2 process. Direct oxidation, photoinactivation, and attacks of radical species were responsible for the inactivation of the antifungal-resistant microorganism. The fluconazole susceptibility of yeasts was significantly decreased (from 64 to 8 µg mL−1) by the action of UVC/H2O2. A low reactivation in the dark and strong changes in the yeast morphology were found, indicating that the use of UVC light and radical-based processes is an effective alternative for fluconazole-resistant yeasts and could be promising to deal with hospital wastewater loaded with resistant fungi. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 3430 KiB  
Article
3D Printed Parts Exhibit Superior Elastic Properties to Milled Ones
by Laisvidas Striška, Dainius Vaičiulis, Sonata Tolvaišienė, Dainius Udris, Nikolajus Kozulinas, Rokas Astrauskas, Arūnas Ramanavičius and Inga Morkvėnaitė
Coatings 2025, 15(8), 963; https://doi.org/10.3390/coatings15080963 - 19 Aug 2025
Abstract
While many studies on fused filament fabrication (FFF)-printed polymers focus on ultimate tensile strength or failure analysis, the elastic region of the stress–strain curve is frequently overlooked. However, in most engineering applications, components operate well within the elastic range. In mechanical joints, support [...] Read more.
While many studies on fused filament fabrication (FFF)-printed polymers focus on ultimate tensile strength or failure analysis, the elastic region of the stress–strain curve is frequently overlooked. However, in most engineering applications, components operate well within the elastic range. In mechanical joints, support frames, and other load-bearing structures, stiffness and elastic response are more critical than post-failure behavior, as these properties determine system performance during standard operating conditions before any damage occurs. This study examines the elastic properties of acrylonitrile butadiene styrene (ABS) components fabricated via FFF, with a focus on the impact of printing orientation and nozzle temperature. Tensile tests were performed according to ISO 527-2:1993, and the results were compared to those of milled ABS parts (referred to as FT). Two print orientations were studied: XT, where the layers are oriented perpendicular to the loading direction, and ZT, where the layers are aligned parallel to the loading direction (load-aligned). The study reveals that printing orientation has a significant impact on mechanical behavior. The specimens printed in the ZT orientation exhibited superior elastic modulus and tensile strength compared to the XT specimens and also outperformed the milled FT parts. At 245 °C, the ZT specimens achieved an average tensile strength of 41.0 MPa, substantially higher than the FT’s 31.1 MPa. Moreover, the ZT had approximately 12.6% higher elastic moduli than the FT (1.97 GPa ZT compared to 1.74 GPa FT). Although the FT parts showed higher strain at break, the ZT-printed parts demonstrated a stiffness and strength that suggest their viability as replacements for machined components in load-bearing applications. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

17 pages, 1917 KiB  
Article
Lyapunov-Based Adaptive Sliding Mode Control of DC–DC Boost Converters Under Parametric Uncertainties
by Hamza Sahraoui, Hacene Mellah, Souhil Mouassa, Francisco Jurado and Taieb Bessaad
Machines 2025, 13(8), 734; https://doi.org/10.3390/machines13080734 - 18 Aug 2025
Abstract
The increasing demand for high-performance power converters for electric vehicle (EV) applications places a significant emphasis on developing effective and robust control strategies for DC-DC converter operation. This paper deals with the development, simulation, and experimental validation of an adaptive Lyapunov-type Nonlinear Sliding [...] Read more.
The increasing demand for high-performance power converters for electric vehicle (EV) applications places a significant emphasis on developing effective and robust control strategies for DC-DC converter operation. This paper deals with the development, simulation, and experimental validation of an adaptive Lyapunov-type Nonlinear Sliding Mode Control (L-SMC) strategy for a DC–DC boost converter, addressing significant uncertainties caused by large variations in system parameters (R and L) and ensuring the tracking of a voltage reference. The proposed control strategy employs the Lyapunov stability theory to build an adaptive law to update the parameters of the sliding surface so the system can achieve global asymptotic stability in the presence of uncertainty in inductance, capacitance, load resistance, and input voltage. The nonlinear sliding manifold is also considered, which contributes to a more robust and faster convergence in the controller. In addition, a logic optimization technique was implemented that minimizes switching (chattering) operations significantly, and as a result of this, increases ease of implementation. The proposed L-SMC is validated through both simulation and experimental tests under various conditions, including abrupt increases in input voltage and load disturbances. Simulation results demonstrate that, whether under nominal parameters (R = 320 Ω, L = 2.7 mH) or with parameter variations, the voltage overshoot in all cases remains below 0.5%, while the steady-state error stays under 0.4 V except during the startup, which is a transitional phase lasting a very short time. The current responds smoothly to voltage reference and parameter variations, with very insignificant chattering and overshoot. The current remains stable and constant, with a noticeable presence of a peak with each change in the reference voltage, accompanied by relatively small chattering. The simulation and experimental results demonstrate that adaptive L-SMC achieves accurate voltage regulation, a rapid transient response, and reduces chattering, and the simulation and experimental testing show that the proposed controller has a significantly lower steady-state error, which ensures precise and stable voltage regulation with time. Additionally, the system converges faster for the proposed controller at conversion and is stabilized quickly to the adaptation reference state after the drastic and dynamic change in either the input voltage or load, thus minimizing the settling time. The proposed control approach also contributes to saving energy for the application at hand, all in consideration of minimizing losses. Full article
Show Figures

Figure 1

Back to TopTop