Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (755)

Search Parameters:
Keywords = load–displacement curves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1808 KiB  
Article
The Initial Assessment of Fire Safety of a Plane Steel Frame According to System Reliability Analysis
by Katarzyna Kubicka
Appl. Sci. 2025, 15(14), 7947; https://doi.org/10.3390/app15147947 - 17 Jul 2025
Abstract
The purpose of this research was to indicate the importance of an efficient design of steel frame structures, taking into account the fire design situation. In the case of steel frame structures, the typical mechanisms of failure (sway, beam, and mixed) are well [...] Read more.
The purpose of this research was to indicate the importance of an efficient design of steel frame structures, taking into account the fire design situation. In the case of steel frame structures, the typical mechanisms of failure (sway, beam, and mixed) are well known. Using this knowledge, combined with a reliability assessment of single nodes, may let designers reduce both the amount of material used for a structure and the total cost of the structure. In this article, one-story, single-nave frames with different loads were analyzed. Two types of loads were analyzed: symmetrical and unsymmetrical. Both cases resulted in different failure paths. The static analysis of the structure in the following minutes of the fire duration was carried out in the Robot Structural Analysis programme. The temperature load was computed according to the Eurocode recommendation with the assumption that the temperature of fire gases is described by the standard fire curve. Afterward, the system reliability analysis for the selected failure paths was conducted. Additionally, the displacement analysis was performed in the following minutes of the fire. The biggest challenge in the proposed method is that there are many potential failure paths, and checking all of them is very time-consuming, even when using advanced computers. Therefore, only selected collapse modes were analyzed. Full article
Show Figures

Figure 1

10 pages, 877 KiB  
Article
Some Mechanical Properties of OSB Panels Made of Bamboo
by Samet Demirel and Musa Gürcan Cirit
Forests 2025, 16(7), 1174; https://doi.org/10.3390/f16071174 - 16 Jul 2025
Viewed by 57
Abstract
Bamboo, as a forest product material with good mechanical properties, is considered to be a future timber alternative due to its fast growth and accelerated reforestation potential. The use of OSB panels has significantly increased in the market and OSB has replaced traditional [...] Read more.
Bamboo, as a forest product material with good mechanical properties, is considered to be a future timber alternative due to its fast growth and accelerated reforestation potential. The use of OSB panels has significantly increased in the market and OSB has replaced traditional panels. Three different OSB panels coded Type 1, Type 2, and Type 3 were produced using bamboo and some mechanical properties were evaluated. Based on the results, Type 2 OSB panels yielded statistically higher bending strength values than Type 1 and Type 3 panels. There were no significant differences between the Type 1 and the Type 3 OSB panels. When the internal bonding (IB) values of the panels were examined, Type 3 yielded the highest values, followed by Type 2 and Type 1. However, it was observed that these resistance differences were not statistically significant. The only type of failure mode observed was brush-shaped separation from the center of the panels. The load–displacement graph of the OSB bamboo panels under bending load indicated a similar load-displacement curve of typical wood under bending load. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 181
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

27 pages, 11290 KiB  
Article
Experimental Study on Compressive Capacity Behavior of Helical Anchors in Aeolian Sand and Optimization of Design Methods
by Qingsheng Chen, Wei Liu, Linhe Li, Yijin Wu, Yi Zhang, Songzhao Qu, Yue Zhang, Fei Liu and Yonghua Guo
Buildings 2025, 15(14), 2480; https://doi.org/10.3390/buildings15142480 - 15 Jul 2025
Viewed by 125
Abstract
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear [...] Read more.
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear evolution of its load-bearing mechanisms. The XGBoost algorithm enabled the rigorous quantification of the governing geometric features of compressive capacity, culminating in a computational framework for the bearing capacity factor (Nq) and lateral earth pressure coefficient (Ku). The research findings demonstrate the following: (1) Compressive capacity exhibits significant enhancement with increasing helix diameter yet displays limited sensitivity to helix number. (2) Load–displacement curves progress through three distinct phases—initial quasi-linear, intermediate non-linear, and terminal quasi-linear stages—under escalating pressure. (3) At embedment depths of H < 5D, tensile capacity diminishes by approximately 80% relative to compressive capacity, manifesting as characteristic shallow anchor failure patterns. (4) When H ≥ 5D, stress redistribution transitions from bowl-shaped to elliptical contours, with ≤10% divergence between uplift/compressive capacities, establishing 5D as the critical threshold defining shallow versus deep anchor behavior. (5) The helix spacing ratio (S/D) governs the failure mode transition, where cylindrical shear (CS) dominates at S/D ≤ 4, while individual bearing (IB) prevails at S/D > 4. (6) XGBoost feature importance analysis confirms internal friction angle, helix diameter, and embedment depth as the three parameters exerting the most pronounced influence on capacity. (7) The proposed computational models for Nq and Ku demonstrate exceptional concordance with numerical simulations (mean deviation = 1.03, variance = 0.012). These outcomes provide both theoretical foundations and practical methodologies for helical anchor engineering in aeolian sand environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 11256 KiB  
Article
Indoor Measurement of Contact Stress Distributions for a Slick Tyre at Low Speed
by Gabriel Anghelache and Raluca Moisescu
Sensors 2025, 25(13), 4193; https://doi.org/10.3390/s25134193 - 5 Jul 2025
Viewed by 225
Abstract
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact [...] Read more.
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact patch width. Wheel displacement in the longitudinal direction was measured using a rotary encoder. The parameters allocated for the experimental programme have included different values of tyre inflation pressure, vertical load, camber angle and toe angle. All measurements were performed at low longitudinal speed in free-rolling conditions. The influence of tyre functional parameters on the contact patch shape and size has been discussed. The stress distributions on each orthogonal direction are presented in multiple formats, such as 2D graphs in which the curves show the stresses measured by each sensing element versus contact length; surfaces with stress values plotted as vertical coordinates versus contact patch length and width; and colour maps for stress distributions and orientations of shear stress vectors. The effects of different parameter types and values on stress distributions have been emphasised and analysed. Furthermore, the magnitude and position of local extreme values for each stress distribution have been investigated with respect to the above-mentioned tyre functional parameters. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 23523 KiB  
Article
A Wrist Brace with Integrated Piezoelectric Sensors for Real-Time Biomechanical Monitoring in Weightlifting
by Sofia Garcia, Ethan Ortega, Mohammad Alghamaz, Alwathiqbellah Ibrahim and En-Tze Chong
Micromachines 2025, 16(7), 775; https://doi.org/10.3390/mi16070775 - 30 Jun 2025
Viewed by 295
Abstract
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage [...] Read more.
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage generation to capture angular displacement. A flexible PVDF film was embedded within a custom-fitted wrist brace and tested on male and female participants performing controlled wrist flexion. The resulting voltage signals were analyzed to extract root-mean-square (RMS) outputs, calibration curves, and sensitivity metrics. To interpret the experimental results analytically, a lumped-parameter cantilever beam model was developed, linking wrist flexion angles to piezoelectric voltage output based on mechanical deformation theory. The model assumed a linear relationship between wrist angle and induced strain, enabling theoretical voltage prediction through simplified material and geometric parameters. Model-predicted voltage responses were compared with experimental measurements, demonstrating a good agreement and validating the mechanical-electrical coupling approach. Experimental results revealed consistent voltage increases with both wrist angle and applied load, and regression analysis demonstrated strong linear or mildly nonlinear fits with high R2 values (up to 0.994) across all conditions. Furthermore, surface plots and strain sensitivity analyses highlighted the system’s responsiveness to simultaneous angular and loading changes. These findings validate the smart wrist brace as a reliable, low-power biomechanical monitoring tool, with promising applications in injury prevention, rehabilitation, and real-time athletic performance feedback. Full article
Show Figures

Figure 1

24 pages, 3359 KiB  
Article
Water Basin Effect of Cofferdam Foundation Pit
by Guofeng Li, Qinchao Zuo, Xiaoyan Zhou, Yanbo Hu and Ning Li
Appl. Sci. 2025, 15(13), 7374; https://doi.org/10.3390/app15137374 - 30 Jun 2025
Viewed by 173
Abstract
This study addresses the water basin effect in the underwater sand layer of steel pipe pile cofferdams by integrating the concept from building foundation pits to cofferdam foundation pit analysis. A theoretical derivation is presented for the deformation evolution of steel pipe piles [...] Read more.
This study addresses the water basin effect in the underwater sand layer of steel pipe pile cofferdams by integrating the concept from building foundation pits to cofferdam foundation pit analysis. A theoretical derivation is presented for the deformation evolution of steel pipe piles and bottom seals within the cofferdam pit. The cofferdam construction dewatering process is divided into four stages: riverbed excavation for bottom sealing, dewatering to the second support, dewatering to the third support, and dewatering to final bottom sealing. The steel pipe piles are modeled as single-span or multi-span cantilever continuous beam structures. Using the superposition principle, deformation evolution equations for these statically indeterminate structures across the four stages are derived. The bottom seal is simplified to a single-span end-fixed beam, and its deflection curve equation under uniform load and end-fixed additional load is obtained via the same principle. A case study based on the 6# pier steel pipe pile cofferdam of Xi’an Metro Line 10 Jingwei Bridge rail-road project employs FLAC3D for hydrological–mechanical coupling analysis of the entire dewatering process to validate the water basin effect. Results reveal a unique water basin effect in cofferdam foundation pits. Consistent horizontal deformation patterns of steel pipe piles occur across all working conditions, with maximum horizontal displacement (20.72 mm) observed at 14 m below the pile top during main pier construction completion. Close agreements are found among theoretical, numerical, and monitored deformation results for both steel pipe piles and bottom seals. Proper utilization of the formed water basin effect can effectively enhance cofferdam stability. These findings offer insights for similar engineering applications. Full article
Show Figures

Figure 1

22 pages, 6320 KiB  
Article
Investigation on Shear Behavior of Precast Monolithic ECC Composite Beams
by Tingting Lu, Yuxiang Wen and Bin Wang
Materials 2025, 18(13), 3081; https://doi.org/10.3390/ma18133081 - 29 Jun 2025
Viewed by 288
Abstract
This study applied precast engineered cementitious composite (ECC) shells to replace conventional concrete in precast assembled monolithic composite beams to enhance mechanical performance. A new type of precast monolithic ECC composite beam was proposed. Five ECC composite beams and one reinforced concrete (RC) [...] Read more.
This study applied precast engineered cementitious composite (ECC) shells to replace conventional concrete in precast assembled monolithic composite beams to enhance mechanical performance. A new type of precast monolithic ECC composite beam was proposed. Five ECC composite beams and one reinforced concrete (RC) composite beam were designed and fabricated for the experimental study. The failure pattern, failure mechanism, load-bearing capacity, deformability, and stiffness degradation were quantitatively analyzed through the tests. The main findings were as follows: ECC composite beams developed finer and more densely distributed cracks compared to RC composite beams, without significant concrete spalling. The peak load of ECC composite beams was 8.2% higher than that of RC composite beams, while the corresponding displacement at peak load increased by 29.3%. The ECC precast shell delayed crack propagation through the fiber bridging effect. The average load degradation coefficient of the ECC composite beams was 8.2% lower than that of the RC beam. The stiffness degradation curve of ECC composite beams was more gradual than that of RC composite beams, providing an optimization basis for the design of precast beams in structures with high seismic demands. As the shear span ratio increased from 1.5 to 3, the load-bearing capacity decreased by 32.0%. When the stirrup ratio increased from 0.25% to 0.75%, the ultimate load-bearing capacity improved by 28.8%. Furthermore, specimens with higher stirrup ratios showed a 40–50% reduction in stiffness degradation rate, demonstrating that increased stirrup ratio effectively mitigated brittle failure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3656 KiB  
Article
Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls
by Konstantinos I. Christidis
CivilEng 2025, 6(3), 34; https://doi.org/10.3390/civileng6030034 - 28 Jun 2025
Viewed by 196
Abstract
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear [...] Read more.
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear walls. The model is applicable to medium-rise walls designed with or without modern seismic provisions and incorporates shear effects in both deformation and strength capacity. The application of the Proposed Model is assessed through comparison with numerical models implemented in the widely accepted OpenSees platform. Specifically, two types of elements are examined: the widely used flexural element Force-Based Beam-Column Element (FBE) and the Flexure-Shear Interaction Displacement-Based Beam-Column Element (FSI), which accounts for the interaction between flexure and shear. The results of both analytical and numerical approaches are compared with experimental data from four RC shear wall specimens reported in previous studies. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

13 pages, 2864 KiB  
Article
Feasibility and Accuracy of an RTMPose-Based Markerless Motion Capture System for Single-Player Tasks in 3x3 Basketball
by Wen Zheng, Mingxin Zhang, Rui Dong, Mingjia Qiu and Wei Wang
Sensors 2025, 25(13), 4003; https://doi.org/10.3390/s25134003 - 27 Jun 2025
Viewed by 435
Abstract
Markerless motion capture (MMC) offers a non-invasive method for monitoring external load in sports where wearable devices are restricted; however, its validity in 3x3 basketball contexts remains unverified. The viability and measurement precision of a multi-camera RTMPose-based MMC system for single-player tasks in [...] Read more.
Markerless motion capture (MMC) offers a non-invasive method for monitoring external load in sports where wearable devices are restricted; however, its validity in 3x3 basketball contexts remains unverified. The viability and measurement precision of a multi-camera RTMPose-based MMC system for single-player tasks in 3x3 basketball performance monitoring were evaluated in this study. Recorded on a standard half-court, eight cameras (60 fps) captured ten collegiate athletes executing basketball-specific activities including linear sprints, curved runs, T-tests, and vertical jumps. The 3D coordinates of hip and ankle keypoints were reconstructed from multiple synchronized camera views using Direct Linear Transformation (DLT), from which horizontal displacement and average speed were derived. These values were validated using tape-measure distance and time–motion analysis. The MMC system demonstrated high accuracy, with coefficients of variation (CVs) below 5%, mean bias under 3.5%, and standard error of estimate (SEE) below 3% across most tasks. Speed estimates revealed great consistency with time–motion analysis (ICC = 0.97–1.00; standardized change in mean [SCM] varied from trivial to small). The Bland–Altman graphs verified no proportional error and little bias. These results confirm the MMC system as a consistent, non-invasive method for gathering movement data in outdoor basketball environments. Future studies should assess the system’s performance during live competitive play with several athletes and occlusions and compare it to a laboratory-grade motion capture system. Full article
Show Figures

Figure 1

23 pages, 5097 KiB  
Article
Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections
by Yuqing Han, Yongjun Qin, Wentong Cheng and Qi Chen
Buildings 2025, 15(13), 2178; https://doi.org/10.3390/buildings15132178 - 22 Jun 2025
Viewed by 436
Abstract
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial [...] Read more.
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial compression ratio on structural performance, five shear wall specimens were tested under low-cycle reversed loading, with detailed analysis of their failure modes and hysteretic behavior. Based on experimental results and theoretical derivation, a restoring force model incorporating connection type was developed. The results demonstrate that hybrid-connected specimens exhibit significantly improved load-bearing capacity, ductility, and seismic performance compared to those with only grouted corrugated metallic duct connections. A higher axial compression ratio enhances structural strength but also accelerates damage progression, particularly after peak loading. A three-line skeleton curve model was established to describe the load, displacement, and stiffness relationships at key characteristic points, and unloading stiffness expressions for different loading stages were proposed. The calculated skeleton and hysteresis curves align well with the experimental results, accurately capturing the cyclic behavior of the hybrid-connected precast shear walls. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

20 pages, 13285 KiB  
Article
Anchorage Performance of an Innovative Assembled Joint with Large-Diameter Steel Bar Grout Lapping in Concrete Reserved Hole
by Qi Chen, Xiaoyong Luo, Chao Deng, Tai Zhou and Xutong Zheng
Materials 2025, 18(13), 2950; https://doi.org/10.3390/ma18132950 - 22 Jun 2025
Viewed by 285
Abstract
To investigate the anchorage performance of an innovative assembled joint with large-diameter steel bar grout lapping in a concrete reserved hole, the effects of anchorage length and high-strength grouting material types on the failure mode, load–displacement curve, ultimate bond strength and strain variation [...] Read more.
To investigate the anchorage performance of an innovative assembled joint with large-diameter steel bar grout lapping in a concrete reserved hole, the effects of anchorage length and high-strength grouting material types on the failure mode, load–displacement curve, ultimate bond strength and strain variation were analyzed through the pull-out tests of 15 specimens. On this basis, the calculation formulae of critical and ultimate anchorage length were established and the applicability was verified, and then the recommended value of minimum anchorage length was provided. The results showed that the failure modes included splitting-steel bar pull-out failure and UHPC-concrete interface failure. With the increase in anchorage length, the bond strength showed a trend of increasing first and then decreasing. Increasing the grouting material strength can effectively improve the bond performance. When the anchored steel bar is HRB400 with a diameter not less than 20 mm, the recommended minimum anchorage length is 15.0d~18.3d. When the grouting material strength is larger than or equal to 100 MPa, the anchorage length should not be less than 15.0d. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 2327 KiB  
Article
Analytical Investigation of Dynamic Response in Cracked Structure Subjected to Moving Load
by Shuirong Gui, Hongwei Zeng, Zhisheng Gui, Mingjun Tan, Zhongzhao Guo, Kai Zhong, Yongming Xiong and Wangwang Fang
Buildings 2025, 15(12), 2119; https://doi.org/10.3390/buildings15122119 - 18 Jun 2025
Viewed by 266
Abstract
Under cyclic moving load action, tensile-dominant structures are prone to crack initiation due to cumulative damage effects. The presence of cracks leads to structural stiffness degradation and nonlinear redistribution of dynamic characteristics, thereby compromising str18uctural integrity and service performance. The current research on [...] Read more.
Under cyclic moving load action, tensile-dominant structures are prone to crack initiation due to cumulative damage effects. The presence of cracks leads to structural stiffness degradation and nonlinear redistribution of dynamic characteristics, thereby compromising str18uctural integrity and service performance. The current research on the dynamic behavior of cracked structures predominantly focuses on transient analysis through high-fidelity finite element models. However, the existing methodologies encounter two critical limitations: computational inefficiency and a trade-off between model fidelity and practicality. Thus, this study presents an innovative analytical framework to investigate the dynamic response of cracked simply supported beams subjected to moving loads. The proposed methodology conceptualizes the cracked beam as a system composed of multiple interconnected sub-beams, each governed by the Euler–Bernoulli beam theory. At crack locations, massless rotational springs are employed to accurately capture the local flexibility induced by these defects. The transfer matrix method is utilized to derive explicit eigenfunctions for the cracked beam system, thereby facilitating the formulation of coupled vehicle–bridge vibration equations through modal superposition. Subsequently, dynamic response analysis is conducted using the Runge–Kutta numerical integration scheme. Extensive numerical simulations reveal the influence of critical parameters—particularly crack depth and location—on the coupled dynamic behavior of the structure subjected to moving loads. The results indicate that at a constant speed, neither crack depth nor position alters the shape of the beam’s vibration curve. The maximum deflection of beams with a 30% crack in the middle span increases by 14.96% compared to those without cracks. Furthermore, crack migration toward the mid-span results in increased mid-span displacement without changing vibration curve topology. For a constant crack depth ratio (γi = 0.3), the progressive migration of the crack position from 0.05 L to 0.5 L leads to a 26.4% increase in the mid-span displacement (from 5.3 mm to 6.7 mm). These findings highlight the efficacy of the proposed method in capturing the complex interactions between moving loads and cracked concrete structures, offering valuable insights for structural health monitoring and assessment. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 3736 KiB  
Article
Shear Force–Displacement Curve of a Steel Shear Wall Considering Compression
by Yi Liu, Yan He and Yang Lv
Buildings 2025, 15(12), 2112; https://doi.org/10.3390/buildings15122112 - 18 Jun 2025
Viewed by 294
Abstract
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors [...] Read more.
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors are critical for accurately assessing the shear capacity of SSWs during seismic events. In the current study, a method to calculate the shear force–displacement curve of a steel shear wall while considering the compression effect is presented, which incorporates both steel hardening and gravity effects. The analysis derives strains in tensile strips undergoing shear deformation using a strip model. Corresponding stresses are then determined using the stress–strain relationships obtained from tensile tests of the steel. Furthermore, the vertical stress induced by gravity loads is modeled using a three-segment distribution proposed before. For each tensile strip, the tension field stress is calculated by accounting for reductions due to vertical stress and the influence of steel hardening through the von Mises yield criterion. This approach enables the development of a shear force–displacement curve, which is subsequently validated against results from an experimentally verified finite element model. The findings demonstrate that the pushover curves predicted by this method closely align with those obtained from finite element analysis. Notably, the results indicate that the shear strength provided by the CAN/CSA-S16-01 equation may be overestimated by approximately 4%, 9%, and 18% when the vertical compression stresses are 50, 100, and 150 MPa for a wall with a slenderness of 150, respectively. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

31 pages, 9076 KiB  
Article
Blast Performance of Multi-Layer Composite Door Panel with Energy Absorption Connectors
by Shahab Ahmad, Shayan Zeb, Yonghui Wang and Muhammad Umair
Buildings 2025, 15(12), 2073; https://doi.org/10.3390/buildings15122073 - 16 Jun 2025
Viewed by 327
Abstract
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy [...] Read more.
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy Absorption Connectors (SAFSCS-EACs) under near and far field blast loading using finite element analysis in LS-DYNA. Three dynamic response modes were observed based on the crushing strength of energy absorption connectors (EACs) for the SAFSCS-EAC composite door under both near and far field blasts. In addition, the membrane stretching phenomena was observed in the face steel plate. The AF shows a local densification in near field blasts and a global densification in far field blasts. For the SCS panel, a punching-like failure and a global flexural failure were observed in near and far field blasts, respectively. AF has a high energy absorption capacity as a first energy absorption layer, while the EAC also effectively dissipates blast energy through the rotation of the plastic hinges of curved steel plates, thereby reducing the damage to the SCS panel and increasing the door’s structural integrity. Moreover, to check the influence of the curved steel plate thickness of EACs and the core concrete thickness, a parametric study was carried out. The results showed that the blast resistance performance of the SAFSCS-EAC composite door could increase by appropriately designing the EAC curved steel plates’ thickness and ensuring that the compression displacement of the EAC under blast is close to its densification displacement. Additionally, increasing concrete thickness can reduce the degree of damage to the steel–concrete–steel composite panel during the blast, but it leads to a reduction in the energy dissipation of the EAC. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop