Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = living photonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1379 KB  
Article
Functional Impairment in Behavioral Variant Frontotemporal Dementia: Cognitive, Behavioral, Personality, and Brain Perfusion Contributions
by Electra Chatzidimitriou, Georgios Ntritsos, Roza Lagoudaki, Eleni Poptsi, Emmanouil Tsardoulias, Andreas L. Symeonidis, Magda Tsolaki, Eleni Konstantinopoulou, Kyriaki Papadopoulou, Panos Charalambous, Katherine P. Rankin, Eleni Aretouli, Chrissa Sioka, Ioannis Iakovou, Theodora Afrantou, Panagiotis Ioannidis and Despina Moraitou
J. Pers. Med. 2025, 15(10), 466; https://doi.org/10.3390/jpm15100466 - 1 Oct 2025
Viewed by 966
Abstract
Background/Objectives: Behavioral variant frontotemporal dementia (bvFTD), the most prevalent clinical subtype within the frontotemporal lobar degeneration spectrum disorders, is characterized by early and prominent changes that significantly disrupt everyday functioning. This study aims to identify the key correlates of functional status in bvFTD [...] Read more.
Background/Objectives: Behavioral variant frontotemporal dementia (bvFTD), the most prevalent clinical subtype within the frontotemporal lobar degeneration spectrum disorders, is characterized by early and prominent changes that significantly disrupt everyday functioning. This study aims to identify the key correlates of functional status in bvFTD by investigating the relative contributions of cognitive deficits, behavioral disturbances, personality changes, and brain perfusion abnormalities. Additionally, it seeks to develop a theoretical framework to elucidate how these factors may interconnect and shape unique functional profiles. Methods: A total of 26 individuals diagnosed with bvFTD were recruited from the 2nd Neurology Clinic of “AHEPA” University Hospital in Thessaloniki, Greece, and underwent a comprehensive neuropsychological assessment to evaluate their cognitive functions. Behavioral disturbances, personality traits, and functional status were rated using informant-based measures. Regional cerebral blood flow was assessed using Single Photon Emission Computed Tomography (SPECT) imaging to evaluate brain perfusion patterns. Penalized Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to identify the most robust correlates of functional impairment, followed by path analyses using structural equation modeling to explore how these factors may interrelate and contribute to functional disability. Results: The severity of negative behavioral symptoms (e.g., apathy), conscientiousness levels, and performance on neuropsychological measures of semantic verbal fluency, visual attention, visuomotor speed, and global cognition were identified as the strongest correlates of performance in activities of daily living. Neuroimaging analysis revealed hypoperfusion in the right prefrontal (Brodmann area 8) and inferior parietal (Brodmann area 40) cortices as statistically significant neural correlates of functional impairment in bvFTD. Path analyses indicated that reduced brain perfusion was associated with attentional and processing speed deficits, which were further linked to more severe negative behavioral symptoms. These behavioral disturbances were subsequently correlated with declines in global cognition and conscientiousness, which were ultimately associated with poorer daily functioning. Conclusions: Hypoperfusion in key prefrontal and parietal regions, along with the subsequent cognitive and neuropsychiatric manifestations, appears to be associated with the pronounced functional limitations observed in individuals with bvFTD, even in early stages. Understanding the key determinants of the disease can inform the development of more targeted, personalized treatment strategies aimed at mitigating functional deterioration and enhancing the quality of life for affected individuals. Full article
(This article belongs to the Special Issue Personalized Diagnosis and Treatment for Neurological Diseases)
Show Figures

Figure 1

14 pages, 2658 KB  
Article
Comparative Evaluation of Combined Denoising and Resolution Enhancement Algorithms for Intravital Two-Photon Imaging of Organs
by Saeed Bohlooli Darian, Woo June Choi, Jeongmin Oh and Jun Ki Kim
Biosensors 2025, 15(9), 616; https://doi.org/10.3390/bios15090616 - 17 Sep 2025
Viewed by 461
Abstract
Intravital two-photon microscopy enables deep-tissue imaging of subcellular structures in live animals, but its original spatial resolution and image quality are limited by scattering, motion, and low signal-to-noise ratios. To address these challenges, we used a combination of tissue stabilization, denoising methods, and [...] Read more.
Intravital two-photon microscopy enables deep-tissue imaging of subcellular structures in live animals, but its original spatial resolution and image quality are limited by scattering, motion, and low signal-to-noise ratios. To address these challenges, we used a combination of tissue stabilization, denoising methods, and motion correction, together with resolution enhancement algorithms, including enhanced Super-Resolution Radial Fluctuations (eSRRF) and deconvolution, to acquire high-fidelity time-lapse images of internal organs. We applied this imaging pipeline to image genetically labeled mitochondria in vivo, in Dendra2 mice. Our results demonstrate that the eSRRF-combined method, compared to other evaluated algorithms, significantly shows improved spatial resolution and mitochondrial structure visualization, while each method exhibiting distinct strengths in terms of noise tolerance, edge preservation, and computational efficiency. These findings provide a practical framework for selecting enhancement strategies in intravital imaging studies targeting dynamic subcellular processes. Full article
(This article belongs to the Special Issue Optical Sensors for Biological Detection)
Show Figures

Figure 1

39 pages, 27477 KB  
Review
Three-Dimensional Printing and Bioprinting Strategies for Cardiovascular Constructs: From Printing Inks to Vascularization
by Min Suk Kim, Yuri Choi and Keel Yong Lee
Polymers 2025, 17(17), 2337; https://doi.org/10.3390/polym17172337 - 28 Aug 2025
Cited by 1 | Viewed by 1421
Abstract
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that [...] Read more.
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that support surgical planning and biomedical applications. In contrast, 3D bioprinting has emerged as a transformative biofabrication technology that allows for the spatially controlled deposition of living cells and biomaterials to construct functional tissues in vitro. Bioinks—derived from natural biomaterials such as collagen and decellularized matrix, synthetic polymers such as polyethylene glycol (PEG) and polycaprolactone (PCL), or hybrid combinations—have been engineered to replicate extracellular environments while offering tunable mechanical properties. These formulations ensure biocompatibility, appropriate mechanical strength, and high printing fidelity, thereby maintaining cell viability, structural integrity, and precise architectural resolution in the printed constructs. Advanced bioprinting modalities, including extrusion-based bioprinting (such as the FRESH technique), droplet/inkjet bioprinting, digital light processing (DLP), two-photon polymerization (TPP), and melt electrowriting (MEW), enable the fabrication of complex cardiovascular structures such as vascular patches, ventricle-like heart pumps, and perfusable vascular networks, demonstrating the feasibility of constructing functional cardiac tissues in vitro. This review highlights the respective strengths of these technologies—for example, extrusion’s ability to print high-cell-density bioinks and MEW’s ultrafine fiber resolution—as well as their limitations, including shear-induced cell stress in extrusion and limited throughput in TPP. The integration of optimized bioink formulations with appropriate printing and bioprinting platforms has significantly enhanced the replication of native cardiac and vascular architectures, thereby advancing the functional maturation of engineered cardiovascular constructs. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

19 pages, 1299 KB  
Article
Structured Emission and Entanglement Dynamics of a Giant Atom in a Photonic Creutz Ladder
by Vassilios Yannopapas
Photonics 2025, 12(8), 827; https://doi.org/10.3390/photonics12080827 - 20 Aug 2025
Viewed by 1260
Abstract
We explore the spontaneous emission dynamics of a giant atom coupled to a photonic Creutz ladder, focusing on how flat-band frustration and synthetic gauge fields shape atom–photon interactions. The Creutz ladder exhibits perfectly flat bands, Aharonov–Bohm caging, and topological features arising from its [...] Read more.
We explore the spontaneous emission dynamics of a giant atom coupled to a photonic Creutz ladder, focusing on how flat-band frustration and synthetic gauge fields shape atom–photon interactions. The Creutz ladder exhibits perfectly flat bands, Aharonov–Bohm caging, and topological features arising from its nontrivial hopping structure. By embedding the giant atom at multiple spatially separated sites, we reveal interference-driven emission control and the formation of nonradiative bound states. Using both spectral and time-domain analyses, we uncover strong non-Markovian dynamics characterized by persistent oscillations, long-lived entanglement, and recoherence cycles. The emergence of bound-state poles in the spectral function is accompanied by spatially localized photonic profiles and directionally asymmetric emission, even in the absence of band dispersion. Calculations of von Neumann entropy and atomic purity confirm the formation of coherence-preserving dressed states in the flat-band regime. Furthermore, the spacetime structure of the emitted field displays robust zig-zag interference patterns and synthetic chirality, underscoring the role of geometry and topology in photon transport. Our results demonstrate how flat-band photonic lattices can be leveraged to engineer tunable atom–photon entanglement, suppress radiative losses, and create structured decoherence-free subspaces for quantum information applications. Full article
(This article belongs to the Special Issue Recent Progress in Optical Quantum Information and Communication)
Show Figures

Figure 1

21 pages, 3372 KB  
Article
Advanced Research on Biological Properties—A Study on the Activity of the Apis mellifera Antioxidant System and the Crystallographic and Spectroscopic Properties of 7-Diethylamino-4-hydroxycoumarin
by Klaudia Rząd, Iwona Budziak-Wieczorek, Aneta Strachecka, Patrycja Staniszewska, Adam Staniszewski, Anna Gryboś, Alicja Matwijczuk, Bożena Gładyszewska, Karolina Starzak, Anna A. Hoser, Maurycy E. Nowak, Małgorzata Figiel, Sylwia Okoń and Arkadiusz Paweł Matwijczuk
Int. J. Mol. Sci. 2025, 26(14), 7015; https://doi.org/10.3390/ijms26147015 - 21 Jul 2025
Viewed by 771
Abstract
The search for substances that increase the immunity of bees is becoming a necessity in the era of various environmental threats and the declining immunocompetence of these insects. Therefore, we tested the biological and physicochemical properties of 7-diethylamino-4-hydroxycoumarin (7DOC). In a cage test, [...] Read more.
The search for substances that increase the immunity of bees is becoming a necessity in the era of various environmental threats and the declining immunocompetence of these insects. Therefore, we tested the biological and physicochemical properties of 7-diethylamino-4-hydroxycoumarin (7DOC). In a cage test, two groups of bees were created: a control group fed with sugar syrup and an experimental group fed with sugar syrup with the addition of 7DOC. In each group, the longevity of the bees was determined and the protein concentrations and antioxidant activities in the bees’ hemolymph were determined. The bees fed with 7DOC lived 2.7 times longer than those in the control group. The protein concentrations and activities of SOD, CAT, GPx and GST, as well as the TAC levels, were significantly higher in the hemolymph of the supplemented workers. To confirm these potent biological properties of 7DOC, the UV-Vis spectra, emission and excitation of fluorescence, synchronous spectra and finally the fluorescence lifetimes of this compound were measured using the time-correlated single photon counting method, in various environments differing in polarity and in the environment applied in bee research. This compound was shown to be sensitive to changes in solvent polarity. The spectroscopic assays were complemented with crystallographic tests of the obtained monocrystals of the aforementioned compounds, which attested to the aggregation effects observed in the spectra measurements for the selected coumarin. The research results confirm that this compound has the potential to be implemented in apiary management, which will be our application goal, but further research into apiary conditions is required. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

20 pages, 719 KB  
Article
Entanglement Dynamics of Two Giant Atoms Embedded in a One-Dimensional Photonic Lattice with a Synthetic Gauge Field
by Vassilios Yannopapas
Photonics 2025, 12(6), 612; https://doi.org/10.3390/photonics12060612 - 14 Jun 2025
Cited by 2 | Viewed by 974
Abstract
We investigate the entanglement dynamics of two giant atoms coupled to a one-dimensional photonic lattice with synthetic chirality. The atoms are connected to multiple lattice sites in a braided configuration and interact with a structured photonic reservoir featuring direction-dependent hopping phases. By tuning [...] Read more.
We investigate the entanglement dynamics of two giant atoms coupled to a one-dimensional photonic lattice with synthetic chirality. The atoms are connected to multiple lattice sites in a braided configuration and interact with a structured photonic reservoir featuring direction-dependent hopping phases. By tuning the atomic detuning and the synthetic gauge phase, we identify distinct dynamical regimes characterized by decoherence-free population exchange, damped oscillations, long-lived revivals, and excitation trapping. Using a combination of time-domain simulations and resolvent-based analysis, we show how interference and band structure effects lead to the emergence of bound states, quasi-bound states, and phase-dependent entanglement dynamics. We compare the initial states with localized and delocalized atomic excitations, demonstrating that pre-existing entanglement can enhance the robustness against decoherence or accelerate its loss, depending on the system parameters. These results highlight the utility of synthetic photonic lattices and nonlocal emitter configurations in tailoring quantum coherence, entanglement, and information flows in structured environments. Full article
(This article belongs to the Special Issue Advanced Research in Quantum Optics)
Show Figures

Figure 1

46 pages, 25492 KB  
Review
Recent Advancement in Fluorescent Probes for Peroxynitrite (ONOO)
by Hai-Hao Han, Pan-Xin Ge, Wen-Jia Li, Xi-Le Hu and Xiao-Peng He
Sensors 2025, 25(10), 3018; https://doi.org/10.3390/s25103018 - 10 May 2025
Cited by 3 | Viewed by 1783
Abstract
Peroxynitrite (ONOO) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO dynamics [...] Read more.
Peroxynitrite (ONOO) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO dynamics in live cells and a variety of animal models of human diseases. However, the clinical applications of those probes remain much less explored. This review delves into the biological roles of ONOO and summarizes the design strategies, sensing mechanisms, and bioimaging applications of near-infrared (NIR), long-wavelength, two-photon, and ratiometric fluorescent probes modified with a diverse range of functional groups responsive to ONOO. Furthermore, we will discuss the remaining problems that prevent the currently developed ONOO probes from translating into clinical practice. Full article
(This article belongs to the Special Issue Fluorescence Sensors for Biological and Medical Applications)
Show Figures

Figure 1

14 pages, 1990 KB  
Article
Optimizing UV Photodegradation of Chlorothalonil with Reflective Materials (Silver-White Aluminium Foil)
by Jingfeng Xue, Siyu Chen, Xin Ma, Taozhong Shi, Huiting Wu, Zhaowen Liu, Rimao Hua and Youkun Huang
Water 2025, 17(7), 1032; https://doi.org/10.3390/w17071032 - 31 Mar 2025
Viewed by 693
Abstract
This study investigated the photocatalytic degradation of chlorothalonil under a range of ultraviolet lamp configurations, and studied the improvement in the photocatalytic degradation efficiency of a reflective material (silver-white aluminium foil). Increasing the number of UV lamps significantly enhanced degradation efficiency, reducing the [...] Read more.
This study investigated the photocatalytic degradation of chlorothalonil under a range of ultraviolet lamp configurations, and studied the improvement in the photocatalytic degradation efficiency of a reflective material (silver-white aluminium foil). Increasing the number of UV lamps significantly enhanced degradation efficiency, reducing the half-life from 29.95 min with one lamp to 8.15 min with four in a 20 cm enamel bucket. The use of silvery-white aluminium foil further decreased the half-life to 3.86 min, improving degradation rates by up to 262.9%. In larger containers, degradation efficiency increased by up to 414.7% with aluminium foil. Comparisons with black aluminium foil confirmed that silver-white aluminium foil enhanced degradation by reflecting and redistributing UV light, increasing intensity by 252% and reducing the CTL half-life from 150.36 min to 22.9 min in a controlled light box. Further tests confirmed that silver-white aluminium foil amplified UV irradiation, increasing degradation efficiency by up to 555.1%. These improvements might suggest that aluminium foil enhances UV utilisation through direct reflection, refraction, and diffuse reflection, effectively redirecting photons that would otherwise escape the system. Experiments with natural water sources showed similar trends, with half-lives of 55.23 min in ultrapure water, 12.63 min in pond water, and 16.36 min in paddy field water. The addition of silver-white aluminium foil further reduced these times to 23.92 min, 7.13 min, and 12.34 min, respectively. These findings demonstrate that silvery-white aluminium foil significantly enhances CTL photodegradation without increasing energy consumption. While effective, the method faces challenges in acidic or alkaline wastewater due to potential corrosion of system components. Future research should focus on identifying stable, high-reflectivity materials for long-term applications. This study offers practical insights into the optimisation of photodegradation processes, which contributes to improved water treatment strategies and environmental pollution mitigation. Full article
(This article belongs to the Special Issue Physical–Chemical Wastewater Treatment Technologies)
Show Figures

Figure 1

8 pages, 385 KB  
Article
Looking for New Strategies to Probe Low-Mass Axion-like Particles in Ultraperipheral Heavy-Ion Collisions at the LHC
by Pedro Nogarolli, Victor P. Gonçalves and Murilo S. Rangel
Universe 2025, 11(3), 80; https://doi.org/10.3390/universe11030080 - 1 Mar 2025
Viewed by 685
Abstract
The possibility to search for long-lived axion-like particles (ALPs) decaying into photons is investigated in ultraperipheral PbPb collisions at the Large Hadron Collider (LHC). We propose a search strategy for low-mass ALPs using the LHCb and ALICE experiments. The ALP identification is performed [...] Read more.
The possibility to search for long-lived axion-like particles (ALPs) decaying into photons is investigated in ultraperipheral PbPb collisions at the Large Hadron Collider (LHC). We propose a search strategy for low-mass ALPs using the LHCb and ALICE experiments. The ALP identification is performed by requiring the decay vertex be reconstructed outside the region where a primary vertex is expected, which strongly suppress the contribution associated with the decay of light mesons. We also use the fact that a fraction of the photons convert into electron–positron pairs, allowing the reconstruction of the particle decay position. We present the predictions for the pseudorapidity and transverse momentum distributions of the ALPs and photons. Moreover, predictions for the fiducial cross-sections, derived considering the characteristics of the ALICE and LHCb detectors, are presented for different values of the ALP mass and the ALP—photon coupling. Full article
Show Figures

Figure 1

21 pages, 419 KB  
Article
The Impact of Electric Currents on Majorana Dark Matter at Freeze Out
by Lukas Karoly and David C. Latimer
Universe 2025, 11(2), 66; https://doi.org/10.3390/universe11020066 - 14 Feb 2025
Viewed by 703
Abstract
Thermal relics with masses in the GeV to TeV range remain possible candidates for the Universe’s dark matter (DM). These neutral particles are often assumed to have vanishing electric and magnetic dipole moments so that they do not interact with single real photons, [...] Read more.
Thermal relics with masses in the GeV to TeV range remain possible candidates for the Universe’s dark matter (DM). These neutral particles are often assumed to have vanishing electric and magnetic dipole moments so that they do not interact with single real photons, but the anapole moment, a static electromagnetic property whose features are akin to that of a classical toroidal solenoid, can still be non-zero, permitting interactions with single virtual photons. In some models, DM predominantly annihilates into charged standard model particles through a p-wave process mediated by the anapole moment. The anapole moment is also responsible for another interaction of interest. If a DM medium were subjected to an electric current, a DM particle whose anapole moment was aligned with the current would have lower energy than the state with an antialigned anapole moment. Given these interactions, if a collection of initially unpolarized DM particles were subjected to an electric current, then the DM medium would become partially polarized, according to the Boltzmann distribution. In such a polarized medium, DM annihilation into photons, a subdominant s-wave process realizable through higher order interactions, would be somewhat suppressed. If the local electric current existed during a time in which the DM begins to drop out of thermal equilibrium with the rest of the Universe, the suppressed annihilation could lead to a small local excess in the relic DM density relative to a current-free region. This mechanism by which the local DM density can be perturbed is novel. Using effective interactions to model a DM particle’s anapole moment and polarizabilities (responsible for s-wave annihilation into two photons), we compute the changes in the DM density produced by long- and short-lived currents around freeze out. If we employ the most stringent constraints on DM annihilation into two photons, we find that long-lived currents can result in a fractional change in the DM density on the order of 1017 for DM masses around 100 GeV; for short-lived currents, this fractional change in local DM density is on the order of 1023 for the same DM mass. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

18 pages, 6512 KB  
Article
The Dose-Dependent Effects of Fluorocitrate on the Metabolism and Activity of Astrocytes and Neurons
by Huiling Zhuang, Deliang Yuan, Fuxiu Shi, Xujun Wu, Zhen Luo and Wenbiao Gan
Brain Sci. 2025, 15(2), 99; https://doi.org/10.3390/brainsci15020099 - 21 Jan 2025
Cited by 2 | Viewed by 1483
Abstract
Background: Fluorocitrate (FC) ranging from 5 μM to 5 mM is often used as a specific metabolic inhibitor of the astrocytes to study astrocytic functions. Whether FC at such concentrations may affect neuronal metabolism and function in vivo remains unclear. Methods: We examined [...] Read more.
Background: Fluorocitrate (FC) ranging from 5 μM to 5 mM is often used as a specific metabolic inhibitor of the astrocytes to study astrocytic functions. Whether FC at such concentrations may affect neuronal metabolism and function in vivo remains unclear. Methods: We examined the effects of FC on the ATP levels and Ca2+ activity of the astrocytes and neurons in the motor cortices of living mice using two-photon microscopy. Results: We found that 25 μM and 250 μM of FC decreased the intracellular ATP levels and Ca2+ activity in the astrocytes in the motor cortex. Equally, 250 μM of FC, but not 25 μM of FC, reduced the intracellular ATP levels in the dendritic processes of the layer 5 pyramidal neurons. However, 25 μM of FC increased the neuronal Ca2+ activity, whereas ≥250 μM of FC decreased it. To test whether the differential effects of FC on neuronal Ca2+ activity reflect the direct effect of FC on the neurons or its indirect effect on the astrocytes, we used the CNO-hM3Dq chemogenetic approach to block astrocytic Ca2+ activity and examined the effect of FC. In the absence of astrocytic Ca2+ activity, 25 μM of FC still increased and ≥250 μM of FC reduced the dendritic Ca2+ activity of the neurons, respectively, suggesting a direct effect of 250 μM of FC on inhibiting neuronal Ca2+ activity. Further, 250 μM, but not 25 μM, of FC increased the size of the dendritic spines over 2 h. Conclusions: Our findings suggest that FC at high concentrations (≥250 μM) is not a specific inhibitor of astrocytic functions, as it directly affects neuronal metabolism and synaptic plasticity in vivo. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

10 pages, 2538 KB  
Article
Rapid Acquisition of High-Pixel Fluorescence Lifetime Images of Living Cells via Image Reconstruction Based on Edge-Preserving Interpolation
by Yinru Zhu, Yong Guo, Xinwei Gao, Qinglin Chen, Yingying Chen, Ruijie Xiang, Baichang Lin, Luwei Wang, Yuan Lu and Wei Yan
Biosensors 2025, 15(1), 43; https://doi.org/10.3390/bios15010043 - 13 Jan 2025
Viewed by 1258
Abstract
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular [...] Read more.
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times. Specifically, we decouple the grayscale image and the fluorescence lifetime matrix and perform an individual interpolation on each. Following the interpolation of the intensity image, we apply wavelet transformation and adjust the wavelet coefficients according to the image gradients. After the inverse transformation, the original image is obtained and subjected to noise reduction to complete the image reconstruction process. Subsequently, each pixel is pseudo-color-coded based on its intensity and lifetime, preserving both structural and temporal information. We evaluated the performance of the bicubic interpolation method and our image reconstruction approach on fluorescence microspheres and fixed-cell samples, demonstrating their effectiveness in enhancing the quality of lifetime images. By applying these techniques to live-cell imaging, we can successfully obtain high-pixel FLIM images at shortened intervals, facilitating the capture of rapid cellular events. Full article
Show Figures

Figure 1

17 pages, 6702 KB  
Review
Recent Advances in the Synthesis of Substituted Polyacetylenes
by Wladislaw Pisetsky and Thomas J. J. Müller
Catalysts 2025, 15(1), 50; https://doi.org/10.3390/catal15010050 - 8 Jan 2025
Viewed by 2026
Abstract
Recent developments in the synthesis of substituted polyacetylenes have considerably benefitted from advancements in organometallic catalysis; however, most important developments rely on the advent of Rh-catalyzed living polymerizations. The latter not only allow the tailoring of well-defined degrees of polymerization with low and [...] Read more.
Recent developments in the synthesis of substituted polyacetylenes have considerably benefitted from advancements in organometallic catalysis; however, most important developments rely on the advent of Rh-catalyzed living polymerizations. The latter not only allow the tailoring of well-defined degrees of polymerization with low and narrow polydispersity but also enable access to stereochemical well-defined cis-transoidal polymers with a helical structure. These novel polymers open new avenues for application in photonics and electronics. Rh-catalyzed living polymerizations are mild and concise metal-catalyzed polymer syntheses that not only allow for the decoration of sidechains with multiple functionalities, including chiral units, but also enable enantioselective induction of helical chirality, memory of chirality, well-defined copolymerization, and end-group functionalization at both termini. This review summarizes recent developments in metal-catalyzed syntheses of substituted polyacetylenes, with a special focus on Rh-catalyzed living polymerizations. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis, 3rd Edition)
Show Figures

Figure 1

14 pages, 4521 KB  
Article
Effects of Temperature, Dissolved Oxygen Concentration, and Photosynthetic Photon Flux Density on the Growth of the Sea Bivalve Tridacna crocea in Combination with the Symbiotic Alga Zooxanthella
by Yoshiaki Kitaya, Yasunori Iba, Toshio Shibuya and Atsunori Masuda
Hydrobiology 2024, 3(4), 350-363; https://doi.org/10.3390/hydrobiology3040022 - 15 Nov 2024
Cited by 1 | Viewed by 1618
Abstract
The sea bivalve clam Tridacna crocea inhabiting the shallow sea of tropical and subtropical zones lives with the symbiotic alga zooxanthella in its mantle. Zooxanthellae algae perform photosynthesis and supply nutrients to T. crocea. Recently, the abundance of T. crocea has decreased [...] Read more.
The sea bivalve clam Tridacna crocea inhabiting the shallow sea of tropical and subtropical zones lives with the symbiotic alga zooxanthella in its mantle. Zooxanthellae algae perform photosynthesis and supply nutrients to T. crocea. Recently, the abundance of T. crocea has decreased rapidly due to overfishing in coastal areas in Okinawa, Japan. T. crocea culture systems for mass production will contribute to the conservation of T. crocea and thus marine ecosystems. Environmental control methods for T. crocea culture have not been established because of a lack of knowledge about the appropriate environmental conditions for T. crocea growth. The present study was initiated to obtain basic data for developing environmental control methods for T. crocea land-based aquaculture. The effects of water temperature, dissolved oxygen concentration, and photosynthetic photon flux density (PPFD) on the O2 exchange rates of the symbiotic system of T. crocea and zooxanthella, which are indicators of photosynthesis and respiration in the system, and the effect of daily integrated PPFD on T. crocea growth were investigated. Basic knowledge was obtained for the development of optimal environmental control technology for T. crocea clam culture. The optimum water temperature and dissolved oxygen concentration for photosynthesis in this symbiotic system were 28 °C, 5–6 mgO2 L−1 and 500 μmol m−2 d−1, respectively. The optimum daily integrated PPFD for clam growth was 20 mol m−2 d−1. Full article
Show Figures

Figure 1

16 pages, 5753 KB  
Article
Enhanced Antibacterial Activity of Carbon Dots: A Hybrid Approach with Levofloxacin, Curcumin, and Tea Polyphenols
by Khurram Abbas, Haimei Zhu, Weixia Qin, Meiyan Wang, Zijian Li and Hong Bi
C 2024, 10(3), 84; https://doi.org/10.3390/c10030084 - 15 Sep 2024
Cited by 3 | Viewed by 3287
Abstract
Bacterial infections and their increasing resistance to antibiotics pose a significant challenge in medical treatment. This study presents the synthesis and characterization of novel carbon dots (CDs) using levofloxacin (Lf), curcumin (Cur), and tea polyphenols (TP) through a facile hydrothermal method. The synthesized [...] Read more.
Bacterial infections and their increasing resistance to antibiotics pose a significant challenge in medical treatment. This study presents the synthesis and characterization of novel carbon dots (CDs) using levofloxacin (Lf), curcumin (Cur), and tea polyphenols (TP) through a facile hydrothermal method. The synthesized curcumin-tea polyphenol@carbon dots (Cur-TP@CDs) and levofloxacin-tea polyphenol@carbon dots (Lf-TP@CDs) were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, confirming their unique structural and chemical properties. Cur-TP@CDs exhibited an average particle size of 1.32 nanometers (nm), while Lf-TP@CDs averaged 1.58 nm. Both types demonstrated significant antibacterial activity, with Lf-TP@CDs showing superior effectiveness against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in broth dilution and disc diffusion assays. Biofilm inhibition assays revealed a significant reduction in biofilm formation at higher concentrations. The ultraviolet-visible (UV-vis) and photoluminescence (PL) spectral analyses indicated efficient photon emission, and electron paramagnetic resonance (EPR) analysis showed increased singlet oxygen generation, enhancing bactericidal effects. Live and dead bacterial staining followed by scanning electron microscopy (SEM) analysis confirmed dose-dependent bacterial cell damage and morphological deformities. These findings suggest that Cur-TP@CDs and Lf-TP@CDs are promising antibacterial agents, potentially offering a novel approach to combat antibiotic-resistant bacterial infections. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop