Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,293)

Search Parameters:
Keywords = linear acceleration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11726 KB  
Article
Non-Linear Global Ice and Water Storage Changes from a Combination of Satellite Laser Ranging and GRACE Data
by Filip Gałdyn, Krzysztof Sośnica, Radosław Zajdel, Ulrich Meyer and Adrian Jäggi
Remote Sens. 2026, 18(2), 313; https://doi.org/10.3390/rs18020313 (registering DOI) - 16 Jan 2026
Abstract
Determining long-term changes in global ice and water storage from satellite gravimetry remains challenging due to the limited temporal coverage of high-resolution missions. Here, we combine Satellite Laser Ranging (SLR) and Gravity Recovery and Climate Experiment (GRACE) data to reconstruct large-scale, non-linear mass [...] Read more.
Determining long-term changes in global ice and water storage from satellite gravimetry remains challenging due to the limited temporal coverage of high-resolution missions. Here, we combine Satellite Laser Ranging (SLR) and Gravity Recovery and Climate Experiment (GRACE) data to reconstruct large-scale, non-linear mass variations from 1995 to 2024, extending gravity-based observations into the pre-GRACE era while preserving spatial detail through backward extrapolation. The combined model reveals widespread and statistically significant accelerations in global water and ice mass changes and enables the identification of key turning points in their temporal evolution. Results indicate that in Svalbard, a non-linear transition in ice mass balance occurred in late 2004, followed by a pronounced acceleration of mass loss due to climate warming. Glaciers in the Gulf of Alaska exhibit persistent mass loss with a marked intensification after 2012, while in the Antarctic Peninsula, ice mass loss substantially slowed and a potential trend reversal emerged around 2021. The reconstructed mass anomalies show strong consistency with independent satellite altimetry and climate indicators, including a clear response to the 1997/1998 El Niño event prior to the GRACE mission. These findings demonstrate that integrating SLR with GRACE enables robust detection of non-linear, climate-driven mass redistribution on a global scale and provides a physically consistent extension of satellite gravimetry records beyond the GRACE era. Full article
22 pages, 1943 KB  
Article
Repairing the Urban Metabolism: A Dynamic Life-Cycle and HJB Optimization Model for Resolving Spatio-Temporal Conflicts in Shared Parking Systems
by Jiangfeng Li, Jianlong Xiang, Fujian Chen, Longxin Zeng, Haiquan Wang, Yujie Li and Zhongyi Zhai
Systems 2026, 14(1), 91; https://doi.org/10.3390/systems14010091 - 14 Jan 2026
Abstract
Urban shared parking systems represent a complex socio-technical challenge. Despite vast potential, utilization remains persistently low (<15%), revealing a critical policy failure. To address this, this study develops a dynamic system framework based on Life-Cycle Cost (LCC) and Hamilton-Jacobi-Bellman (HJB) optimization to analyze [...] Read more.
Urban shared parking systems represent a complex socio-technical challenge. Despite vast potential, utilization remains persistently low (<15%), revealing a critical policy failure. To address this, this study develops a dynamic system framework based on Life-Cycle Cost (LCC) and Hamilton-Jacobi-Bellman (HJB) optimization to analyze and calibrate the key policy levers influencing owner participation timing (T*). The model, resolved using finite difference methods, captures the system’s non-linear threshold effects by simulating critical system parameters, including system instability (price volatility, σp), internal friction (management fee, wggt), and demand signals (transaction ratio, Q). Simulations reveal extreme non-linear system responses: a 100% increase in system instability (σp) delays participation by 325.5%. More critically, a 100% surge in internal friction (management fees) delays T* by 492% and triggers a 95% revenue collapse—demonstrating the risk of systemic collapse. Conversely, a 20% rise in the demand signal (Q) advances T* by 100% (immediate participation), indicating the system can be rapidly shifted to a new equilibrium by activating positive feedback loops. These findings support a sequenced calibration strategy: regulators must first manage instability via price stabilization, then counteract high friction with subsidies (e.g., 60%), and amplify demand loops. The LCC framework provides a novel dynamic decision support system for calibrating complex urban transportation systems, offering policymakers a tool for scenario testing to accelerate policy adoption and alleviate urban congestion. Full article
(This article belongs to the Section Complex Systems and Cybernetics)
Show Figures

Figure 1

21 pages, 4867 KB  
Article
Variable Impedance Control for Active Suspension of Off-Road Vehicles on Deformable Terrain Considering Soil Sinkage
by Jiaqi Zhao, Mingxin Liu, Xulong Jin, Youlong Du and Ye Zhuang
Vibration 2026, 9(1), 6; https://doi.org/10.3390/vibration9010006 - 14 Jan 2026
Viewed by 79
Abstract
Off-road vehicle control designs often neglect the complex tire–soil interactions inherent to soft terrain. This paper proposes a Variable Impedance Control (VIC) strategy integrated with a high-fidelity terramechanics model. First, a real-time sinkage estimation algorithm is derived using experimentally identified Bekker parameters and [...] Read more.
Off-road vehicle control designs often neglect the complex tire–soil interactions inherent to soft terrain. This paper proposes a Variable Impedance Control (VIC) strategy integrated with a high-fidelity terramechanics model. First, a real-time sinkage estimation algorithm is derived using experimentally identified Bekker parameters and the quasi-rigid wheel assumption to capture the nonlinear feedback between soil deformation and vehicle dynamics. Building on this, the VIC strategy adaptively regulates virtual stiffness, damping, and inertia parameters based on real-time suspension states. Comparative simulations on an ISO Class-C soft soil profile demonstrate that this framework effectively balances ride comfort and safety constraints. Specifically, the VIC strategy reduces the root-mean-square of vertical body acceleration by 46.9% compared to the passive baseline, significantly outperforming the Linear Quadratic Regulator (LQR). Furthermore, it achieves a 48.6% reduction in average power relative to LQR while maintaining suspension deflection strictly within the safe range. Moreover, unlike LQR, the VIC strategy improves tire deflection performance, ensuring superior ground adhesion. These results validate the method’s robustness and energy efficiency for off-road applications. Full article
Show Figures

Graphical abstract

30 pages, 5018 KB  
Article
The Effect of an Earthquake on the Bearing Characteristics of a Soft-Rock-Embedded Bridge Pile with Sediment
by Xuefeng Ye, Xiaofang Ma, Huijuan Wang and Huina Chen
Buildings 2026, 16(2), 341; https://doi.org/10.3390/buildings16020341 - 14 Jan 2026
Viewed by 40
Abstract
Seismic action significantly affects the mechanical properties and failure characteristics of bridge pile foundations, soft rocks, and sediments. This study, by integrating shaking table tests, numerical simulations, and on-site monitoring, systematically analyzed the influence mechanisms of seismic intensity, sediment characteristics, and pile foundation [...] Read more.
Seismic action significantly affects the mechanical properties and failure characteristics of bridge pile foundations, soft rocks, and sediments. This study, by integrating shaking table tests, numerical simulations, and on-site monitoring, systematically analyzed the influence mechanisms of seismic intensity, sediment characteristics, and pile foundation layout on structural responses. Tests show that the 2.5-layer rock–sand pile exhibits nonlinear bearing degradation under seismic force: when the seismic acceleration increases from 0 to 100 m/s2, the bearing capacity of the pile foundation decreases by 55.3%, and the settlement increases from 3.2 mm to 18.5 mm. When the acceleration is ≥2 m/s2, the cohesion of the sand layer is destroyed, causing a semi-liquefied state. When it is ≥10 m/s2, the resistance loss reaches 80%. The increase in pore water pressure leads to dynamic settlement. When the seismic acceleration is greater than 50 m/s2, the shear modulus of the sand layer drops below 15% of its original value. The thickness of the sediment has a nearly linear relationship with the reduction rate of the bearing capacity. When the thickness increases from 0 to 1.4 cm, the reduction rate rises from 0% to 55.3%. When the thickness exceeds 0.8 cm, it enters the “danger zone”, and the bearing capacity decreases nonlinearly with the increase in thickness. The particle size is positively correlated with the reduction rate. The liquefaction risk of fine particles (<0.1 mm) is significantly higher than that of coarse particles (>0.2 mm). The load analysis of the pile cap shows that when the sediment depth is 140 cm, the final bearing capacity is 156,187.2 kN (reduction coefficient 0.898), and the maximum settlement is concentrated at the top point of the pile cap. Under the longitudinal seismic load of the pile group, the settlement growth rate of the piles containing sediment reached 67.16%, triggering the dual effect of “sediment–earthquake”. The lateral load leads to a combined effect of “torsional inclination”, and the stress at the top of the non-sediment pile reaches 6.41MPa. The seismic intensity (PGA) is positively correlated with the safety factor (FS) (FS increases from 1.209 to 37.654 when 10 m/s2→100 m/s2), while sediment thickness (h) is negatively correlated with FS (FS decreases from 2.510 to 1.209 when 0.05 m→0.20 m). The research results reveal the coupled control mechanism of sediment characteristics, seismic parameters, and pile foundation layout on seismic performance, providing key parameters and an optimization basis for bridge design in high-intensity areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 1419 KB  
Review
How the Vestibular Labyrinth Encodes Air-Conducted Sound: From Pressure Waves to Jerk-Sensitive Afferent Pathways
by Leonardo Manzari
J. Otorhinolaryngol. Hear. Balance Med. 2026, 7(1), 5; https://doi.org/10.3390/ohbm7010005 - 14 Jan 2026
Viewed by 77
Abstract
Background/Objectives: The vestibular labyrinth is classically viewed as a sensor of low-frequency head motion—linear acceleration for the otoliths and angular velocity/acceleration for the semicircular canals. However, there is now substantial evidence that air-conducted sound (ACS) can also activate vestibular receptors and afferents in [...] Read more.
Background/Objectives: The vestibular labyrinth is classically viewed as a sensor of low-frequency head motion—linear acceleration for the otoliths and angular velocity/acceleration for the semicircular canals. However, there is now substantial evidence that air-conducted sound (ACS) can also activate vestibular receptors and afferents in mammals and other vertebrates. This sound sensitivity underlies sound-evoked vestibular-evoked myogenic potentials (VEMPs), sound-induced eye movements, and several clinical phenomena in third-window pathologies. The cellular and biophysical mechanisms by which a pressure wave in the cochlear fluids is transformed into a vestibular neural signal remain incompletely integrated into a single framework. This study aimed to provide a narrative synthesis of how ACS activates the vestibular labyrinth, with emphasis on (1) the anatomical and biophysical specializations of the maculae and cristae, (2) the dual-channel organization of vestibular hair cells and afferents, and (3) the encoding of fast, jerk-rich acoustic transients by irregular, striolar/central afferents. Methods: We integrate experimental evidence from single-unit recordings in animals, in vitro hair cell and calyx physiology, anatomical studies of macular structure, and human clinical data on sound-evoked VEMPs and sound-induced eye movements. Key concepts from vestibular cellular neurophysiology and from the physics of sinusoidal motion (displacement, velocity, acceleration, jerk) are combined into a unified interpretative scheme. Results: ACS transmitted through the middle ear generates pressure waves in the perilymph and endolymph not only in the cochlea but also in vestibular compartments. These waves produce local fluid particle motions and pressure gradients that can deflect hair bundles in selected regions of the otolith maculae and canal cristae. Irregular afferents innervating type I hair cells in the striola (maculae) and central zones (cristae) exhibit phase locking to ACS up to at least 1–2 kHz, with much lower thresholds than regular afferents. Cellular and synaptic specializations—transducer adaptation, low-voltage-activated K+ conductances (KLV), fast quantal and non-quantal transmission, and afferent spike-generator properties—implement effective high-pass filtering and phase lead, making these pathways particularly sensitive to rapid changes in acceleration, i.e., mechanical jerk, rather than to slowly varying displacement or acceleration. Clinically, short-rise-time ACS stimuli (clicks and brief tone bursts) elicit robust cervical and ocular VEMPs with clear thresholds and input–output relationships, reflecting the recruitment of these jerk-sensitive utricular and saccular pathways. Sound-induced eye movements and nystagmus in third-window syndromes similarly reflect abnormally enhanced access of ACS-generated pressure waves to canal and otolith receptors. Conclusions: The vestibular labyrinth does not merely “tolerate” air-conducted sound as a spill-over from cochlear mechanics; it contains a dedicated high-frequency, transient-sensitive channel—dominated by type I hair cells and irregular afferents—that is well suited to encoding jerk-rich acoustic events. We propose that ACS-evoked vestibular responses, including VEMPs, are best interpreted within a dual-channel framework in which (1) regular, extrastriolar/peripheral pathways encode sustained head motion and low-frequency acceleration, while (2) irregular, striolar/central pathways encode fast, sound-driven transients distinguished by high jerk, steep onset, and precise spike timing. Full article
(This article belongs to the Section Otology and Neurotology)
Show Figures

Figure 1

18 pages, 1054 KB  
Article
A New Method of Analysing Sprint, Deceleration, and Change of Direction Abilities in Trained Athletes
by Gregory Gordon and Andrew Green
Sports 2026, 14(1), 36; https://doi.org/10.3390/sports14010036 - 13 Jan 2026
Viewed by 147
Abstract
In modern sports, straight-line sprinting alone is insufficient for assessing overall sprint performance, as athletes must also decelerate and change direction efficiently. Existing methods lack a single metric that integrates all abilities, enabling holistic assessment. This study aimed to develop a comprehensive and [...] Read more.
In modern sports, straight-line sprinting alone is insufficient for assessing overall sprint performance, as athletes must also decelerate and change direction efficiently. Existing methods lack a single metric that integrates all abilities, enabling holistic assessment. This study aimed to develop a comprehensive and novel measurement of multidirectional sprinting ability. Fifty-four university athletes (21.0 ± 1.5 years; 69.6 ± 9.1 kg; 172.6 ± 7.8 cm) performed linear sprints, decelerations, and 45°, 90°, and 135° change of direction (COD) tests in both directions over 30 m. Sprint accelerations and decelerations were recorded using a Stalker ATS II radar gun, while COD times were measured with stationary time gates. Sprint velocities were used to generate a multidirectional sprint area (MDSA), which was divided into forward, backward, left, and right sections. The MDSA method is calculated as the area of the octagonal polygon created by plotting eight velocity vectors from different angles of sprints. Paired t-tests compared area differences across directions, and ANOVA tests were used to compare sporting codes and sex. The resulting model reported differences across sporting codes (p < 0.001), sex (p < 0.001), the total area value (p < 0.001), and total area percentage (p < 0.001). The results showed a significant difference between forward and backward accelerations (p < 0.001), but no significant difference between left and right movements (p = 0.244). The MDSA method offers a reliable, quantitative intra-session approach for assessing athletes’ multidirectional sprint abilities by calculating the octagonal area on the basis of velocity data. This holistic analysis identifies asymmetries and performance weaknesses, providing valuable insights for coaches. Full article
Show Figures

Figure 1

27 pages, 11868 KB  
Article
Random Vibration Evaluation and Optimization of a Flexible Positioning Platform Considering Power Spectral Density
by Lufan Zhang, Mengyuan Hu, Heng Yan, Hehe Sun, Zhenghui Zhang and Peijuan Wu
Sensors 2026, 26(2), 514; https://doi.org/10.3390/s26020514 - 13 Jan 2026
Viewed by 155
Abstract
The flexible positioning platform is a critical structural component in the ultra-high acceleration macro–micro motion platform, enabling precise positioning across multiple scales. However, under high-frequency start–stop cycles and prolonged multi-condition operation, it is prone to fatigue damage induced by random vibrations, which poses [...] Read more.
The flexible positioning platform is a critical structural component in the ultra-high acceleration macro–micro motion platform, enabling precise positioning across multiple scales. However, under high-frequency start–stop cycles and prolonged multi-condition operation, it is prone to fatigue damage induced by random vibrations, which poses a threat to system reliability. This study proposes a method for evaluating and optimizing the platform’s performance under random vibration based on power spectral density (PSD) analysis. In accordance with the IEC 60068-2-64 standard, representative load spectra from Tables A.8 and A.6 were selected as excitation inputs. Frequency-domain analyses of stress, strain, and displacement were conducted using ANSYS Workbench 2022R1 in conjunction with the nCode platform, incorporating the Gaussian three-sigma probability interval. The results reveal that stress and deformation are highly concentrated in the hinge region, indicating a structural vulnerability. Fatigue life predictions were carried out using the Dirlik method and Miner’s linear damage rule under various PSD loading conditions. The findings demonstrate that hinge stiffness is a key factor influencing vibration resistance and service life. This research provides theoretical support for the design optimization of flexible structures operating in complex random vibration environments. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

35 pages, 7433 KB  
Article
Post-Fire Forest Pulse Recovery: Superiority of Generalized Additive Models (GAM) in Long-Term Landsat Time-Series Analysis
by Nima Arij, Shirin Malihi and Abbas Kiani
Sensors 2026, 26(2), 493; https://doi.org/10.3390/s26020493 - 12 Jan 2026
Viewed by 91
Abstract
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) [...] Read more.
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) with Otsu thresholding. Recovery to pre-fire baseline levels was modeled using linear, logistic, locally estimated scatterplot smoothing (LOESS), and generalized additive models (GAM), and their performance was compared using multiple metrics. The results indicated rapid recovery of Australian forests to baseline levels, whereas this was not the case for forests in the United States. Among climatic factors, temperature was the dominant parameter in Australia (Spearman ρ = 0.513, p < 10−8), while no climatic variable significantly influenced recovery in California. Methodologically, GAM consistently performed best in both regions due to its success in capturing multiphase and heterogeneous recovery patterns, yielding the lowest values of AIC (United States: 142.89; Australia: 46.70) and RMSE_cv (United States: 112.86; Australia: 2.26). Linear and logistic models failed to capture complex recovery dynamics, whereas LOESS was highly sensitive to noise and unstable for long-term prediction. These findings indicate that post-fire recovery is inherently nonlinear and ecosystem-specific and that simple models are insufficient for accurate estimation, with GAM emerging as an appropriate method for assessing vegetation recovery using remote sensing data. This study provides a transferable approach using remote sensing and GAM to monitor forest resilience under accelerating global fire regimes. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

20 pages, 12987 KB  
Article
Seismic Responses in Shaking Table Tests of Spatial Crossing Tunnels
by Zhiqiang Lv, Jiacheng Li and Jiaxu Jin
Buildings 2026, 16(2), 312; https://doi.org/10.3390/buildings16020312 - 11 Jan 2026
Viewed by 109
Abstract
To study the complex dynamic response characteristics of spatial crossing tunnels under seismic loads, shaking table model tests were carried out for typical spatial parallel, orthogonal, and oblique crossing tunnels. The propagation and energy distribution characteristics of seismic waves were quantitatively analyzed according [...] Read more.
To study the complex dynamic response characteristics of spatial crossing tunnels under seismic loads, shaking table model tests were carried out for typical spatial parallel, orthogonal, and oblique crossing tunnels. The propagation and energy distribution characteristics of seismic waves were quantitatively analyzed according to the fundamental frequency, acceleration, and strain response of the system. The results show the following: the addition of a tunnel structure significantly reduces the natural frequency of the system. In spatial crossing tunnel engineering, the axial acceleration responses of the arch top and arch bottom of the tunnel both exhibit the characteristic of a linear distribution, presenting a ‘linear’ shape. For spatial parallel-type and spatial orthogonal-type tunnels, the peak acceleration at the same measurement point of the overcrossing tunnel under the same working condition is generally greater than that of the undercrossing tunnel. However, for the spatial oblique intersection-type structure, the result is just the opposite, that is, the peak acceleration of the overcrossing tunnel is generally less than that of the undercrossing tunnel. For spatial crossing tunnels, unlike the amplification effect of acceleration in a single tunnel, due to the reflection and refraction of seismic waves between the two tunnels, a ‘superposition effect’ of acceleration is generated in space, resulting in an abnormal increase in the acceleration response within the crossing section, which is prone to becoming a weak link in the seismic resistance of the tunnel structure. The strain response of both spatially parallel and orthogonal overcrossing tunnels is greater at the central section than that of undercrossing tunnels and less on both sides. The strain response of the spatial oblique intersection-type overcrossing tunnel is generally greater than that of the undercrossing tunnel. Full article
(This article belongs to the Special Issue Advanced Studies in Structure Materials—2nd Edition)
Show Figures

Figure 1

18 pages, 3491 KB  
Article
Stationary State Recognition of a Mobile Platform Based on 6DoF MEMS Inertial Measurement Unit
by Marcin Bogucki, Waldemar Samociuk, Paweł Stączek, Mirosław Rucki, Arturas Kilikevicius and Radosław Cechowicz
Appl. Sci. 2026, 16(2), 729; https://doi.org/10.3390/app16020729 - 10 Jan 2026
Viewed by 145
Abstract
The article presents the analytic method for real-time detection of the stationary state of a vehicle based on information retrieved from 6 DoF IMU sensor. Reliable detection of stillness is essential for the application of resetting the inertial sensor’s output bias, called Zero [...] Read more.
The article presents the analytic method for real-time detection of the stationary state of a vehicle based on information retrieved from 6 DoF IMU sensor. Reliable detection of stillness is essential for the application of resetting the inertial sensor’s output bias, called Zero Velocity Update method. It is obvious that the signal from the strapped on inertial sensor differs while the vehicle is stationary or moving. Effort was then made to find a computational method that would automatically discriminate between both states with possibly small impact on the vehicle embedded controller. An algorithmic step-by-step method for building, optimizing, and implementing a diagnostic system that detects the vehicle’s stationary state was developed. The proposed method adopts the “Mahalanobis Distance” quantity widely used in industrial quality assurance systems. The method transforms (fuses) information from multiple diagnostic variables (including linear accelerations and angular velocities) into one scalar variable, expressing the degree of deviation in the robot’s current state from the stationary state. Then, the method was implemented and tested in the dead reckoning navigation system of an autonomous wheeled mobile robot. The method correctly classified nearly 93% of all stationary states of the robot and obtained only less than 0.3% wrong states. Full article
(This article belongs to the Special Issue Recent Advances and Future Challenges in Manufacturing Metrology)
Show Figures

Figure 1

25 pages, 5130 KB  
Article
Interpretable Biomechanical Feature Selection for VR Exercise Assessment Using SHAP and LDA
by Urszula Czajkowska, Magdalena Żuk, Michał Popek and Celina Pezowicz
Sensors 2026, 26(2), 464; https://doi.org/10.3390/s26020464 - 10 Jan 2026
Viewed by 189
Abstract
Virtual reality (VR) technologies are increasingly applied in rehabilitation, offering interactive physical and spatial exercises. A major challenge remains the objective assessment of human movement quality (HMQA). This study aimed to identify biomechanical features differentiating correct and incorrect execution of a lateral lunge [...] Read more.
Virtual reality (VR) technologies are increasingly applied in rehabilitation, offering interactive physical and spatial exercises. A major challenge remains the objective assessment of human movement quality (HMQA). This study aimed to identify biomechanical features differentiating correct and incorrect execution of a lateral lunge and to determine the minimal number of sensors required for reliable VR-based motion analysis, prioritising interpretability. Thirty-two healthy adults (mean age: 26.4 ± 8.5 years) performed 211 repetitions recorded with the HTC Vive Tracker system (7 sensors + headset). Repetitions were classified by a physiotherapist using video observation and predefined criteria. The analysis included joint angles, angular velocities and accelerations, and Euclidean distances between 28 sensor pairs, evaluated with Linear Discriminant Analysis (LDA) and SHapley Additive exPlanations (SHAP). Angular features achieved higher LDA performance (F1 = 0.89) than distance-based features (F1 = 0.78), which proved more stable and less sensitive to calibration errors. Comparison of SHAP and LDA showed high agreement in identifying key features, including hip flexion, knee rotation acceleration, and spatial relations between headset and foot or shank sensors. The findings indicate that simplified sensor configurations may provide reliable diagnostic information, highlighting opportunities for interpretable VR-based rehabilitation systems in home and clinical settings. Full article
Show Figures

Figure 1

19 pages, 5832 KB  
Article
Joint PS–SBAS Time-Series InSAR for Sustainable Urban Infrastructure Management: Tunnel Subsidence Mechanisms in Sanya, China
by Jun Hu, Zihan Song, Yamin Zhao, Kai Wei, Bing Liu and Qiong Liu
Sustainability 2026, 18(2), 688; https://doi.org/10.3390/su18020688 - 9 Jan 2026
Viewed by 200
Abstract
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation [...] Read more.
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation along the Sanya Estuary Channel tunnel (China) using Permanent Scatterer InSAR (PS-InSAR) and Small Baseline Subset InSAR (SBAS-InSAR). The two approaches reveal a consistent subsidence hotspot at Tunnel Section D (DK0+000–DK0+330), while most of the corridor remains within ±5 mm/a. The line-of-sight deformation rates range from −24 to 17.7 mm/year (PS-InSAR) and −29.9 to 18.7 mm/a (SBAS-InSAR). Time-series analysis at representative points in Section D indicates a maximum cumulative settlement of −75.7 mm and a clear acceleration after May 2023. By integrating the deformation results with geological reports, construction logs and rainfall records, we infer that compressible marine clays and interbedded sand/aquifer zones control the hotspot, whereas excavation/dewatering and rainfall-related groundwater fluctuations further promote consolidation. The results provide a practical basis for subsidence risk screening and monitoring prioritization for estuary-crossing infrastructure in coastal soft-soil settings. From a sustainability perspective, the proposed joint PS–SBAS InSAR framework provides a scalable and cost-effective tool for continuous deformation surveillance, supporting preventive maintenance and risk-informed management of urban underground infrastructure. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

16 pages, 2077 KB  
Article
Cross Comparison Between Thermal Cycling and High Temperature Stress on I/O Connection Elements
by Mamta Dhyani, Tsuriel Avraham, Joseph B. Bernstein and Emmanuel Bender
Micromachines 2026, 17(1), 88; https://doi.org/10.3390/mi17010088 - 9 Jan 2026
Viewed by 211
Abstract
This work examines resistance drift in FPGA I/O paths subjected to combined electrical and thermal stress, using a Xilinx Spartan-6 device as a representative platform. A multiplexed measurement approach was employed, in which multiple I/O pins were externally shorted and sequentially activated, enabling [...] Read more.
This work examines resistance drift in FPGA I/O paths subjected to combined electrical and thermal stress, using a Xilinx Spartan-6 device as a representative platform. A multiplexed measurement approach was employed, in which multiple I/O pins were externally shorted and sequentially activated, enabling precise tracking of voltage, current, and effective series resistance over time, under controlled bias conditions. Two accelerated stress modes were investigated: high-temperature dwell in the range of 80–120 °C and thermal cycling between 80 and 140 °C. Both stress modes exhibited similar sub-linear (power-law) time dependence on resistance change, indicating cumulative degradation behavior. However, Arrhenius analysis revealed a strong contrast in effective activation energy: approximately 0.62 eV for high-temperature dwell and approximately 1.3 eV for thermal cycling. This divergence indicates that distinct physical mechanisms dominate under each stress regime. The lower activation energy is consistent with electrically and thermally driven on-die degradation within the FPGA I/O macro, including bias-related aging of output drivers and pad-level structures. In contrast, the higher activation energy observed under thermal cycling is characteristic of diffusion- and creep-dominated thermo-mechanical damage in package-level interconnects, such as solder joints. These findings demonstrate that resistance-based monitoring of FPGA I/O paths can discriminate between device-dominated and package-dominated aging mechanisms, providing a practical foundation for reliability assessment and self-monitoring methodologies in complex electronic systems. Full article
(This article belongs to the Special Issue Emerging Packaging and Interconnection Technology, Second Edition)
Show Figures

Figure 1

24 pages, 3255 KB  
Article
Research on Drought Stress Detection in the Seedling Stage of Yunnan Large-Leaf Tea Plants Based on Biomimetic Vision and Chlorophyll Fluorescence Imaging Technology
by Baijuan Wang, Weihao Liu, Xiaoxue Guo, Jihong Zhou, Xiujuan Deng, Shihao Zhang and Yuefei Wang
Biomimetics 2026, 11(1), 56; https://doi.org/10.3390/biomimetics11010056 - 8 Jan 2026
Viewed by 213
Abstract
To address the issue of drought level confusion in the detection of drought stress during the seedling stage of the Yunnan large-leaf tea variety using the traditional YOLOv13 network, this study proposes an improved version of the network, MC-YOLOv13-L, based on animal vision. [...] Read more.
To address the issue of drought level confusion in the detection of drought stress during the seedling stage of the Yunnan large-leaf tea variety using the traditional YOLOv13 network, this study proposes an improved version of the network, MC-YOLOv13-L, based on animal vision. With the compound eye’s parallel sampling mechanism at its core, Compound-Eye Apposition Concatenation optimization is applied in both the training and inference stages. Simulating the environmental information acquisition and integration mechanism of primates’ “multi-scale parallelism—global modulation—long-range integration,” multi-scale linear attention is used to optimize the network. Simulating the retinal wide-field lateral inhibition and cortical selective convergence mechanisms, CMUNeXt is used to optimize the network’s backbone. To further improve the localization accuracy of drought stress detection and accelerate model convergence, a dynamic attention process simulating peripheral search, saccadic focus, and central fovea refinement in primates is used. Inner-IoU is applied for targeted improvement of the loss function. The testing results from the drought stress dataset (324 original images, 4212 images after data augmentation) indicate that, in the training set, the Box Loss, Cls Loss, and DFL Loss of the MC-YOLOv13-L network decreased by 5.08%, 3.13%, and 4.85%, respectively, compared to the YOLOv13 network. In the validation set, these losses decreased by 2.82%, 7.32%, and 3.51%, respectively. On the whole, the improved MC-YOLOv13-L improves the accuracy, recall rate and mAP@50 by 4.64%, 6.93% and 4.2%, respectively, on the basis of only sacrificing 0.63 FPS. External validation results from the Laobanzhang base in Xishuangbanna, Yunnan Province, indicate that the MC-YOLOv13-L network can quickly and accurately capture the drought stress response of tea plants under mild drought conditions. This lays a solid foundation for the intelligence-driven development of the tea production sector and, to some extent, promotes the application of bio-inspired computing in complex ecosystems. Full article
(This article belongs to the Special Issue Artificial Intelligence-Based Bio-Inspired Computer Vision System)
Show Figures

Figure 1

24 pages, 7136 KB  
Article
Extended Kalman Filter-Enhanced LQR for Balance Control of Wheeled Bipedal Robots
by Renyi Zhou, Yisheng Guan, Tie Zhang, Shouyan Chen, Jingfu Zheng and Xingyu Zhou
Machines 2026, 14(1), 77; https://doi.org/10.3390/machines14010077 - 8 Jan 2026
Viewed by 148
Abstract
With the rapid development of mobile robotics, wheeled bipedal robots, which combine the terrain adaptability of legged robots with the high mobility of wheeled systems, have attracted increasing research attention. To address the balance control problem during both standing and locomotion while reducing [...] Read more.
With the rapid development of mobile robotics, wheeled bipedal robots, which combine the terrain adaptability of legged robots with the high mobility of wheeled systems, have attracted increasing research attention. To address the balance control problem during both standing and locomotion while reducing the influence of noise on control performance, this paper proposes a balance control framework based on a Linear Quadratic Regulator integrated with an Extended Kalman Filter (KLQR). Specifically, a baseline LQR controller is designed using the robot’s dynamic model, where the control input is generated in the form of wheel-hub motor torques. To mitigate measurement noise and suppress oscillatory behavior, an Extended Kalman Filter is applied to smooth the LQR torque output, which is then used as the final control command. Filtering experiments demonstrate that, compared with median filtering and other baseline methods, the proposed EKF-based approach significantly reduces high-frequency torque fluctuations. In particular, the peak-to-peak torque variation is reduced by more than 60%, and large-amplitude torque spikes observed in the baseline LQR controller are effectively eliminated, resulting in continuous and smooth torque output. Static balance experiments show that the proposed KLQR algorithm reduces the pitch-angle oscillation amplitude from approximately ±0.03 rad to ±0.01 rad, corresponding to an oscillation reduction of about threefold. The estimated RMS value of the pitch angle is reduced from approximately 0.010 rad to 0.003 rad, indicating improved convergence and steady-state stability. Furthermore, experiments involving constant-speed straight-line locomotion and turning indicate that the KLQR algorithm maintains stable motion with velocity fluctuations limited to within ±0.05 m/s. The lateral displacement deviation during locomotion remains below 0.02 m, and no abrupt acceleration or deceleration is observed throughout the experiments. Overall, the results demonstrate that applying Extended Kalman filtering to smooth the control torque effectively improves the smoothness and stability of LQR-based balance control for wheeled bipedal robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop