Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = lignocellulosic biomass waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 - 4 Aug 2025
Viewed by 130
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

30 pages, 2603 KiB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Viewed by 289
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

12 pages, 4246 KiB  
Article
Theoretical Modeling of Pathways of Transformation of Fructose and Xylose to Levulinic and Formic Acids over Single Na Site in BEA Zeolite
by Izabela Czekaj and Weronika Grzesik
Catalysts 2025, 15(8), 735; https://doi.org/10.3390/catal15080735 - 1 Aug 2025
Viewed by 242
Abstract
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary [...] Read more.
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary knowledge to better plan the structure of zeolite. In this article, we focus on the theoretical modeling of two carbohydrates, representing C5 and C6, namely xylose and fructose, into levulinic acid (LE) and formic acid (FA). The modeling was carried out with the participation of Na-BEA zeolite in a hierarchical form, due to the large size of the carbohydrates. The density functional theory (DFT) method (StoBe program) was used, employing non-local generalized gradient-corrected functions according to Perdew, Burke, and Ernzerhof (RPBE) to account for electron exchange and correlation and using the nudged elastic band (NEB) method to determine the structure and energy of the transition state. The modeling was performed using cluster representations of hierarchical Na-Al2Si12O39H23 and ideal Al2Si22O64H34 beta zeolite. However, to accommodate the size of the carbohydrate molecules in reaction paths, only hierarchical Na-Al2Si12O39H23 was used. Sodium ions were positioned above the aluminum centers within the zeolite framework. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

20 pages, 8499 KiB  
Article
Characterization of Low-Temperature Waste-Wood-Derived Biochar upon Chemical Activation
by Bilge Yilmaz, Vasiliki Kamperidou, Serhatcan Berk Akcay, Turgay Kar, Hilal Fazli and Temel Varol
Forests 2025, 16(8), 1237; https://doi.org/10.3390/f16081237 - 27 Jul 2025
Viewed by 249
Abstract
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus [...] Read more.
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus sylvestris L.) and beech (Fagus sylvatica) after low-temperature pyrolysis at 270 °C, followed by chemical activation using zinc chloride. The resulting materials were thoroughly analyzed in terms of their chemical composition (FTIR), thermal behavior (TGA/DTG), structural morphology (SEM and XRD), elemental analysis, and particle size distribution. The successful modification of raw biomass into carbon-rich structures of increased aromaticity and thermal stability was confirmed. Particle size analysis revealed that the activated carbon of Fagus sylvatica (FSAC) exhibited a monomodal distribution, indicating high homogeneity, whereas Pinus sylvestris-activated carbon showed a distinct bimodal distribution. This heterogeneity was supported by elemental analysis, revealing a higher inorganic content in pine-activated carbon, likely contributing to its dimensional instability during activation. These findings suggest that the uniform morphology of beech-activated carbon may be advantageous in filtration and adsorption applications, while pine-activated carbon’s heterogeneous structure could be beneficial for multifunctional systems requiring variable pore architectures. Overall, this study underscored the potential of chemically activated biochar from lignocellulosic residues for customized applications in environmental and material science domains. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 460
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 849
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 2421 KiB  
Article
Selective Microwave Pretreatment of Biomass Mixtures for Sustainable Energy Production
by Raimonds Valdmanis and Maija Zake
Energies 2025, 18(14), 3677; https://doi.org/10.3390/en18143677 - 11 Jul 2025
Viewed by 221
Abstract
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device [...] Read more.
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device was used to provide the thermochemical conversion of biomass blends of different compositions, analyzing the synergy of the effects of thermal and chemical interaction between the components on the yield and thermochemical conversion of volatiles, responsible for producing heat energy at various stages of flame formation. To control the thermal decomposition of the biomass, improving the flame characteristics and the produced heat, a selective pretreatment of blends using microwaves (2.45 GHz) was achieved by varying the temperature of microwave pretreatment. Assessing correlations between changes in the main characteristics of pretreated blends (elemental composition and heating value) on the produced heat and composition of products suggests that selective MW pretreatment of biomass blends activates synergistic effects of thermal and chemical interaction, enhancing the yield and combustion of volatiles with a correlating increase in produced heat energy, thus promoting the wider use of renewable biomass resources for sustainable energy production by limiting the use of fossil fuels for heat-energy production and the formation of GHG emissions. Full article
(This article belongs to the Special Issue Wood-Based Bioenergy: 2nd Edition)
Show Figures

Figure 1

24 pages, 1711 KiB  
Review
Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates
by Cristiano Fragassa and Carlo Santulli
J. Compos. Sci. 2025, 9(7), 356; https://doi.org/10.3390/jcs9070356 - 8 Jul 2025
Viewed by 434
Abstract
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with [...] Read more.
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with the metal. Another question may concern possible moisture penetration in the structure, which may reduce environmental resistance and result in local degradation, such as wear or even corrosion. Despite these limitations, this hybridization enjoys increasing success. Two forms are possibly available for this: introduction into metal matrix composites (MMCs), normally in the form of char from biomass combustion, or laminate reinforcement as the core for fiber metal laminates (FMLs). These two cases are treated alongside each other in this review, first because they may represent two combined options for recycling the same biomass into high-profile structures, aimed primarily at the aerospace industry. Moreover, as discussed above, the effect on the aluminum alloy can be compared and the forces to which they are subjected might be of a similar type, most particularly in terms of their hardness and impact. Both cases considered, MMCs and FMLs involved over time many lignocellulosic residues, starting from the most classical bast species, i.e., flax, hemp, sisal, kenaf, etc., and extending also to less diffuse ones, especially in view of the introduction of biomass as secondary, or residual, raw materials. Full article
Show Figures

Figure 1

21 pages, 2754 KiB  
Article
Repurposing Torrefied Biomass as a Novel Feedstock for Microbial Bioprocessing—A Proof-of-Concept of Low-Cost Biosurfactant Production
by Anjana Hari, Vahur Rooni, Udayakumar Veerabagu, Shiplu Sarker, Alar Konist and Timo Kikas
Polymers 2025, 17(13), 1808; https://doi.org/10.3390/polym17131808 - 29 Jun 2025
Viewed by 401
Abstract
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a [...] Read more.
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a low-value final product as well as the dead end of the biomass value chain. Herein, we demonstrate the proof-of-concept for the utilisation of torrefaction as a pretreatment to convert low-value wood waste into biosurfactants, a high-value specialty biochemical. Wood waste was torrefied at 225 °C, 250 °C, 275 °C, and 300 °C and physicochemically characterised using proximate and ultimate analyses, FTIR, XRD, TGA–DTG, and SEM–EDX to assess its suitability as fermentation feedstock. Aspen waste torrefied at temperatures less than 250 °C was directly utilised by Burkholderia thailandensis DSM 13276 via semi-solid-state fermentation to yield biosurfactants, and 225 °C was selected for further experiments as it resulted in the production of biosurfactants which reduced the surface tension of the production medium to 36.8 mN/m and had an emulsification index of 64.1%. Tension and emulsification activities decreased with the increase in torrefaction temperature. The biosurfactant derived from torrefaction at 225 °C formed highly stable emulsions with diesel oil (lasting >40 days), in addition to low interfacial tension, suggesting potential applications in diesel bioremediation. This integrated, chemical-free strategy offers an alternative application for torrefied wood waste as well as a feasible solution for the cost-effective chemical-free production of biosurfactants, incorporating circular economy principles. Full article
Show Figures

Graphical abstract

20 pages, 2995 KiB  
Article
Hydrodynamic Cavitation-Assisted Hydrothermal Separation: A Pathway for Valorizing Lignocellulosic Biomass into Biopolymers and Extractives
by Md. Bayazid Ahmed and Souman Rudra
Processes 2025, 13(7), 2041; https://doi.org/10.3390/pr13072041 - 27 Jun 2025
Viewed by 735
Abstract
Lignocellulosic biomass is a sustainable renewable resource for producing biopolymers, chemicals, and high-value compounds. This study proposes a biomass valorization concept that combines hydrodynamic cavitation (HC) and hydrothermal separation (HTS) to produce high-value products. Aspen Plus software was used in this study to [...] Read more.
Lignocellulosic biomass is a sustainable renewable resource for producing biopolymers, chemicals, and high-value compounds. This study proposes a biomass valorization concept that combines hydrodynamic cavitation (HC) and hydrothermal separation (HTS) to produce high-value products. Aspen Plus software was used in this study to develop the first simulation-driven integration of HC and HTS for biomass valorization in the biorefinery concept. The overall separation efficiency and component yield for standalone HC and HTS processes agreed with the experimental data. The findings from the simulation results indicate that the coupled processes yielded a significant enhancement in overall separation efficiency. This coupling resulted in a 24.5% increase compared to a single HC process and 16.75% higher efficiency than a single HTS process for sugarcane bagasse. The sensitivity analysis showed that incrementing HTS temperature and reaction time results in higher component yield and overall separation efficiency. The increase in the S/L ratio demonstrated a higher component yield in the process downstream, whereas the efficiency remained approximately the same. The effect of the HTS pressure was negligible on component yield and overall separation efficiency. Moreover, this study identified the optimal process parameters of the coupled process. At the optimal condition, quadratic models showed an overall separation efficiency of 79.41 ± 2.71% for the HC-HTS coupled process. This approach promises superior biomass utilization over traditional processes, minimizing waste and environmental impact while expanding the potential applications of biomass. Full article
(This article belongs to the Special Issue Process Intensification towards Sustainable Biorefineries)
Show Figures

Figure 1

25 pages, 1629 KiB  
Review
Biochemical Processes of Lignocellulosic Biomass Conversion
by Stanisław Ledakowicz
Energies 2025, 18(13), 3353; https://doi.org/10.3390/en18133353 - 26 Jun 2025
Viewed by 396
Abstract
After a brief characterisation of lignocellulosic biomass (LCB) in terms of its biochemical structure and the pretreatment techniques used to disrupt lignin structure and decrystallise and depolymerise cellulose, this review considers five main pathways for biochemical biomass conversion: starting with anaerobic digestion to [...] Read more.
After a brief characterisation of lignocellulosic biomass (LCB) in terms of its biochemical structure and the pretreatment techniques used to disrupt lignin structure and decrystallise and depolymerise cellulose, this review considers five main pathways for biochemical biomass conversion: starting with anaerobic digestion to convert various LCB feedstocks into bioproducts; considering the integration of biochemical and thermochemical processes, syngas fermentation, which has been recently developed for biofuel and chemical production, is reviewed; the production of 2G bioethanol and biobutanol from LCB waste is discussed; the literature on biohydrogen production by dark fermentation, photofermentation, and bioelectrochemical processes using microbial electrolysis cells as well as hybrid biological processes is reviewed. The conclusions and future prospects of integrating biochemical and thermochemical conversion processes of biomass are discussed and emphasised. Full article
Show Figures

Figure 1

15 pages, 3493 KiB  
Article
A Pathway for Sugar Production from Agricultural Waste Catalyzed by Sulfonated Magnetic Carbon Microspheres
by Maoru Xu, Yanfeng Duan, Hongfu Li, Shoulin He, Xingyu Zi, Yanting Zhao, Cheng Jiao and Xiaoyun Li
Molecules 2025, 30(13), 2675; https://doi.org/10.3390/molecules30132675 - 20 Jun 2025
Viewed by 286
Abstract
Lignocellulose is an important renewable biomass resource. However, at present, there is a lack of efficient and environmentally friendly catalytic systems that can selectively convert lignocellulose components into high-value sugars, and the value realization of agricultural waste (such as straw) remains challenging. Carbon-based [...] Read more.
Lignocellulose is an important renewable biomass resource. However, at present, there is a lack of efficient and environmentally friendly catalytic systems that can selectively convert lignocellulose components into high-value sugars, and the value realization of agricultural waste (such as straw) remains challenging. Carbon-based solid acids are used in the valorization of biomass due to their simple preparation and excellent catalytic performance. In this study, the magnetic carbon microspheres catalyst was prepared using concentrated sulfuric acid and hydroxyethyl sulfonic acid as sulfonating agents. Two sulfonation catalysts were applied to the hydrolysis of typical agricultural waste (rice straw). The performance of catalyst conversion to reducing sugar was compared, and the glucose yield was lower than 30%. The sulfonation catalyst of hydroxyethyl sulfonic acid obtained a higher yield of pentose (76.67%) than that of concentrated sulfuric acid (74.25%) in 110 min. The optimal reaction conditions were found: substrate was 0.04 g straw, catalyst was 0.04 g, H2O/γ-valerolactone ratio was 8:2 in the solvent, and the reaction time was 110 min at 140 °C. Under these conditions, the sulfonation properties of hydroxyethyl sulfonic acid as a green sulfonating agent are similar to those of concentrated sulfuric acid. Its excellent catalytic performance is attributed to the medium B/L acid density ratio on the catalyst surface. In addition, the prepared catalyst can be effectively separated from the reaction residue in the catalytic system. This work provides a green catalytic system for the high-value utilization of agricultural waste from renewable carbon sources. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

23 pages, 1405 KiB  
Review
Biogas Production from Organic Waste in the Forestry and Agricultural Context: Challenges and Solutions for a Sustainable Future
by Luisa Patricia Uranga-Valencia, Sandra Pérez-Álvarez, Rosalío Gabriel-Parra, Jesús Alicia Chávez-Medina, Marco Antonio Magallanes-Tapia, Esteban Sánchez-Chávez, Ezequiel Muñoz-Márquez, Samuel Alberto García-García, Joel Rascón-Solano and Luis Ubaldo Castruita-Esparza
Energies 2025, 18(12), 3174; https://doi.org/10.3390/en18123174 - 17 Jun 2025
Viewed by 681
Abstract
Biogas produced from agricultural and forestry waste is emerging as a strategic and multifunctional solution to address climate change, inefficient waste management, and the need for renewable energy by transforming large volumes of biomass. Global estimates indicate that approximately 1.3 billion tons of [...] Read more.
Biogas produced from agricultural and forestry waste is emerging as a strategic and multifunctional solution to address climate change, inefficient waste management, and the need for renewable energy by transforming large volumes of biomass. Global estimates indicate that approximately 1.3 billion tons of waste is produced each year for these sectors; this waste is processed through anaerobic digestion, allowing it to be transformed into energy and biofertilizers. This reduces greenhouse gas emissions by up to 90%, promotes rural development, improves biodiversity, and prevents environmental risks, such as forest fires. However, despite its high global technical potential, which is estimated at 8000 TWh per year, its use remains limited as a result of its high initial costs, low efficiency in relation to lignocellulosic waste, and weak regulatory frameworks, especially in countries like Mexico, which use less than 5% of their available biomass. In response, emerging technologies, such as co-digestion with microalgae, integrated biorefineries, and artificial intelligence tools, are opening up new avenues for overcoming these barriers under a comprehensive approach that combines science, technology, and community participation. Therefore, biogas is positioned as a key pillar for a circular, fair, and resilient bioeconomy, promoting energy security and advancing toward a just and environmentally responsible future. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

21 pages, 710 KiB  
Review
Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective
by Reckson Kamusoko and Patrick Mukumba
Fermentation 2025, 11(6), 338; https://doi.org/10.3390/fermentation11060338 - 11 Jun 2025
Viewed by 1483
Abstract
Maize (Zea mays) is one of the most cultivated crops in South Africa, serving as a staple food, stock feed, and a key element in several industrial applications. It contributes significantly to the growth of the South African agricultural economy. The [...] Read more.
Maize (Zea mays) is one of the most cultivated crops in South Africa, serving as a staple food, stock feed, and a key element in several industrial applications. It contributes significantly to the growth of the South African agricultural economy. The cultivation of maize generates a large amount of agricultural waste, mainly in the form of maize stover (MS), which encapsulates leaves, stalks, cobs, and husks. Approximately 5.15 metric tons (Mt) yr−1 of MS are generated in South Africa. This corresponds to an energy potential of 94 PJ. There is immense potential to surpass the annual yield of MS by 126% up to about 11.66 Mt yr−1 through practices such as zero tillage and improved agricultural production systems. MS may pose a serious threat to the environment if not managed in a sustainable and eco-friendly manner. Valorization of MS into biogas presents an excellent opportunity to effectively control biomass waste while contributing to renewable energy production and mitigating dependence on depleting fossil fuels. However, MS continues to be overlooked as a sustainable bioenergy resource due to its lignocellulosic structure. This study explores the potential of converting MS into biogas for heat and power generation, addressing both energy needs and waste management in South Africa. The purpose is to provide knowledge that will inform researchers, innovators, industrialists, policy makers, investors, and other key stakeholders interested in renewable energy systems. Collaborative efforts among multiple stakeholders are vital to leverage biogas as a technology to promote socio-economic development in South Africa. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

34 pages, 2940 KiB  
Review
Membrane Technologies for Separating Volatile Fatty Acids Produced Through Arrested Anaerobic Digestion: A Review
by Angana Chaudhuri, Budi Mandra Harahap and Birgitte K. Ahring
Clean Technol. 2025, 7(2), 48; https://doi.org/10.3390/cleantechnol7020048 - 11 Jun 2025
Cited by 1 | Viewed by 1109
Abstract
Volatile fatty acids (VFAs) are important precursors used in various industrial applications. Generally, these carboxylic acids are produced from oil, but recently focus has been on the development of biological methods for substituting the fossil raw material with organic waste and lignocellulosic materials. [...] Read more.
Volatile fatty acids (VFAs) are important precursors used in various industrial applications. Generally, these carboxylic acids are produced from oil, but recently focus has been on the development of biological methods for substituting the fossil raw material with organic waste and lignocellulosic materials. This is possible by stopping the anaerobic digestion process at the level of VFA through elimination of the final step of methanogenesis. The primary barrier to commercial viability of VFA production is the costly downstream processing needed for separation of the VFA’s. Existing separation techniques, such as adsorption and liquid–liquid extraction, achieve nearly complete VFA recovery from fermentation broths but require substantial chemical inputs and extensive preprocessing. In contrast, membrane-based separation processes could potentially overcome the need for chemical additions and provide a more sustainable way of separation. In this review we examine the current state of the art of membrane technology for VFA separation. We assessed and compared the capital and operational costs associated with different membrane technologies and identified the major hurdles impeding their commercialization. Furthermore, we examine hybrid and emerging membrane technologies that previous studies have suggested to reduce both energy and capital costs. Finally, we present future perspectives for the development of cost-effective membrane technologies suitable for industrial-scale applications. Full article
Show Figures

Graphical abstract

Back to TopTop