energies-logo

Journal Browser

Journal Browser

New Challenges in Biogas Production from Organic Waste

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A4: Bio-Energy".

Deadline for manuscript submissions: 15 October 2025 | Viewed by 1983

Special Issue Editors


E-Mail Website
Guest Editor
Department of Geodesy and Spatial Information, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
Interests: renewable energy sources; anaerobic digestion; biogas; biomethane; neural modelling; ANN; geographic information systems (GIS); spatial planning; mapping

E-Mail Website
Guest Editor
Department of Environmental Engineering, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
Interests: biogas; anaerobic digestion; substrates for biogas plants; energy plants cropping; digestate from biogas plant; biomass resources; impact of biogas plants on the environment

Special Issue Information

Dear Colleagues,

This Special Issue in Energies, entitled “New Challenges in Biogas Production from Organic Waste”, focuses on the recent challenges in applied, laboratory scale, or theoretical research related with the new technical and technological aspects of biogas production, together with its related innovative products (biomethane, biohydrogen, biomethanol, and other biofuels).

This Special Issue also focuses on biogas plant operation based on a large spectrum of organic waste, particularly on fermentation process stability, the pre-treatment of substrates (including new methods of destruction and hygienization in the case of biologically dangerous materials), efficient storage periods, and new kinds of biowaste never before (or rarely) used as a substrate for biogas plants.

The editors warmly welcome papers which fit the new “green” policies, cover energetic transformation, where the energetic usage of biowaste is an important element, as well as have a huge potential for real-scale application. This Special Issue is open for the papers related with the modern technologies of waste management (through anaerobic digestion (AD)), with the aspects of GHG and carbon footprint reduction, improvements in a circular economy (on local and/or national levels), as well as analysis of new concepts, technologies, and techniques (including artificial intelligence, e.g., ANN and Geographic Information Systems (GIS)) in AD.

An important aspect of this Special Issue includes the “intelligent” production of electric energy from biowaste in relation with its demand in the electric grid, which especially concerns the development of a demand-driven working mode (fully controllable with the possibility of energy storage in the form of biogas or methane). 

Dr. Patrycja Pochwatka
Prof. Dr. Alina Kowalczyk-Juśko
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biowaste
  • biomass
  • substrates
  • pretreatment methods
  • intelligent energy production
  • biofuels
  • anaerobic digestion
  • bioenergy storage
  • AD processes modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1188 KiB  
Article
Optimization of Straw Particle Size for Enhanced Biogas Production: A Comparative Study of Wheat and Rapeseed Straw
by Kamil Witaszek, Karol Kupryaniuk, Jakub Kupryaniuk, Julia Panasiewicz and Wojciech Czekała
Energies 2025, 18(7), 1794; https://doi.org/10.3390/en18071794 - 2 Apr 2025
Viewed by 275
Abstract
Biogas production from lignocellulosic biomass, such as wheat and rapeseed straw, is an essential strategy for sustainable energy generation. However, the efficiency of anaerobic digestion depends on the physical characteristics of the substrate, particularly the particle size, which influences microbial accessibility and biogas [...] Read more.
Biogas production from lignocellulosic biomass, such as wheat and rapeseed straw, is an essential strategy for sustainable energy generation. However, the efficiency of anaerobic digestion depends on the physical characteristics of the substrate, particularly the particle size, which influences microbial accessibility and biogas yield. This study aims to optimize straw particle size for enhanced methane production by evaluating different fractionation levels. The straw was processed using a hammer mill and separated into three size fractions (2.4 mm, 1 mm) alongside non-separated and finely ground (2 mm) samples. The chemical composition was analyzed using X-ray fluorescence (XRF), and key parameters such as pH, dry matter (DM), and organic dry matter (ODM) were assessed. The results indicated that rapeseed straw had lower pH (6.05) and DM than wheat straw (7.01). Biogas yield analysis demonstrated that methane production varied with particle size. For rapeseed straw, non-separated samples achieved the highest methane yield (132.87 m3 Mg⁻1), whereas for wheat straw, methane yield decreased with increased fragmentation, with the highest yield observed for non-separated material (206.65 m3 Mg⁻1). The carbon-to-nitrogen (C/N) ratio was highest in rapeseed straw (153.82), potentially limiting microbial activity, while finer fractions had more balanced ratios. These findings highlight the importance of mechanical pretreatment in optimizing biogas production and provide insights into improving the efficiency of straw-based anaerobic digestion systems. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

16 pages, 2144 KiB  
Article
Energetic Potential of Tobacco Waste Within Combustion or Anaerobic Digestion
by Patrycja Pochwatka, Alina Kowalczyk-Juśko, Marek Pituła, Andrzej Mazur, Iryna Vaskina and Jacek Dach
Energies 2025, 18(4), 762; https://doi.org/10.3390/en18040762 - 7 Feb 2025
Viewed by 595
Abstract
The growing demand for energy biomass encourages the use of waste and by-products from agriculture. The aim of this study was to assess the suitability of tobacco stalks (TSs) for energy use in the combustion and anaerobic digestion (AD) process, as well as [...] Read more.
The growing demand for energy biomass encourages the use of waste and by-products from agriculture. The aim of this study was to assess the suitability of tobacco stalks (TSs) for energy use in the combustion and anaerobic digestion (AD) process, as well as the technical and environmental effects of energy production from this waste raw material. Laboratory tests were conducted on the energy parameters of TS biomass, the chemical composition of ash from its combustion, and the efficiency and composition of biogas generated during the AD process of TS silage with various silage additives. The tests were conducted in accordance with the standards applicable to biomass fuels. The energy yield and emission reduction obtained by the replacement of conventional energy sources were calculated. The energy parameters of TS were inferior compared to the raw materials most often burned in boilers (wood, straw). The high ash content (7.31% in dry mass) and its chemical composition may adversely affect heating devices. Methane yield from TS silage was lower (18.55–24.67 m3/Mg FM) than from silage from crops grown for biogas plants (i.e., 105 m3/Mg for maize silage). Silage additives improved TS silage quality and methane yield (from 18.55 to 21.71–24.67 m3 CH4/Mg in case of silages with additives. Energy yield and emission reduction were higher in the case of TS combustion, but AD is a process consistent with the circular economy. Both TS energy management processes are in line with the Sustainable Development Goals as they prevent the devaluation of agricultural waste, providing a valuable resource for bioenergy. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

15 pages, 796 KiB  
Article
The Effect of Corn Ensiling Methods on Digestibility and Biogas Yield
by Karol Kupryaniuk, Kamil Witaszek, Iryna Vaskina, Sebastian Filipek-Kaźmierczak, Jakub Kupryaniuk, Piotr Sołowiej and Jacek Dach
Energies 2025, 18(1), 188; https://doi.org/10.3390/en18010188 - 4 Jan 2025
Viewed by 680
Abstract
This study investigates the impact of different corn silage preparation methods, namely the traditional and Shredlage methods, on digestibility and biogas yield in anaerobic digestion and its nutritional value—the first complex study of its kind. Key parameters of both silage types were analyzed, [...] Read more.
This study investigates the impact of different corn silage preparation methods, namely the traditional and Shredlage methods, on digestibility and biogas yield in anaerobic digestion and its nutritional value—the first complex study of its kind. Key parameters of both silage types were analyzed, including chemical composition, fiber content, and elemental makeup. Methane and biogas production were assessed under standardized fermentation conditions. The results showed that the Shredlage method, characterized by more intensive chopping, led to higher biogas and methane yields per unit of organic dry matter compared to traditional silage. This improvement is attributed to enhanced digestibility due to the lower content of neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude fiber in Shredlage. An elemental analysis revealed slight differences in carbon-to-nitrogen (C/N) ratios, with both silages showing values suitable for efficient fermentation. Despite minor variations in mineral content, Shredlage demonstrated greater efficiency in biogas production, particularly for rapid fermentation processes. The findings underscore the importance of silage preparation techniques in optimizing biogas yield and suggest Shredlage as a superior option for enhancing energy recovery in biogas plants. Future work should explore the economic trade-offs and scalability of these methods. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

Back to TopTop