Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective
Abstract
1. Introduction
2. Maize Stover Generation in South Africa
3. Chemical Composition of Maize Stover
4. Maize Stover to Biogas
4.1. Biogas Value Chain
4.1.1. Feedstock Collection
4.1.2. Feedstock Pretreatment
Pretreatment Method | Advantages | Disadvantages |
---|---|---|
Physical |
|
|
Chemical |
|
|
Biological |
|
|
Combined |
|
|
4.1.3. Anaerobic Digestion
4.1.4. Biogas Utilization
4.1.5. Digestate Waste Management
4.2. Biomethane Potential of Maize Stover
4.3. Biomass Balance
5. Challenges and Future Prospects
5.1. Technical Barriers
5.2. Funding
5.3. Socio-Cultural Issues
5.4. Information and Market Barriers
5.5. Policy and Regulatory Barriers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
BMB | Biomass balance |
BMP | Biomethane potential |
CHP | Combined heat and power |
C/N | Carbon to nitrogen |
GHG | Greenhouse gas |
HRT | Hydraulic retention time |
MS | Maize stover |
Mt | Metric tons |
OLR | Organic loading rate |
R&D | Research and development |
RED | Renewable energy directive |
SS-AD | Solid state anaerobic digestion |
TS | Total solid |
VFAs | Volatile fatty acids |
VS | Volatile solid |
References
- Food and Agricultural Organization of the United Nations (FAO). FAOSTAT Statistical Database; FAO: Rome, Italy, 2024. [Google Scholar]
- Haarhoff, S.T.; Kotzé, T.N.; Swanepoel, P.A. A prospectus for sustainability of rainfed maize production systems in South Africa. Crop Sci. 2020, 60, 14–28. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Ratajczak, I.; Golinski, P.; Janczak, D.; Waskiewicz, A.; Szentner, K.; Wozniak, M. Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process. Energy 2020, 198, 117258. [Google Scholar] [CrossRef]
- Mensah, M.B.; Jumpah, H.; Boadi, N.O.; Awudza, J.A.M. Assessment of quantities and composition of corn stover in Ghana and their conversion into bioethanol. Sci. Afr. 2021, 12, e00731. [Google Scholar] [CrossRef]
- Batidzirai, B.; Valk, M.; Wicke, B.; Junginger, M.; Daioglou, V.; Euler, W.; Faaij, A.P.C. Current and future technical, economic and environmental feasibility of maize and wheat residues supply for biomass energy application: Illustrated for South Africa. Biomass Bioenergy 2016, 92, 106–129. [Google Scholar] [CrossRef]
- Mdhluli, F.T.; Harding, K.G. Comparative life-cycle assessment of maize cobs, maize stover and wheat stalks for the production of electricity through gasification vs traditional coal power electricity in South Africa. Clean. Environ. Syst. 2021, 3, 100046. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Chen, C.; Liu, G.; He, Y.; Liu, X. Biogas production from codigestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour. Technol. 2013, 149, 406–412. [Google Scholar] [CrossRef]
- Kamusoko, R.; Mukumba, P. Potential of wheat straw for biogas production by anaerobic digestion in South Africa: A review. Energies 2024, 17, 4662. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, R.; Wang, B.; Zhang, S. Modeling and optimization of anaerobic digestion of corn stover on biogas production: Initial pH and carbon to nitrogen ratio. Energy Sources A Recovery Util. Environ. Eff. 2017, 39, 1497–1503. [Google Scholar] [CrossRef]
- Wagh, M.S.; Sowjanya, S.; Nath, P.C.; Chakraborty, A.; Amrit, R.; Mishra, B.; Mishra, A.K.; Mohanta, Y.K. Valorization of agro-industrial wastes: Circular bioeconomy and biorefinery process—A sustainable symphony. Process Saf. Environ. Prot. 2024, 183, 708–725. [Google Scholar] [CrossRef]
- Li, X.; Dang, F.; Zhang, Y.; Zou, D.; Yuan, H. Anaerobic digestion performance and mechanism of ammoniation pretreatment of corn stover. Bioresources 2015, 10, 5777–5790. [Google Scholar] [CrossRef]
- Croce, S.; Wei, Q.; D’Imporzano, G.; Dong, R.; Adani, F. Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 2016, 34, 1289–1304. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, M.J.; Mushtaq, M.; Tian, L.; Jiménez-Rodríguez, A.; Rincón, B.; Gilroyed, B.H.; Borja, R. Evaluation and modelling of methane production from corn stover pretreated with various physicochemical techniques. Waste Manag. Res. 2022, 40, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Menardo, S.; Airoldi, G.; Cacciatore, V.; Balsari, P. Potential biogas and methane yield of maize stover fractions and evaluation of some possible stover harvest chains. Biosyst. Eng. 2015, 129, 352–359. [Google Scholar] [CrossRef]
- Kamusoko, R.; Jingura, R.M.; Parawira, W.; Sanyika, W.T. Comparison of pretreatment methods that enhance biomethane production from crop residues—A review. Biofuel Res. J. 2019, 24, 1080–1089. [Google Scholar] [CrossRef]
- Khani, M.F.S.; Akbar, M.; Xu, Z.; Wang, H. A review on the role of pretreatment technologies in the hydrolysis of lignocellulosic biomass of corn stover. Biomass Bioenergy 2021, 155, 106276. [Google Scholar] [CrossRef]
- Dahunsi, S.O. Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components. Bioresour. Technol. 2019, 280, 18–26. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, X.; Li, Z.; Wang, X.; Sun, J. Effects of liquid digestate pretreatment on biogas production for anaerobic digestion of wheat straw. Bioresour. Technol. 2019, 280, 345–351. [Google Scholar] [CrossRef]
- Huang, W.B.; Wachemo, A.C.; Yuan, G.R.; Li, X. Modification of corn stover for improving biodegradability and anaerobic digestion performance by Ceriporiopsis subvermispora. Bioresour. Technol. 2019, 283, 76–85. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment technologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Munoz, C.; Hidalgo, C.; Zapata, M.; Jeison, D.; Riquelme, C.; Rivas, M. Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Appl. Environ. Microbiol. 2014, 80, 4199–4206. [Google Scholar] [CrossRef]
- Vasmara, C.; Cianchetta, S.; Marchetti, R.; Galletti, S. Biogas production from wheat straw pretreated with ligninolytic fungi and codigestion with pig slurry. Environ. Eng. Manag. J. 2015, 14, 1751–1760. [Google Scholar] [CrossRef]
- Shonhiwa, C.; Mapantsela, Y.; Makaka, G.; Mukumba, P.; Shambira, N. Biogas valorization to biomethane for commercialization in South Africa: A Review. Energies 2023, 16, 5272. [Google Scholar] [CrossRef]
- Sidahmed, S.H.; Shuichi, T.; Kavitha, M.S. New methodologies for the optimization of operational parameters of biogas power plants: A review. J. Renew. Energy Environ. 2024, 11, 9–27. [Google Scholar]
- Department Forestry, Fisheries and the Environment (DFFE). Biogas Guidebook for Small- to Medium-Scale Industrial Biogas Plants in South Africa; DFFE: Pretoria, South Africa, 2021; pp. 1–64. [Google Scholar]
- Angouria-Tsorochidou, E.; Seghetta, M.; Trémier, A.; Thomsen, M. Life cycle assessment of digestate post-treatment and utilization. Sci. Total Environ. 2022, 815, 152764. [Google Scholar] [CrossRef] [PubMed]
- Laks, R. The Potential for Electricity Generation from Biogas in South Africa: A Potential Study as Part of the BAPEPSA Project; ECN: Petten, The Netherlands, 2017; Volume 17, pp. 1–34. [Google Scholar]
- Mutungwazi, A.; Mukumba, P.; Makaka, G. Biogas digester types installed in South Africa: A review. Renew. Sustain. Energy. Rev. 2018, 81, 172–180. [Google Scholar] [CrossRef]
- Pordesimo, L.O.; Hame, B.R.; Sokhansanj, S.; Edens, W.C. Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 2005, 28, 366–374. [Google Scholar] [CrossRef]
- Yang, L.; Moran, T.; Han, A. Comparison of operating methods in cartridge anaerobic digestion of corn stover. Bioenerg. Res. 2022, 15, 1225–1231. [Google Scholar] [CrossRef]
- Olugbemide, A.D.; Labunmi, L.; Ifijen, I.H.; Ogungbemide, D.I. Corn stover as substrate for biogas generation and precursor for biosilica production via anaerobic digestion. Tanz. J. Sci. 2020, 46, 807–816. [Google Scholar] [CrossRef]
- Li, Z.; Zhai, H.; Zhang, Y.; Yu, L. Cell morphology and chemical characteristics of corn stover fractions. Ind. Crops Prod. 2012, 37, 130–136. [Google Scholar] [CrossRef]
- Aboagye, D.; Banadda, N.; Kambugu, R.; Seay, J.; Kiggundu, N.; Zziwa, A.; Kabenge, I. Glucose recovery from different corn stover fractions using dilute acid and alkaline pretreatment techniques. J. Ecol. Environ. 2017, 41, 26. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Z.; Shi, Q.; Cheng, Y.; Zhu, W. Methane production from different parts of corn stover via a simple co-culture of an anaerobic fungus and methanogen. Front. Bioeng. Biotechnol. 2020, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Kamusoko, R.; Mukumba, P. Pineapple waste biorefinery: An integrated system for production of biogas and marketable products in South Africa. Biomass 2025, 5, 17. [Google Scholar] [CrossRef]
- Roopnarain, A.; Adeleke, R. Current status, hurdles, and future prospects of biogas digestion technology in Africa. Renew. Sustain. Energy. Rev. 2017, 67, 1162–1179. [Google Scholar] [CrossRef]
- Viskovic, M.; Djatkov, D.; Martinov, M. Corn stover collection prior to biogas production—Evaluation of greenhouse gas emissions. J. Clean. Prod. 2018, 199, 383–390. [Google Scholar] [CrossRef]
- Shinners, K.J.; Bennett, R.G.; Hoffman, D.S. Single- and two-pass corn grain and stover harvesting. Trans. ASABE 2012, 55, 341–350. [Google Scholar] [CrossRef]
- Vadas, P.A.; Digman, M.F. Production costs of potential corn stover harvest and storage systems. Biomass Bioenergy 2013, 54, 133–139. [Google Scholar] [CrossRef]
- Hemmelgarn, A.B.; Lin, Y.; Wendt, L.M.; Hartely, D.S.; Digman, M.F. Techno-economic assessment of single-stream feedstock logistics supply chain for corn stover and grain. Biofuels Bioprod. Biorefin. 2023, 17, 437–448. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Liu, J.; Zhang, S. Experimental study on biogas fermentation of corn stover pretreated with compound microbial agent. Energy 2024, 306, 132469. [Google Scholar] [CrossRef]
- Hu, Y.; Pang, Y.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Chufo, W.A.; Jaffar, M.; Li, X. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD). Bioresour. Technol. 2015, 175, 167–173. [Google Scholar] [CrossRef]
- Lizasoain, J.; Trulea, A.; Gittinger, J.; Kral, I.; Piringer, G.; Schedl, A.; Nilsen, P.J.; Potthast, A.; Gronauer, A.; Bauer, A. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds. Bioresour. Technol. 2017, 244, 949–956. [Google Scholar] [CrossRef]
- Fang, W.; Weisheng, N.; Andong, Z.; Weiming, Y. Enhanced anaerobic digestion of corn stover by thermo-chemical pretreatment. Int. J. Agric. Biol. Eng. 2015, 8, 84–90. [Google Scholar]
- Zou, S.; Wang, X.; Chen, Y.; Wan, H.; Feng, Y. Enhancement of biogas production in anaerobic codigestion by ultrasonic pretreatment. Energy Convers. Manag. 2016, 112, 226–235. [Google Scholar] [CrossRef]
- Zheng, M.; Li, X.; Li, L.; Yang, X.; He, Y. Enhancing anaerobic biogasification of maize stover through wet state NaOH pretreatment. Bioresour. Technol. 2009, 100, 5140–5145. [Google Scholar] [CrossRef]
- Wang, F.; Xie, H.; Chen, W.; Wang, E.; Du, F.; Song, A. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresour. Technol. 2013, 144, 572–578. [Google Scholar] [CrossRef]
- Makri, A.; Ntougias, S.; Melidis, P. Enhancing anaerobic degradation of corn stover residues and biogas production via rumen microorganisms. Environ. Process. 2024, 11, 54. [Google Scholar] [CrossRef]
- Wang, S.; Li, F.; Wu, D.; Zhang, P.; Wang, H.; Tao, X.; Ye, J.; Nabi, M. Enzyme pretreatment enhancing biogas yield from corn stover: Feasibility, optimization, and mechanism analysis. J. Agric. Food Chem. 2018, 66, 10026–10032. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, Z.; Luo, Y.; Sun, S.; Qiao, W.; Xiao, M. Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour. Technol. 2011, 102, 11177–11182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Keshwani, D.R.; Xu, Y.; Hanna, M.A. Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Ind. Crops Prod. 2012, 37, 352–357. [Google Scholar] [CrossRef]
- Adebowale, D.; Oziegbe, O.; Obafemi, Y.D.; Ahuekwe, E.F.; Oranusi, S.U. Biogas production from thermo–alkaline pretreated corn stover codigested with rumen content. In Bioenergy and Biochemical Processing Technologies. Green Energy and Technology; Ayeni, A.O., Sanni, S.E., Oranusi, S.U., Eds.; Springer: Cham, Switzerland, 2022; pp. 151–162. [Google Scholar]
- Karthikeyan, P.K.; Bandulasena, H.C.H.; Radu, T. A comparative analysis of pre-treatment technologies for enhanced biogas production from anaerobic digestion of lignocellulosic waste. Ind. Crops Prod. 2024, 215, 118591. [Google Scholar] [CrossRef]
- Erbetta, E.; Echarte, L.; Elizagaray, C.R.; Depetris, G.J.; Gabbanelli, N.; Echarte, M.M. Stover biogas potential of corn crops grown under contrasting water availability and nitrogen supply. Biomass Bioenergy 2021, 145, 105943. [Google Scholar] [CrossRef]
- Jingura, R.M.; Kamusoko, R. Technical options for valorization of jatropha press-cake: A review. Waste Biomass Valor. 2018, 9, 701–713. [Google Scholar] [CrossRef]
- Demichelis, F.; Tommasi, T.; Deorsola, F.A.; Marchisio, D.; Fino, D. Effect of inoculum origin and substrate-inoculum ratio to enhance the anaerobic digestion of organic fraction municipal solid waste (OFMSW). J. Clean. Prod. 2022, 351, 131539. [Google Scholar] [CrossRef]
- Chinwendu, D.; Sunkanmi, F.; Joshua, O.; Blessing, O. Investigating the synergistic effect of temperature and pH dynamics on biogas yield from lignocellulosic biomass codigested with cow dung. J. Adv. Microbiol. 2024, 24, 139–162. [Google Scholar] [CrossRef]
- Wang, B. Factors That Influence the Biochemical Methane Potential (BMP) Test: Steps Towards the Standardization of BMP Test. Ph.D. Thesis, Lund University, Lund, Sweden, 2016. [Google Scholar]
- Ge, X.; Xu, F.; Li, Y. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresour. Technol. 2016, 205, 239–249. [Google Scholar] [CrossRef]
- Shitophyta, L.M.; Budiyono; Fuadi, A.M. Solid-state anaerobic digestion of rice straw for biogas production. A review. Chemica 2016, 3, 17–23. [Google Scholar] [CrossRef]
- Kamusoko, R.; Jingura, R.M.; Parawira, W.; Chikwambi, Z. Biogas: Microbiological research to enhance efficiency and regulation. In Handbook of Biofuels; Sahay, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 485–497. [Google Scholar]
- Mir, M.A.; Hussain, A.; Verma, C. Design considerations and operational performance of anaerobic digester: A review. Cogent Eng. 2016, 3, 1181696. [Google Scholar] [CrossRef]
- Siddique, M.N.I.; Wahid, Z.A. Achievements and perspectives of anaerobic codigestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Teghammar, A. Biogas Production from Lignocelluloses: Pretreatment, Substrate Characterization, Codigestion and Economic Evaluation. Ph.D. Thesis, University of Boras, Boras, Sweden, 2013. [Google Scholar]
- Alengebawy, A.; Ran, Y.; Osman, A.I.; Jin, K.; Samer, M.; Ai, P. Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: A review. Environ. Chem. Lett. 2024, 22, 2641–2668. [Google Scholar] [CrossRef]
- Viskovic, M.; Djatkov, D.; Martinov, M. Greenhouse gas emission savings of electricity generated from biogas produced from corn stover. Biomass Convers. Biorefin. 2022, 12, 1459–1469. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K. Anaerobic digestate management for carbon neutrality and fertilizer use: A review of current practices and future opportunities. Biomass Bioenergy 2024, 180, 106991. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, J.; Wang, Y.; Fu, Z.; Zhang, D.; Zhang, H.; Xie, J.; Sun, Y.; Zhu, J.; Wang, D. A critical review on sustainable management and resource utilization of digestate. Process Saf. Environ. Prot. 2024, 183, 339–354. [Google Scholar] [CrossRef]
- Wystalska, K.; Kwarciak-Kozłowska, A. Utilization of digestate from agricultural and food waste for the production of biochar used to remove methylene blue. Sustainability 2023, 15, 14723. [Google Scholar] [CrossRef]
- Zuffi, V.; Puliga, F.; Zambonelli, A.; Trincone, L.; Sanchez-Cortes, S.; Francioso, O. Sustainable management of anaerobic digestate: From biogas plant to full-scale cultivation of Pleurotus ostreatus. Agronomy 2023, 13, 950. [Google Scholar] [CrossRef]
- Liu, R.; Gong, H.; Xu, Y.; Cai, C.; Hua, Y.; Li, L.; Dai, L.; Dai, X. The transition temperature (42 °C) from mesophilic to thermophilic micro-organisms enhances biomethane potential of corn stover. Sci. Total Environ. 2021, 759, 143549. [Google Scholar] [CrossRef]
- Schilling, J.S.; Ai, J.; Blanchette, R.A.; Duncan, S.M.; Filley, T.R.; Tschirner, U.W. Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis. Bioresour. Technol. 2012, 116, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Raposo, F.; De La Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Tuyen, D.V.; Phuong, H.N.; Cone, J.W.; Baars, J.J.P.; Sonnenberg, A.S.M.; Hendriks, W.H. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour. Technol. 2013, 129, 256–263. [Google Scholar] [CrossRef]
- Kamusoko, R.; Jingura, R.M.; Parawira, W.; Chikwambi, Z. Characterization of lignocellulosic crop residues for potential biogas production in Zimbabwe. Biofuels Bioprod. Biorefin. 2022, 16, 1165–1171. [Google Scholar] [CrossRef]
- Joseph, G.; Zhang, B.; Rahman, Q.M.; Wang, L.; Shahbazi, A. Two-stage thermophilic anaerobic co-digestion of corn stover and cattle manure to enhance biomethane production. J. Environ. Sci. Health A 2019, 54, 452–460. [Google Scholar] [CrossRef]
- Strang, O.; Ács, N.; Wirth, R.; Maróti, G.; Bagi, Z.; Rákhely, G.; Kovács, K.L. Bioaugmentation of the thermophilic anaerobic biodegradation of cellulose and corn stover. Anaerobe 2017, 46, 104–113. [Google Scholar] [CrossRef]
- Chen, G.; Zheng, Z.; Yang, S.; Fang, C.; Zou, X.; Luo, Y. Experimental codigestion of corn stalk and vermicompost to improve biogas production. Waste Manag. 2010, 30, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Schroyen, M.; Vervaeren, H.; Vandepitte, H.; Hulle, S.W.H.V.; Raes, K. Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Bioresour. Technol. 2015, 192, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Luo, K.; Zhang, Y.; Zheng, Z.; Cai, Y.; Wen, B.; Cui, Z.; Wang, X. Improving the methane yield of maize straw: Focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide. Bioresour. Technol. 2018, 250, 204–213. [Google Scholar] [CrossRef]
- Menardo, S.; Airoldi, G.; Balsari, P. The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour. Technol. 2012, 104, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Jeswani, H.K.; Krüger, C.; Kicherer, A.; Antony, F.; Azapagic, A. A methodology for integrating the biomass balance approach into life cycle assessment with an application in the chemicals sector. Sci. Total Environ. 2019, 687, 380–391. [Google Scholar] [CrossRef]
- Fujino, J.; Yamaji, K.; Yamamoto, H. Biomass-balance table for evaluating bioenergy resources. Appl. Energy 1999, 63, 75–89. [Google Scholar] [CrossRef]
- Moscoviz, R.; Jimenez, J. Improving anaerobic digestion mass balance calculations through stoichiometry and usual substrate characterization. Bioresour. Technol. 2021, 337, 125402. [Google Scholar] [CrossRef]
- Dolan, T.; Cook, M.B.; Angus, A.J. Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology. Sci. Total Environ. 2011, 409, 2460–2466. [Google Scholar] [CrossRef]
- Zuo, Z.; Tian, S.; Chen, Z.; Li, J.; Yang, X. Soaking pretreatment of corn stover for bioethanol production followed by anaerobic digestion process. Appl. Biochem. Biotechnol. 2012, 167, 2088–2102. [Google Scholar] [CrossRef]
- Rasimphi, T.; Kilonzo, B.; Tinarwo, D.; Nyamukondiwa, P. Challenges, opportunities, and possible interventions in the biogas sector in rural areas of Limpopo, South Africa. Energy Strat. Rev. 2024, 56, 101562. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Decentralized Micro-Biodigester Systems for Rural South Africa; IEA Bioenergy: Task 36; IEA Bioenergy: Paris, France, 2021; pp. 1–32. [Google Scholar]
- Msibi, S.S.; Kornelius, G. Potential for domestic biogas as household energy supply in South Africa. J. Energy S. Afr. 2017, 28, 1–13. [Google Scholar] [CrossRef]
- Mittala, S.; Ahlgrena, E.O.; Shuklab, P.R. Barriers to biogas dissemination in India: A review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Nevzorova, T.; Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strat. Rev. 2019, 26, 100414. [Google Scholar] [CrossRef]
- Rasimphi, T.; Kilonzo, B.; Tjale, M.; Tinarwo, D.; Nyamukondiwa, P. Review of implementation of biogas technology in rural communities of South Africa. Cogent Soc. Sci. 2024, 10, 2419536. [Google Scholar] [CrossRef]
- Mukumba, P.; Makaka, G.; Mamphweli, S. Biogas technology in South Africa, problems, challenges and solutions. Int. J. Sustain. Energy Environ. Res. 2016, 5, 58–69. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Chunilall, V.; Msele, K.; Buthelezi, L.; Johakimu, J.; Andrew, J.; Zungu, M.; Moloantoa, K.; Maningi, N.; Habimana, O.; et al. Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs. Renew. Sustain. Energy Rev. 2023, 188, 113870. [Google Scholar] [CrossRef]
- Dumont, K.B.; Hildebrandt, D.; Sempuga, B.C. The “yuck factor” of biogas technology: Naturalness concerns, social acceptance and community dynamics in South Africa. Energy Res. Soc. Sci. 2021, 71, 101846. [Google Scholar] [CrossRef]
- Nethengwe, N.S.; Uhunamure, S.E.; Tinarwo, D. Potentials of biogas as a source of renewable energy: A case study of South Africa. Int. J. Renew. Energy Res. 2018, 8, 1112–1123. [Google Scholar]
- Anekwe, I.M.S.; Akpasi, S.O.; Mkhize, M.M.; Zhou, H.; Moyo, R.T.; Gaza, L. Renewable energy investments in South Africa: Potentials and challenges for a sustainable transition—A review. Sci. Prog. 2024, 107, 368504241237347. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Review of Waste to Energy Policies in South Africa and International Comparisons; IEA Bioenergy: Task 36; IEA Bioenergy: Paris, France, 2023; pp. 1–32. [Google Scholar]
- Department of National Treasury. Frequently Asked Questions. Enhanced Renewable Energy Incentive for Businesses; Department of National Treasury: Pretoria, South Africa, 2023; pp. 1–4. [Google Scholar]
Fraction | Cellulose (%) | Hemicelluloses (%) | Lignin (%) | Reference |
---|---|---|---|---|
Stalks | 42.41 | 11.78 | 30.62 | [4] |
Stalk pith | 31.6 | 27.3 * | 17.0 | [32] |
Stalks | 36.2 | 34.2 | 8.0 | [14] |
Cobs | 35.58 | 28.91 | 29.61 | [4] |
Stalk rind | 39.4 | 25.2 * | 20.1 | [32] |
Cobs | 36.4 | 46.0 | 4.8 | [14] |
Husks | 31.17 | 31.57 | 30.54 | [4] |
Leaf | 31.3 | 21.2 * | 17.4 | [32] |
Husks | 40.3 | 42.9 | 3.1 | [14] |
Leaves | 41.26 | 10.20 | 30.96 | [4] |
Leaves | 35.7 | 37.5 | 5.8 | [4] |
Stover | 53.3 | 34.4 | 12.3 | [31] |
Stover | 41.8 | 28.5 | 4.6 | [13] |
Stover | 46.16 | 24.95 | 5.90 | [30] |
Stover | 34.33 | 26.62 | 7.56 | [11] |
Stem bark | 40.9 | 21.8 | 4.8 | [34] |
Leaf blade | 26.5 | 27.4 | 2.4 | [34] |
Stover | 42.3 | 29.8 | 9.4 | [7] |
Stem pith | 28.0 | 23.3 | 2.6 | [34] |
Parameter | Main Effect | Optimal Conditions | Reference |
---|---|---|---|
Temperature |
| 20 °C (psychrophilic), 35 °C (mesophilic), and 55 °C (thermophilic) | [24,58] |
pH |
| 6.5–7.5 | [59] |
Inoculum size |
| Substrate to inoculum ratio of 2.0–4.0 (VS basis) under thermophilic conditions. | [57,58] |
Carbon to nitrogen ratio |
| 20–30 | [20,24,60] |
Substrate particle size |
| Moderate size | [12,61] |
Hydraulic retention time |
| 15–30 d (mesophiles) and 12–24 d (thermophiles) | [62,63] |
Organic loading rate |
| 4–5 kg vs. m−3 d−1 (thermophiles) and 2–3 kg vs. m−3 d−1 (mesophiles) | [62,63,64] |
Total solids content |
| 20–30% | [60] |
Agitation |
| Moderate mixing | [61] |
Part | Inoculum Source | Digester Set Up | Reactor Conditions | BMP (mL g−1 VS) | Methane Content (%) | Reference |
---|---|---|---|---|---|---|
Stalks | Liquid digestate from digester fed with manure and maize silage | 2 L batch digesters | 40 °C, 40 d, manual stirring | 233.8 | 51.1 | [14] |
Stover | Digester treating cellulosic material and manure | 0.25 L batch fermenters | 37.5 °C, 49 d, magnetic stirrer | 285.0 | 61.0 | [43] |
Stalk | Digested sludge from wastewater treatment | 1 L batch reactors | 35 °C, 45 d, manual mixing | 115.4–217.9 | 64.1–66.8 | [78] |
Cobs | Liquid digestate from digester fed with manure and maize silage | 2 L batch digesters | 40 °C, 40 d, manual stirring | 206.6 | 54.4 | [14] |
Stover | Plant codigesting cow manure and maize silage | 0.25 mL batch reactors | 30 d | 192.0–288.0 | - | [79] |
Leaves | Liquid digestate from digester fed with manure and maize silage | 2 L batch digesters | 40 °C, 40 d, manual stirring | 244.5 | 55.2 | [14] |
Stover | Anaerobic sludge from mesophilic digester | 0.118 L serum bottles | 30 d, 150 rpm | 136.0 | - | [50] |
Straw | Full-scale biogas plant fed with maize straw and manure | 0.5 L batch reactors | 37 °C, 21 d | 212.9 | - | [80] |
Stover | Anaerobic sludge from wastewater treatment | 1 L glass bottles | 37 °C, 30 d, manual shaking | 260.7 | 55.4 | [7] |
Husks | Liquid digestate from digester fed with manure and maize silage | 2 L batch digesters | 40 °C, 40 d, manual stirring | 307.0 | 56.4 | [14] |
Stalk | Digester fed with animal effluents | 2 L batch reactors | 40 °C, 60 d, manual stirring | 246.0 | - | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamusoko, R.; Mukumba, P. Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective. Fermentation 2025, 11, 338. https://doi.org/10.3390/fermentation11060338
Kamusoko R, Mukumba P. Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective. Fermentation. 2025; 11(6):338. https://doi.org/10.3390/fermentation11060338
Chicago/Turabian StyleKamusoko, Reckson, and Patrick Mukumba. 2025. "Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective" Fermentation 11, no. 6: 338. https://doi.org/10.3390/fermentation11060338
APA StyleKamusoko, R., & Mukumba, P. (2025). Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective. Fermentation, 11(6), 338. https://doi.org/10.3390/fermentation11060338