Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates
Abstract
1. Introduction
1.1. Biomass Use in Aluminum-Based Materials
1.2. Metal Matrix Composites
1.3. Fiber Metal Laminates
2. Properties of Aluminum MMCs (AMCs) Including Lignocellulosic Fibers
2.1. AMCs Manufactured via Liquid Methods Including Generic Biomass Ashes
2.2. AMCs Including Seed Waste
2.3. Brake Pads by AMCs and Biomass: A Case Study
3. Properties of Aluminum FMLs Including Lignocellulosic Fibers
3.1. General Considerations on Water Absorption and Environmental Degradation
3.2. Mechanical and Impact Properties
3.3. Properties of Aluminum FMLs Including Lignocellulosic Fibers Layered with Other Fibers
4. Comparing Further Developments for Introduction of Biomass in MMCs and FMLs
4.1. The Perceived Rationale for Introducing Lignocellulosic Biomass into Aluminum Hybrid Composites
4.2. How the Balance Between FMLs and MMCs Is Altered by Lignocellulosic Biomass
4.3. Predicted Future Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMCs | Aluminum Metal Composites |
ARALL | Aramid-Reinforced Aluminum Laminate |
CARALL | Carbon-Reinforced Aluminum Laminate |
CPAs | Cassava Peel Ashes |
CRALE | Coir-Reinforced Aluminum Laminate Epoxy |
CSAs | Coconut Shell Ashes |
DMEM | Diamond Micro-Expanded Mesh |
FLARE | Flax-Reinforced Aluminum Laminate |
FMLs | Fiber Metal Laminates |
GLARE | Glass-Reinforced Aluminum Laminate |
HRB | Rockwell B Hardness |
HRV | Block Rockwell (Rockwell V) Hardness |
HV | Vickers Hardness |
PVB | Poly(vinyl butyral) |
RHAs | Rice Hull Ashes |
VARTM | Vacuum-Assisted Resin Transfer Molding |
References
- Rahman, M.Z.; Rahman, M.; Mahbub, T.; Ashiquzzaman, M.; Sagadevan, S.; Hoque, M.E. Advanced biopolymers for automobile and aviation engineering applications. J. Polym. Res. 2023, 30, 106. [Google Scholar] [CrossRef]
- Svidler, R.; Rinberg, R. Bio-based hybrid cabin door of ultralight helicopter with variable-axis fiber design. CEAS Aer. J. 2023, 14, 115–125. [Google Scholar] [CrossRef]
- Allah, M.M.A.; Hegazy, D.A.; Alshahrani, H.; Sebaey, T.A.; El-baky, M.A.A. Fiber metal laminates based on natural/synthesis fiber composite for vehicles industry: An experimental comparative study. Fib. Polym. 2023, 24, 2877–2889. [Google Scholar] [CrossRef]
- Casati, R.; Vedani, M. Metal matrix composites reinforced by nano-particles—A review. Metals 2014, 4, 65–83. [Google Scholar] [CrossRef]
- Hussain, M.; Imad, A. Natural fiber metal laminate and its joining. In Natural Fibers to Composites: Process, Properties, Structures; Nawab, Y., Shaker, K., Imad, A., Saouab, A., Eds.; Springer: Berlin, Germany, 2022; pp. 149–172. [Google Scholar]
- Palanivendhan, M.; Chandradass, J. Experimental investigation on mechanical and wear behavior of agro waste ash based metal matrix composite. Mater. Today Proc. 2021, 45, 6580–6589. [Google Scholar] [CrossRef]
- Xiao, H.; Sultan, M.T.H.; Shahar, F.S.; Gaff, M.; Hui, D. Recent developments in the mechanical properties of hybrid fiber metal laminates in the automotive industry: A review. Rev. Adv. Mater. Sci. 2023, 62, 20220328. [Google Scholar] [CrossRef]
- Marsh, G. Next step for automotive materials. Mater. Today 2003, 6, 36–43. [Google Scholar] [CrossRef]
- Gebrehiwet, L.; Abate, E.; Negussie, Y.; Teklehaymanot, T.; Abeselom, E. Application of composite materials in aerospace & automotive industry. Int. J. Adv. Eng. Manag. (IJAEM) 2023, 5, 697–723. [Google Scholar]
- Sharma, D.K.; Mahant, D.; Upadhyay, G. Manufacturing of metal matrix composites: A state of review. Mater. Today Proc. 2020, 26, 506–519. [Google Scholar] [CrossRef]
- Singh, L.; Singh, B.; Saxena, K.K. Manufacturing techniques for metal matrix composites (MMC): An overview. Adv. Mater. Proc. Technol. 2020, 6, 441–457. [Google Scholar] [CrossRef]
- Mussatto, A.; Ahad, I.U.; Mousavian, R.T.; Delaure, Y.; Brabazon, D. Advanced production routes for metal matrix composites. Eng. Rep. 2021, 3, e12330. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, K.K.; Salem, K.H.; Mohammed, K.A.; Singh, R.; Prakash, C. Effects of various fabrication techniques on the mechanical characteristics of metal matrix composites: A review. Adv. Mater. Proc. Technol. 2024, 10, 277–294. [Google Scholar] [CrossRef]
- Sharma, P.; Dabra, V.; Sharma, S.; Khanduja, D.; Sharma, N.; Sharma, R.; Saini, K. Microstructure and properties of AA6082/(SiC+ graphite) hybrid composites. Refractor. Ind. Ceram. 2019, 59, 471–477. [Google Scholar] [CrossRef]
- Bahl, S. Fiber reinforced metal matrix composites-a review. Mater. Today Proc. 2021, 39, 317–323. [Google Scholar] [CrossRef]
- Samuel, A.A.; Arudi, I.S.; Markus, S.; Adeleke, A.A.; Ogedengbe, T.; Jesuloluwa, S.; Aladejana, M.; Jahswill, O.O.; Chijioke, S.L.; Adeyelu, A.E. Metal matrix reinforcements-fabrication, applications, and properties: A review. In Proceedings of the 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 1–3 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Vinayagamoorthy, R. Trends and Challenges on the Development of Hybridized Natural Fiber Composites. J. Nat. Fib. 2020, 17, 1757–1774. [Google Scholar]
- Seetharaman, S.; Subramanian, J.; Singh, R.A.; Wong, W.L.E.; Nai, M.L.S.; Gupta, M. Mechanical properties of sustainable metal matrix composites: A review on the role of green reinforcements and processing methods. Technologies 2022, 10, 32. [Google Scholar] [CrossRef]
- Baliarsingh, S.S.; Tripathy, A.G.; Sahoo, B.P.; Das, D.; Behera, R.R.; Satpathy, M.P.; Kumar, R. Comprehensive review on fabrication methods of metal matrix composites and a case study on squeeze casting. Adv. Mater. Process. Technol. 2024, 10, 2862–2885. [Google Scholar] [CrossRef]
- Butola, R.; Malhotra, A.; Yadav, M.; Singari, R.; Murtaza, Q.; Chandra, P. Experimental Studies on Mechanical Properties of Metal Matrix Composites Reinforced with Natural Fibres Ashes; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Lancaster, L.; Lung, M.H.; Sujan, D. Utilization of agro-industrial waste in metal matrix composites: Towards sustainability. Proceedings of World Academy of Science, Engineering and Technology, Zürich, Switzerland, 14–15 January 2013; p. 1136. [Google Scholar]
- Dixit, P.; Suhane, A. Aluminum metal matrix composites reinforced with rice husk ash: A review. Mater. Today Proc. 2022, 62, 4194–4201. [Google Scholar] [CrossRef]
- Yadav, A.K.; Pandey, K.M.; Dey, A. Aluminium metal matrix composite with rice husk as reinforcement: A review. Mater. Today Proc. 2018, 5, 20130–20137. [Google Scholar] [CrossRef]
- Okokpujie, I.P.; Tartibu, L. Corrosion behaviour of coconut rice and eggshell reinforced aluminium metal matrix composites in 0.4 M H2SO4. Adv. Mater. Proc. Technol. 2024, 10, 2983–2997. [Google Scholar]
- Okokpujie, I.P.; Tartibu, L.K.; Babaremu, K.; Akinfaye, C.; Ogundipe, A.T.; Akinlabi, E.T. Study of the corrosion, electrical, and mechanical properties of aluminium metal composite reinforced with coconut rice and eggshell for wind turbine blade development. Clean. Eng. Technol. 2023, 13, 100627. [Google Scholar] [CrossRef]
- Siva, R.; Valarmathi, T.N.; Palanikumar, K. Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites. Int. J. Biol. Macromol. 2020, 164, 3611–3620. [Google Scholar] [CrossRef] [PubMed]
- Sari, N.H.; Sari, S.; Sutaryono, Y.A.; Khan, M.A. A review: Fracture structure of natural fiber surface after treatment with various alkali chemicals. J. Fib. Polym. Compos. 2024, 3, 158–180. [Google Scholar]
- Sarada, B.N.; Murthy, P.S.; Ugrasen, G.J. Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique. Mater. Today Proc. 2015, 2, 2878–2885. [Google Scholar] [CrossRef]
- Aliyu, I.; Sapuan, S.M.; Zainudin, E.S.; Mohamed Yusoff, M.Z.; Yahaya, R.; Aiza Jaafar, C.N. An overview of mechanical and corrosion properties of aluminium matrix composites reinforced with plant based natural fibres. Phys. Sci. Rev. 2024, 9, 357–386. [Google Scholar] [CrossRef]
- Venkataravanappa, R.Y.; Lakshmikanthan, A.; Kapilan, N.; Chandrashekarappa, M.P.G.; Der, O.; Ercetin, A. Physico-mechanical property evaluation and morphology study of moisture-treated hemp–banana natural-fiber-reinforced green composites. J. Compos. Sci. 2023, 7, 266. [Google Scholar] [CrossRef]
- Costa, R.D.; Sales-Contini, R.C.; Silva, F.J.; Sebbe, N.; Jesus, A.M. A critical review on fiber metal laminates (FML): From manufacturing to sustainable processing. Metals 2023, 13, 638. [Google Scholar] [CrossRef]
- Botelho, E.C.; Almeida, R.S.; Pardini, L.C.; Rezende, M.C. Influence of hygrothermal conditioning on the elastic properties of Carall laminates. Appl. Compos. Mater. 2019, 14, 209–222. [Google Scholar] [CrossRef]
- Dadej, K.; Bienias, J.; Surowska, B. On the effect of glass and carbon fiber hybridization in fiber metal laminates: Analytical, numerical and experimental investigation. Comp. Struct. 2019, 220, 250–260. [Google Scholar] [CrossRef]
- Vogelesang, L.B.; Gunnink, J.W. ARALL: A materials challenge for the next generation of aircraft. Mater. Des. 1986, 7, 287–300. [Google Scholar] [CrossRef]
- Moriniere, F.D.; Alderliesten, R.C.; Benedictus, R. Low-velocity impact energy partition in GLARE. Mech. Mater. 2013, 66, 59–68. [Google Scholar] [CrossRef]
- Doğan, M.A.; Yazman, Ş.; Gemi, L.; Yildiz, M.; Yapici, A. A review on drilling of FML stacks with conventional and unconventional processing methods under different conditions. Compos. Struct. 2022, 297, 115913. [Google Scholar] [CrossRef]
- Asundi, A.; Choi, A.Y. Fiber metal laminates: An advanced material for future aircraft. J. Mater. Process. Technol. 1997, 63, 384–394. [Google Scholar] [CrossRef]
- Ucan, H.; Apmann, H.; Graßl, G.; Krombholz, C.; Fortkamp, K.; Nieberl, D.; Schmick, F.; Nguyen, C.; Akin, D. Production technologies for lightweight structures made from fibre–metal laminates in aircraft fuselages. CEAS Aeronaut. J. 2019, 10, 479–489. [Google Scholar] [CrossRef]
- Chen, J.F.; Morozov, E.V.; Shankar, K. Progressive failure analysis of perforated aluminium/CFRP fibre metal laminates using a combined elastoplastic damage model and including delamination effects. Compos. Struct. 2014, 114, 64–79. [Google Scholar] [CrossRef]
- Iernutan, R.A.; Babota, F.; Istoan, R. Carbon fibre reinforced aluminium mesh composite materials. Procedia Manuf. 2019, 32, 901–907. [Google Scholar] [CrossRef]
- Zalosh, R. Deflagration suppression using expanded metal mesh and polymer foams. J. Loss Prev. Process Ind. 2007, 20, 659–663. [Google Scholar] [CrossRef]
- Mansor, M.A.; Ahmad, Z.; Abdullah, M.R. Crashworthiness capability of thin-walled fibre metal laminate tubes under axial crushing. Eng. Struct. 2020, 252, 113660. [Google Scholar] [CrossRef]
- Prem Kumar, R.; Muthukrishnan, M.; Felix Sahayaraj, A. Effect of hybridization on natural fiber reinforced polymer composite materials–A review. Polym. Compos. 2023, 44, 4459–4479. [Google Scholar] [CrossRef]
- Karikalan, L.; Chandrasekran, M.; Ramasubramanian, S.; Baskar, S. Hybridization of composites using natural and synthetic fibers for automotive application. Int. J. Sci. Res. Sci. Technol. 2017, 7, 916–920. [Google Scholar]
- Santulli, C. Impact properties of glass/plant fibre hybrid laminates. J. Mater. Sci. 2007, 42, 3699–3707. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Puttegowda, M.; Boonyasopon, P.; Rangappa, S.M.; Khan, A.; Siengchin, S. Recent developments and challenges in natural fiber composites: A review. Polym. Compos. 2022, 43, 2545–2561. [Google Scholar] [CrossRef]
- Mittal, V.; Saini, R.; Sinha, S. Natural fiber-mediated epoxy composites–a review. Compos. Part B Eng. 2016, 99, 425–435. [Google Scholar] [CrossRef]
- Parbin, S.; Waghmare, N.K.; Singh, S.K.; Khan, S. Mechanical properties of natural fiber reinforced epoxy composites: A review. Proc. Comp. Sci. 2019, 152, 375–379. [Google Scholar] [CrossRef]
- Capretti, M.; Giammaria, V.; Santulli, C.; Boria, S.; Del Bianco, G. Use of bio-epoxies and their effect on the performance of polymer composites: A critical review. Polymers 2023, 15, 4733. [Google Scholar] [CrossRef]
- Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R.J. A review on the potential and limitations of recyclable thermosets for structural applications. Polym. Rev. 2020, 60, 359–388. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Z.; Yue, D.; Belko, V.O.; Maksimenko, S.A.; Deng, J.; Sun, Y.; Yang, Z.; Fu, Q.; Liu, B.; et al. Recent progress in degradation and recycling of epoxy resin. J. Mater. Res. Technol. 2024, 32, 2891–2912. [Google Scholar] [CrossRef]
- Santos, A.L.; Nakazato, R.Z.; Schmeer, S.; Botelho, E.C. Influence of anodization of aluminum 2024 T3 for application in aluminum/Cf/epoxy laminate. Compos. B Eng. 2020, 184, 107718. [Google Scholar] [CrossRef]
- Mohammed, I. Fire Properties of Hybrid Composites. J. Technol. Innov. Energy 2022, 1, 4–8. [Google Scholar] [CrossRef]
- Santulli, C.; Kuan, H.T.; Sarasini, F.; De Rosa, I.M.; Cantwell, W.J. Damage characterisation on PP-hemp/aluminium fibre–metal laminates using acoustic emission. J. Compos. Mater. 2013, 47, 2265–2274. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Jawaid, M.; Shahroze, R.M. Fabrication of Fibre Metal Laminate with Flax and Sugar Palm Fibre based Epoxy Composite and Evaluation of their Fatigue Properties. J. Polym. Mater. 2018, 35, 463. [Google Scholar] [CrossRef]
- Caggiano, M.; Saffioti, M.R.; Rotella, G. Fiber Metal Laminates: The Role of the Metal Surface and Sustainability Aspects. J. Compos. Sci. 2025, 9, 35. [Google Scholar] [CrossRef]
- Adeosun, S.O.; Oyetunji, A.; Akpan, E.I. Strength and ductility of forged 1200 aluminum alloy reinforced with steel particles. Niger. J. Technol. 2015, 34, 710–715. [Google Scholar] [CrossRef]
- Naveen, M.R.; Kamaraj, L.; Ponnarengan, H. Adhesion strength and mechanical properties of nanoclay modified hybrid kevlar/jute-epoxy fiber metal laminate. Polym. Compos. 2024, 45, 9936–9947. [Google Scholar] [CrossRef]
- Kirubakaran, R.; Kaliyamoorthy, R.; Munusamy, R.; Annamalai, B. Mechanical and vibration behavior of surface-modified titanium sheet interleaved with woven basalt/flax fiber metal laminates. Polym. Compos. 2023, 44, 8442–8453. [Google Scholar] [CrossRef]
- Peter, P.I.; Adekunle, A.A. A review of ceramic/bio-based hybrid reinforced aluminium matrix composites. Cogent Eng. 2020, 7, 1727167. [Google Scholar] [CrossRef]
- Bahrami, A.; Soltani, N.; Pech-Canul, M.I.; Gutiérrez, C.A. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit. Rev. Environ. Sci. Technol. 2016, 46, 143–208. [Google Scholar] [CrossRef]
- Niu, Y.; Du, W.; Tan, H.; Xu, W.; Liu, Y.; Xiong, Y.; Hui, S. Further study on biomass ash characteristics at elevated ashing temperatures: The evolution of K, Cl, S and the ash fusion characteristics. Bioresour. Technol. 2013, 129, 642–645. [Google Scholar] [CrossRef]
- Lei, Z.; Pavia, S. Geopolymer based on biomass ash from agricultural residues. Constr. Build. Mater. 2024, 441, 137471. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Kandpal, B.C.; Johri, N.; Kumar, N.; Srivastava, A. Effect of industrial/agricultural waste materials as reinforcement on properties of metal matrix composites. Mater. Today Proc. 2021, 46, 10736–10740. [Google Scholar] [CrossRef]
- Arjmandi, R.; Hassan, A.; Majeed, K.; Zakaria, Z. Rice husk filled polymer composites. Int. J. Polym. Sci. 2015, 2015, 501471. [Google Scholar] [CrossRef]
- Periasamy, K.; Prathap, P.; Arunnath, A.; Madhu, S. Exploring the effect of bio-silica on the mechanical, microstructural, and corrosion properties of aluminium metal matrix composites. Proc. Inst. Mech. Eng. E. J. Proc. Mech. Eng. 2024. [Google Scholar] [CrossRef]
- Osunmakinde, L.; Asafa, T.B.; Agboola, P.O.; Durowoju, M.O. Development of aluminum composite reinforced with selected agricultural residues. Discov. Mater. 2023, 3, 33. [Google Scholar] [CrossRef]
- Magesh, M.; Baruch, L.J.; Oliver, D.G. Microstructure and hardness of aluminium alloy-fused silica particulate composite. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 2014, 1, 199–204. [Google Scholar]
- Jose, J.; Christy, T.V.; Peter, P.E.; Feby, J.A.; George, A.J.; Joseph, J.; Chandra, R.G.; Benjie, N.M. Manufacture and characterization of a novel agro-waste based low cost metal matrix composite (MMC) by compocasting. Mater. Res. Express 2018, 5, 066530. [Google Scholar] [CrossRef]
- Ben, F.; Olubambi, P.A. Investigating the tribological behavior of bioinspired surfaces in agro-waste and alumina reinforced AA6063 matrix composites. Vacuum 2024, 230, 113687. [Google Scholar] [CrossRef]
- Tazari, H.; Siadati, M.H. Synthesis and mechanical properties of aluminum alloy 5083/SiCnp nanocomposites. J. Alloys Compd. 2017, 729, 960–969. [Google Scholar] [CrossRef]
- Kaur, N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta 2024, 267, 125114. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Sharma, S.; Mishra, R.K. Tribological behavior of a newly developed AA2014/waste eggshell/SiC hybrid green metal matrix composite at optimum parameters. Green. Proc. Synth. 2018, 7, 48–60. [Google Scholar] [CrossRef]
- Prasad, D.S.; Shoba, C.; Ramanaiah, N. Investigations on mechanical properties of aluminum hybrid composites. J. Mater. Res. Technol. 2014, 3, 79–85. [Google Scholar] [CrossRef]
- Aigbodion, V.S. Bean pod ash nanoparticles a promising reinforcement for aluminium matrix biocomposites. J. Mater. Res. Technol. 2019, 8, 6011–6020. [Google Scholar] [CrossRef]
- Fragassa, C.; Vannucchi de Camargo, F.; Santulli, C. Sustainable biocomposites: Harnessing the potential of waste seed-based fillers in eco-friendly materials. Sustainability 2024, 16, 1526. [Google Scholar] [CrossRef]
- Economou, F.; Papamichael, I.; Rodríguez-Espinosa, T.; Voukkali, I.; Pérez-Gimeno, A.; Zorpas, A.A.; Navarro-Pedreño, J. The Impact of Food Overproduction on Soil: Perspectives and Future Trends. In Planet Earth: Scientific Proposals to Solve Urgent Issues; Nunez-Delgado, A., Ed.; Springer International Publishing: Cham, Switzerland, 2024; pp. 263–292. [Google Scholar]
- Abdulrazaq, A.A.; Ahmed, S.; Mahdi, F.M. Agricultural waste and natural dolomite for green production of aluminum composites. Clean. Eng. Technol. 2023, 12, 100588. [Google Scholar] [CrossRef]
- Oladele, I.O.; Okoro, A.M. The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites. Leonardo J. Sci. 2016, 28, 15–30. [Google Scholar]
- Ramesh, M.; Deepa, C.; Aswin, U.S.; Eashwar, H.; Mahadevan, B.; Murugan, D. Effect of alkalization on mechanical and moisture absorption properties of Azadirachta indica (neem tree) fiber reinforced green composites. Trans. Indian Inst. Metals 2017, 70, 187–199. [Google Scholar] [CrossRef]
- Binu Kumar, V.J.; Bensam Raj, J.; Karuppasamy, R.; Thanigaivelan, R. Influence of chemical treatment and moisture absorption on tensile behavior of neem/banana fibers reinforced hybrid composites: An experimental investigation. J. Nat. Fib. 2022, 19, 3051–3062. [Google Scholar] [CrossRef]
- Babu, B.; Bensam Raj, J.; Jeya Raj, R.; Roshan Xavier, X. Investigation on the mechanical properties of natural composites made with Indian almond fiber and neem seed particulates. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2023, 237, 3908–3915. [Google Scholar] [CrossRef]
- Jannet, S.; Raja, R.; Arumugaprabu, V.; Kumar, G.V.; Vigneshwaran, S.; Sreekanth, P.R.; Naresh, K. Effect of neem seed biochar on the mechanical and wear properties of aluminum metal matrix composites fabricated using stir casting. Mater. Today Proc. 2022, 56, 1507–1512. [Google Scholar] [CrossRef]
- Ochuokpa, E.O.; Sumaila, D.S.; Adebisi, A. Development of aluminium based mango seed Mangifera indica shell ash (MSSA) particulate metal matrix composite. Int. J. Eng. Mater. Manuf. 2021, 6, 176–186. [Google Scholar]
- Atuanya, C.U.; Ibhadode, A.O.A.; Dagwa, I.M. Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Results Phys. 2012, 2, 142–149. [Google Scholar] [CrossRef]
- Government, R.M.; Okeke, E.T.; Oladimeji, A.T.; Ani, A.K.; Onukwuli, O.D.; Odera, R.S. Effect of using different chemically modified breadfruit peel fiber in the reinforcement of LDPE composite. Mater. Test. 2021, 63, 286–292. [Google Scholar] [CrossRef]
- Satoto, R.; Rohmah, S.; Suhandi, A. Physical and mechanical of breadfruit leaves-polyethylene composites. IOP Conf. Ser. Earth Environ. Sci. 2017, 60, 012011. [Google Scholar] [CrossRef]
- Ezechukwu, V.C.; Nwobi-Okoye, C.C.; Atanmo, P.N.; Aigbodion, V.S. Wear Performance of Value-Addition Epoxy/Breadfruit Seed Shell Ash Particles and Functionalized Momordica Angustisepala Fiber Hybrid Composites. J. Compos. Adv. Mater. 2020, 30, 195. [Google Scholar] [CrossRef]
- Dara, J.E.; Omenyi, S.N.; Nwigbo, S.C. Potentials of castor seed shell as a reinforcement in aluminum matrix composite development. UNIZIK J. Eng. Appl. Sci. 2021, 19, 400–408. [Google Scholar]
- Duran, A.J.F.P.; Lyra, G.P.; Campos Filho, L.E.; Martins, R.H.B.; Bueno, C.; Rossignolo, J.A.; Fiorelli, J. The Use of Castor Oil Resin on Particleboards: A Systematic Performance Review and Life Cycle Assessment. Sustainability 2025, 17, 3609. [Google Scholar] [CrossRef]
- Abel, S.; Jule, L.T.; Gudata, L.; Nagaraj, N.; Shanmugam, R.; Dwarampudi, L.P.; Stalin, B.; Ramaswamy, K. Preparation and characterization analysis of biofuel derived through seed extracts of Ricinus communis (castor oil plant). Sci. Rep. 2022, 12, 11021. [Google Scholar] [CrossRef]
- Karayannis, V.G.; Moutsatsou, A.K. Fabrication of MMCs from metal and alloy powders produced from scrap. J. Mater. Proc. Technol. 2006, 171, 295–300. [Google Scholar] [CrossRef]
- Anggono, A.D.; Faishal, A.; Aditya, E.B. An analytical study of metal matrix composite materials for railway brake pad applications. Int. J. Adv. Technol. Eng. Explor. 2024, 11, 1325. [Google Scholar]
- Dirisu, J.O.; Okokpujie, I.P.; Joseph, O.O.; Oyedepo, S.O.; Falodun, O.; Tartibu, L.K.; Shehu, F.D. Sustainable Biocomposites Materials for Automotive Brake Pad Application: An Overview. J. Renew. Mater. 2024, 12, 485–511. [Google Scholar] [CrossRef]
- Lyu, Y.; Olofsson, U. On black carbon emission from automotive disc brakes. J. Aerosol Sci. 2020, 148, 105610. [Google Scholar] [CrossRef]
- Maleque, M.A.; Atiqah, A.; Talib, R.J.; Zahurin, H. New natural fibre reinforced aluminium composite for automotive brake pad. Int. J. Mech. Mater. Eng. 2012, 7, 166–170. [Google Scholar]
- Moulleswaran, S.K.; Gopal, E.; Ramesh, K.P.M.; Ravikumar, M.; Sakthivel, R. Structural and thermal study of aluminum hybrid composite alloy reinforced with silicon carbide and rice husk ash for automobile brake drum. Ann. Fac. Eng. Hunedoara 2017, 15, 31–39. [Google Scholar]
- Yekinni, A.A.; Durowoju, M.O.; Agunsoye, J.O.; Mudashiru, L.O.; Animashaun, L.A.; Sogunro, O.D. Automotive application of hybrid composites of aluminium alloy matrix: A review of rice husk ash based reinforcements. Int. J. Compos. Mater. 2019, 9, 44–52. [Google Scholar]
- Bawa, M.A.; Umaru, O.B.; Abur, B.T.; Salako, I.; Jatau, J.S. Effect of locust bean pod ash on the hardness and wear rate of heat treated A356 alloy metal matrix composite for production of automobile brake rotor. Int. J. Res. Publ. 2020, 57, 36–43. [Google Scholar] [CrossRef]
- Kumar, V.V.; Dhanalakshmi, S.; Raghunathan, V.; Ayyappan, V.; Sanjay, M.R.; Siengchin, S. Characterization of Allium sativum stalk-based biomass for automotive brake pad applications. Biomass Convers. Biorefin. 2024, 15, 9215–9228. [Google Scholar] [CrossRef]
- Pinca-Bretotean, C.; Josan, A.; Sharma, A.K. Composites based on sustainable biomass fiber for automotive brake pads. Mater. Plast. 2024, 61, 24–33. [Google Scholar] [CrossRef]
- Anggraeni, S.; Anshar, A.N.; Maulana, A.; Nurazizah, S.; Nurjihan, Z.; Putri, S.R.; Nandiyanto, A.B.D. Mechanical properties of sawdust and rice husk brake pads with variation of composition and particle size. J. Eng. Sci. Technol. 2022, 17, 2390–2401. [Google Scholar]
- Kunaroop, N.; Rimdusit, S.; Mora, P.; Hiziroglu, S.; Jubsilp, C. Carbonized hemp hurd powder for eco-friendly polybenzoxazine composite brake material: Excellent friction property and high mechanical performance. Arab. J. Chem. 2024, 17, 105769. [Google Scholar] [CrossRef]
- Braga, G.G.; Giusti, G.; dos Santos, J.C.; Silva, D.A.L.; Christoforo, A.L.; Panzera, T.H.; Scarpa, F. Life cycle assessment of fibre metal laminates: An ecodesign approach. Compos. C 2024, 13, 100435. [Google Scholar] [CrossRef]
- Papa, I.; Formisano, A.; Lopresto, V.; Cimino, F.; Vitiello, L.; Russo, P. Water ageing effects on the mechanical properties of flax fibre fabric/polypropylene composite laminates. J. Compos. Mater. 2020, 54, 3481–3489. [Google Scholar] [CrossRef]
- Tian, F.; Zhong, Z.; Pan, Y. Modeling of natural fiber reinforced composites under hygrothermal ageing. Compos. Struct. 2018, 200, 144–152. [Google Scholar] [CrossRef]
- dos Santos, J.C.; de Oliveira, L.A.; Panzera, T.H.; Remillat, C.D.; Farrow, I.; Placet, V.; Scarpa, F. Ageing of autoclaved epoxy/flax composites: Effects on water absorption, porosity and flexural behaviour. Compos. B Eng. 2020, 202, 108380. [Google Scholar] [CrossRef]
- Van de Velde, K.; Kiekens, P. Wettability of natural fibres used as reinforcement for composites. Die Angew. Makromol. Chem. 1999, 272, 87–93. [Google Scholar] [CrossRef]
- Kamboj, I.; Jain, R.; Jain, D.; Bera, T.K. Effect of fiber pre-treatment methods on hygrothermal aging behavior of agave fiber reinforced polymer composites. J. Nat. Fib. 2022, 19, 2929–2942. [Google Scholar] [CrossRef]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Bhuvaneswari, V.; Devarajan, B.; Arulmurugan, B.; Mahendran, R.; Rajkumar, S.; Sharma, S.; Mausam, K.; Li, C.; Eldin, E.T. A critical review on hygrothermal and sound absorption behavior of natural-fiber-reinforced polymer composites. Polymers 2022, 14, 4727. [Google Scholar] [CrossRef]
- Chegdani, F.; El Mansori, M. Effect of hygrothermal conditioning on the machining behavior of biocomposites. J. Manuf. Sci. Eng. 2024, 146, 040901. [Google Scholar] [CrossRef]
- Mejri, M.; Toubal, L.; Cuillière, J.C.; François, V. Hygrothermal aging effects on mechanical and fatigue behaviors of a short-natural-fiber-reinforced composite. Int. J. Fatigue 2018, 108, 96–108. [Google Scholar] [CrossRef]
- Sinke, J. Development of fibre metal laminates: Concurrent multi-scale modeling and testing. J. Mater. Sci. 2006, 41, 6777–6788. [Google Scholar] [CrossRef]
- Ng, L.F.; Yahya, M.Y.; Leong, H.Y.; Parameswaranpillai, J.; Muthukumar, C.; Syed Hamzah, S.M.S.A.; Dhar Malingam, S. State-of-the-art review on developing lightweight fiber-metal laminates based on synthetic/natural fibers. Polym. Compos. 2023, 44, 6275–6303. [Google Scholar] [CrossRef]
- Edynoor, O.; Warikh, A.R.M.; Yahaya, S.H.; Salleh, M.S.; Moriga, T. Study on performance of kenaf fibre/epoxy reinforced aluminium laminates (Kerall) via compression moulding technique. J. Adv. Manuf. Technol. (JAMT) 2020, 14, 1–15. [Google Scholar]
- Joshi, S.; Patel, S. Review on mechanical and thermal properties of pineapple leaf fiber (PALF) reinforced composite. J. Nat. Fib. 2022, 19, 10157–10178. [Google Scholar] [CrossRef]
- Sethupathi, M.; Khumalo, M.V.; Skosana, S.J.; Muniyasamy, S. Recent Developments of Pineapple Leaf Fiber (PALF) Utilization in the Polymer Composites—A Review. Separations 2024, 11, 245. [Google Scholar] [CrossRef]
- Feng, N.L.; Malingam, S.D.; Ping, C.W.; Selamat, M.Z. Mechanical characterization of metal-composite laminates based on cellulosic kenaf and pineapple leaf fiber. J. Nat. Fib. 2022, 19, 2163–2175. [Google Scholar] [CrossRef]
- Padmanabhan, R.; Rajesh, S.; Karthikeyan, S.; Palanisamy, S.; Ilyas, R.; Ayrilmis, N.; Tag-Eldin, E.M.; Kchaou, M. Evaluation of mechanical properties and Fick’s diffusion behaviour of aluminum-DMEM reinforced with hemp/bamboo/basalt woven fiber metal laminates (WFML) under different stacking sequences. Ain Shams Eng. J. 2024, 15, 102759. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Kenny, J.M.; Puglia, D.; Santulli, C.; Sarasini, F. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos. Sci. Technol. 2010, 70, 116–122. [Google Scholar] [CrossRef]
- Ramesh, G.; Uvaraja, V.C.; Jayaraja, B.G.; Patil, P.P. Development of epoxy-based fiber metal laminate using nanosilica and Abelmoschus esculentus fiber for steam turbine applications. Biomass Conv. Biorefin. 2024, 14, 12807–12814. [Google Scholar] [CrossRef]
- Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R.; Talebi, S. Investigating the high velocity impact behavior of the laminated composites of aluminum/jute fibers-epoxy containing nanoclay particles. Fib. Polym. 2020, 21, 2607–2613. [Google Scholar] [CrossRef]
- Mirzamohammadi, S.; Eslami-Farsani, R.; Ebrahimnezhad-Khaljiri, H. The effect of hybridizing natural fibers and adding montmorillonite nanoparticles on the impact and bending properties of eco-friendly metal/composite laminates. Adv. Eng. Mater. 2023, 25, 2201791. [Google Scholar] [CrossRef]
- Vinod, M.; Kumar, C.A.; Sollapur, S.B.; Bhosale, S.Y.; Kawade, M.M.; Dakhole, M.Y.; Kumar, P. Study on fabrication and mechanical performance of flax fibre-reinforced aluminium 6082 laminates. J. Inst. Engin India D 2024, 105, 1905–1916. [Google Scholar] [CrossRef]
- Vinod, M.; Kumar, C.A.; Sollapur, S.B.; Patro, S.; Kawade, M.M.; Chowdari, G.K.; Bavan, S. Study on low-velocity impact performance of chemical treated flax fibre-reinforced aluminium 6082 laminates. J. Inst. Engin India D 2024, 106, 399–409. [Google Scholar] [CrossRef]
- Kandare, E.; Yoo, S.; Chevali, V.S.; Khatibi, A.A. On the notch sensitivity of flax fibre metal laminates under static and fatigue loading. Fat. Fract. Eng. Mater. Struct. 2018, 41, 1691–1705. [Google Scholar] [CrossRef]
- Alcaraz, M.; Alderliesten, R.C.; Mosleh, Y. FLAx-REinforced Aluminum (FLARE): A Bio-Based Fiber Metal Laminate Alternative Combining Impact Resistance and Vibration Damping. Adv. Eng. Mater. 2025, 27, 2400183. [Google Scholar] [CrossRef]
- Qu, Z.; Pan, X.; Hu, X.; Guo, Y.; Shen, Y. Evaluation of nano-mechanical behavior on flax fiber metal laminates using an atomic force microscope. Materials 2019, 12, 3363. [Google Scholar] [CrossRef]
- Hussain, M.; Imad, A.; Saouab, A.; Kanit, T.; Nawab, Y.; Herbelot, C.; Kashif, M. Properties and characterization of novel 3D jute reinforced natural fibre aluminium laminates. J. Compos. Mater. 2021, 55, 1879–1891. [Google Scholar] [CrossRef]
- Rajamurugan, G.A.P.S.; Sanjay, A.P.; Krishnasamy, P.; Muralidharan, B.; Jain, S. Drilling and mechanical performance analysis on flax-sisal hybrid composite embedded with perforated aluminum foil. J. Reinf. Plast. Compos. 2020, 39, 902–917. [Google Scholar] [CrossRef]
- Nair, M.H.; Assis, S.M.; Soumyalata, D.; Nair, S.G. Behaviour of coir reinforced aluminium laminate epoxy under ballistic impact. AIP Conf. Proc. 2022, 2520, 030004. [Google Scholar]
- dos Santos, J.C.; Vieira, L.M.; Freire, R.T.; Christoforo, A.L.; Rubio, J.C.; Panzera, T.H. Evaluation of mechanical properties of low cost FMLs fabricated with coir fibre-reinforced composites. In Proceedings of the 4th Brazilian Conference on Composite Materials, Rio de Janeiro, Brazil, 22–25 July 2018; Pontifícia Universidade Católica do Rio de Janeiro: Rio de Janeiro, Brazil, 2018; pp. 482–493. [Google Scholar]
- Nik Ismail, N.A.; Halip, J.A.; Roslan, M.N.; Ismail, A.E.; Baharuddin, N.; Kamarudin, K.; Shaari, M.F. Mechanical Properties of Novel Hybrid Bamboo Fibre/Aluminium Mesh Reinforced Polymer Composite. Pertanika J. Sci. Technol. 2018, 32, 1–19. [Google Scholar] [CrossRef]
- Hussain, F.; Sivakumar, D.; Daud, M.A.; Selamat, M.Z. Tensile performance of palm oil fiber metal laminate. Proc. Mech. Eng. Res. Day 2016, 2016, 121–122. [Google Scholar]
- Purnowidodo, A.; Sutedja, D.B.D.; Anam, K. Tensile strength and fatigue crack growth behaviour of natural fibre metal laminates. J. Eng. Sci. Technol. 2020, 15, 2809–2822. [Google Scholar]
- Malingam, S.D.; Feng, N.L.; Khoon, L.C.; Fadzullah, S.H.S.M.; Mustafa, Z.; Subramonian, S. The influences of fibre parameters on the tensile and flexural response of lightweight thermoplastic kenaf fibre reinforced metal composites. J. Nat. Fib. 2020, 20, 966–978. [Google Scholar] [CrossRef]
- Ng, L.F.; Yahya, M.Y.; Muthukumar, C.; Parameswaranpillai, J.; Leong, H.Y.; Hamzah, S.M.S.A.S. Drop-weight impact responses of kenaf fibre-reinforced composite-metal laminates: Effect of chemical treatment and fibre composition. Appl. Sci. Eng. Prog. 2024, 17, 7082. [Google Scholar] [CrossRef]
- Suárez, C.M.; Montejo, P.R.; Junco, O.G. Effects of alkaline treatments on natural fibers. J. Phys. Conf. Ser. 2021, 2046, 012056. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Jawaid, M. A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast. Rubber Compos. 2017, 46, 119–136. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Al Rashid, A.; Sheikh, M.F. Effect of anodizing process on inter laminar shear strength of GLARE composite through T-peel test: Experimental and numerical approach. Exper. Techn. 2021, 45, 227–235. [Google Scholar] [CrossRef]
- Droździel, M.; Podolak, P.; Nardi, D.; Jakubczak, P. The mechanical effects of kissing bonding defects in hybrid metal-composite laminates. Comp. Struct. 2021, 269, 114027. [Google Scholar] [CrossRef]
- Doğan, M.A.; Gemi, L.; Yazman, Ş.; Ceritbinmez, F.; Yapici, A. Effect of hybridization and stacking sequence on damage development in AWJ machining of Al/FRP/Al FML composites. J. Manuf. Proc. 2024, 131, 141–159. [Google Scholar] [CrossRef]
- Yaghoubi, A.S.; Liaw, B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams. Int. J. Impact Eng. 2013, 54, 138–148. [Google Scholar] [CrossRef]
- Villanueva, G.R.; Cantwell, W.J. The high velocity impact response of composite and FML-reinforced sandwich structures. Compos. Sci. Technol. 2004, 64, 35–54. [Google Scholar] [CrossRef]
- Sarasini, F.; Fiore, V. A systematic literature review on less common natural fibres and their biocomposites. J. Clean. Prod. 2018, 195, 240–267. [Google Scholar] [CrossRef]
- Palanisamy, S.; Kalimuthu, M.; Nagarajan, R.; Fernandes Marlet, J.M.; Santulli, C. Physical, chemical, and mechanical characterization of natural bark fibers (NBFs) reinforced polymer composites: A bibliographic review. Fibers 2023, 11, 13. [Google Scholar] [CrossRef]
- Kini, A.K.; Shenoy, S. Effect of natural fibre-epoxy plies on the mechanical and shock wave impact response of fibre metal laminates. Eng. Sci. 2022, 19, 292–300. [Google Scholar]
- Kuan, H.T.N.; Cantwell, W.J.; Hazizan, M.A.; Santulli, C. The fracture properties of environmental-friendly fiber metal laminates. J. Reinf. Plast. Compos. 2011, 30, 499–508. [Google Scholar] [CrossRef]
- Feng, N.L.; DharMalingam, S.; Zakaria, K.A.; Selamat, M.Z. Investigation on the fatigue life characteristic of kenaf/glass woven-ply reinforced metal sandwich materials. J. Sandw. Struct. Mater. 2019, 21, 2440–2455. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Ishak, M.R.; Salit, M.S.; Leman, Z.; Jawaid, M.; Naveen, J. Mechanical properties of a novel fibre metal laminate reinforced with the carbon, flax, and sugar palm fibres. BioResources 2018, 13, 5725–5739. [Google Scholar] [CrossRef]
- Zareei, N.; Geranmayeh, A.; Eslami-Farsani, R. The effect of different configurations on the bending and impact properties of the laminated composites of aluminum-hybrid basalt and jute fibers-epoxy. Fib. Polym. 2019, 20, 1054–1060. [Google Scholar] [CrossRef]
- Govindarajan, P.R.; Shanmugavel, R.; Subramanian, K.; Palanisamy, S.; Santulli, C.; Fragassa, C. Effect of stacking sequence on mechanical and water absorption characteristics of jute/banana/basalt fabric aluminium fibre laminates with diamond microexpanded mesh. Int. J. Polym. Sci. 2024, 2024, 3835788. [Google Scholar] [CrossRef]
- Ng, L.F.; Yahya, M.Y.; Muthukumar, C.; Woo, X.J.; Muhaimin, A.H.; Majid, R.A. Mechanical characterization of aluminum sandwich structures with woven-ply pineapple leaf/glass fiber-reinforced hybrid composite core. J. Nat. Fib. 2023, 20, 2160404. [Google Scholar] [CrossRef]
- Hussain, M.; Imad, A.; Nawab, Y.; Saouab, A.; Herbelot, C.; Kanit, T. Effect of matrix and hybrid reinforcement on fibre metal laminates under low–velocity impact loading. Compos. Struct. 2022, 288, 115371. [Google Scholar] [CrossRef]
- Kali, N.; Pathak, S.; Korla, S. Effect on vibration characteristics of fiber metal laminates sandwiched with natural fibers. Mater. Today Proc. 2020, 28, 1092–1096. [Google Scholar] [CrossRef]
- Hoang, A.T.; Kumar, S.; Lichtfouse, E.; Cheng, C.K.; Varma, R.S.; Senthilkumar, N.; Nguyen, P.Q.P.; Nguyen, X.P. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere 2022, 302, 134825. [Google Scholar] [CrossRef] [PubMed]
- Ukanwa, K.S.; Patchigolla, K.; Sakrabani, R.; Anthony, E.; Mandavgane, S. A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability 2019, 11, 6204. [Google Scholar] [CrossRef]
- Singh, P.; Walia, R.S.; Jawalkar, C.S. A comprehensive review study on aluminium based hybrid composites with organic and inorganic reinforcements. Sādhanā 2023, 48, 34. [Google Scholar] [CrossRef]
- Choudhury, A.; Nanda, J.; Das, S.N.; Singh, A.K. Bio-waste Reinforced an Alternative Way of Increasing Performance of Aluminum Metal Matrix Composites. In Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERD; Springer: Singapore, 2020; pp. 757–764. [Google Scholar]
- Kulkarni, P.P.; Siddeswarappa, B.; Kumar, K.S.H. A survey on effect of agro waste ash as reinforcement on aluminium base metal matrix composites. Open J. Compos. Mater. 2019, 9, 312. [Google Scholar] [CrossRef]
- Xia, C.; Yu, J.; Shi, S.Q.; Qiu, Y.; Cai, L.; Wu, H.F.; Ren, H.; Nie, X.; Zhang, H. Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Compos. Part B Eng. 2017, 114, 121–127. [Google Scholar] [CrossRef]
- Ben, F.; Olubambi, P.A. Agro waste reinforcement of metal matrix composites, a veritable sustainable engineering achievement, or an effort in futility? A critical review. Mater. Res. Express 2024, 11, 062004. [Google Scholar] [CrossRef]
- Germano Braga, G.; Assunção Rosa, F.; César dos Santos, J.; Del Pino, G.G.; Panzera, T.H.; Scarpa, F. Fully biobased composite and fiber-metal laminates reinforced with Cynodon spp. fibers. Polym. Compos. 2023, 44, 453–464. [Google Scholar] [CrossRef]
- Raj, R.J.; Selvam, P.; Pughalendi, M. A review of aluminum alloys in aircraft and aerospace industry. J. Huazhong Univ. Sci. Technol. 2021, 1671, 4512. [Google Scholar]
- Vijayan, M.; Selladurai, V.; Kumar, V.V. Investigating the influence of nano-silica on low-velocity impact behavior of aluminium-glass fiber sandwich laminate. Silicon 2023, 15, 4845–4859. [Google Scholar] [CrossRef]
- Piras, S.; Salathia, S.; Guzzini, A.; Zovi, A.; Jackson, S.; Smirnov, A.; Fragassa, C.; Santulli, C. Biomimetic use of food-waste sources of calcium carbonate and phosphate for sustainable materials—A review. Materials 2024, 17, 843. [Google Scholar] [CrossRef] [PubMed]
- Santulli, C.; Fragassa, C.; Pavlovic, A.; Nikolic, D. Use of sea waste to enhance sustainability in composite materials: A review. J. Mar. Sci. Eng. 2023, 11, 855. [Google Scholar] [CrossRef]
- Pramono, A.; Sulaiman, F.; Suryana, S.; Alfirano, A.; Milandia, A. Effect of pressure distribution on hydroxyapatite (HAp) based hybrid composites made from the milkfish bones. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 2020; Volume 988, pp. 182–191. [Google Scholar]
- Sibin Raj, R.; Shadakshari, R.; Asha; Barath Kumar, P.B.; Madan Tej, N.; Soumya. Mechanical and Tribological Characterization of Al alloy-based Bio Composite. ACS J. Sci. Eng. 2024, 4, 11–16. [Google Scholar]
- Bhuvaneswari, V.; Rajeshkumar, L.; Ross, K.N.S. Influence of bioceramic reinforcement on tribological behaviour of aluminium alloy metal matrix composites: Experimental study and analysis. J. Mater. Res. Technol. 2021, 15, 2802–2819. [Google Scholar] [CrossRef]
- Bhuvaneswari, V.; Rajeshkumar, L.; Saravanakumar, R.; Balaji, D. Synthesis and characterization of bioceramics reinforced aluminium matrix composites. Archiv. Metall. Mater. 2022, 67, 1217–1226. [Google Scholar] [CrossRef]
- Kumar, B.P.; Birru, A.K. Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method. Transact. Nonferr. Metals Soc. China 2017, 27, 2555–2572. [Google Scholar] [CrossRef]
- Tokutomi, J.; Uemura, T.; Sugiyama, S.; Shiomi, J.; Yanagimoto, J. Hot extrusion to manufacture the metal matrix composite of carbon nanotube and aluminum with excellent electrical conductivities and mechanical properties. CIRP Annals 2015, 64, 257–260. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Ikubanni, P.P.; Orhadahwe, T.A.; Christopher, C.T.; Akano, J.M.; Agboola, O.O.; Adegoke, S.O.; Balogun, A.O.; Ibikunle, R.A. Sustainability of multifaceted usage of biomass: A review. Heliyon 2021, 7, e0825. [Google Scholar] [CrossRef]
- Ostapiuk, M.; Surowska, B.; Bieniaś, J. Interface analysis of fiber metal laminates. Compos. Interfaces 2014, 21, 309–318. [Google Scholar] [CrossRef]
- Gegel, G.A.; Weiss, D.J. Enabling technology for the design of short-fiber reinforced aluminum MMC components. Int. J. Metalcast. 2007, 1, 57–67. [Google Scholar] [CrossRef]
- Majumdar, B.S.; Miracle, D.B. Interface measurements and applications in fiber-reinforced MMCs. Key Eng. Mater. 1995, 116, 153–172. [Google Scholar] [CrossRef]
- Kandpal, C.; Kumar, J.; Singh, H. Manufacturing and technological challenges in Stir casting of metal matrix composites—A Review. Mater. Today Proc. 2018, 5, 5–10. [Google Scholar] [CrossRef]
- Hossain, M.R.; Islam, M.A.; Van Vuure, A.; Verpoest, I. Quantitative analysis of hollow lumen in jute. Proc. Eng. 2014, 90, 52–57. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Gregorova, E.; Pabst, W. Porous ceramics prepared using poppy seed as a pore-forming agent. Ceram. Int. 2007, 33, 1385–1388. [Google Scholar] [CrossRef]
- Poddar, S.; Kamruzzaman, M.; Sujan, S.M.A.; Hossain, M.; Jamal, M.S.; Gafur, M.A.; Khanam, M. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 2014, 131, 43–48. [Google Scholar] [CrossRef]
- Mahesh, V.; Mahesh, V. Development and mechanical characterization of light weight fiber metal laminate using jute, kenaf and aluminium. Mech. Adv. Compos. Struct. 2024, 11, 259–270. [Google Scholar]
- Tesfay, A.G.; Welegebreal, H.G. Optimization of banana fiber treatment parameters for improved textile performance. Discover Mater. 2025, 5, 101. [Google Scholar] [CrossRef]
- Ramesh, G.; Gokilakrishnan, G.; Jayaraja, B.G.; Patil, P.P. High-content Al-T6/pineapple fiber/brass mesh reinforcements on nanosilica-toughened epoxy hybrid natural fiber metal laminate composite for aircraft applications. Biomass Convers. Biorefin. 2024, 14, 14017–14025. [Google Scholar] [CrossRef]
- Hassen, A.A.; Dizbay-Onat, M.; Bansal, D.; Bayush, T.; Vaidya, U. Utilization of chicken eggshell waste as a bio-filler for thermoplastic polymers: Thermal and mechanical characterization of polypropylene filled with naturally derived CaCO3. Polym. Polym. Compos. 2015, 23, 653–662. [Google Scholar] [CrossRef]
- Raja, R.; George, L.; Jannet, S.; Simha, I.P.V.; Ratna, S.K. Development and analysis of SiC, TiO2, and Biochar hybrid reinforced aluminium-based metal matrix composite. Adv. Mater. Proc. Technol. 2022, 8 (Suppl. 3), 1485–1493. [Google Scholar] [CrossRef]
- Praveen, K.; Raja, R.; Jannet, S.; George, L. Investigation on the machinability of biochar reinforced AA5083 metal matrix composites fabricated by stir casting technique. Eng. Res. Express 2023, 6, 015016. [Google Scholar] [CrossRef]
- Ibrahim, K.O.; David, O.A.; Oluwadunsin, I.E.; Weyinmi, O.S.; Ebenezer, A.T.; Buliaminu, K. Reinforcement of Aluminium Matrix Composites with Particulate Agricultural Waste Derivatives for Automotive Applications: A Review. In School of Engineering and Engineering Technology Annual Conference (SEET Conference); Trans Tech Publications Ltd.: Wollerau, Switzerland, 2024; p. 111. [Google Scholar]
Aluminum Alloy | Lignocellulosic Fiber | Production Method | Ref. |
---|---|---|---|
6082 | Flax | Hand layup + compression molding | [127,128] |
2024 T3 | Flax | Prepreg + bonding | [129] |
2024 T3 | Flax (FLARE) | Wet layup + vacuum bagging | [130] |
2024 T3 | Flax | Vacuum-assisted resin transfer molding (VARTM) | [131] |
7075 T6 | Jute | Vacuum infusion | [132] |
Perforated foil | Flax/sisal | Hand layup + vacuum packing | [133] |
1200 | Coir | Hand layup + cold compression | [134] |
2024 T3 | Coir | Bonding | [135] |
Mesh | Bamboo | Vacuum infusion | [136] |
6061-O | Palm oil | Polypropylene bonding | [137] |
1100 | Hibiscus tiliaceus | VARTM | [138] |
5052 | Kenaf | Polypropylene hot compression molding | [139,140] |
Aluminum Alloy | Lignocellulosic Fiber | Other Fiber | Production Method | Ref. |
---|---|---|---|---|
6061 | Banana | Aramid | Hand layup + cold compression | [150] |
2024-O | Phormium (also indicated, as in the specific work, as “New Zealand flax”), hemp | Basalt | Self-reinforced polypropylene | [151] |
5052 | Kenaf | Glass | Polypropylene hot press molding + bonding | [152] |
2024 T3 | Flax, sugar palm | Carbon | Hand layup + hot compression | [153] |
2024 T6 | Jute | Basalt | Hand layup + 80 °C post-curing | [154] |
6061 (Mesh) | Jute, banana | Basalt | Compression molding | [155] |
5052-H32 | Pineapple | Glass | Hot pressing (170 °C) | [156] |
7075 T6 | Jute | Aramid, carbon | Hand layup + compression (also with PVB) | [157] |
Factors | Compared Materials |
---|---|
Reduced cost | FML (especially if waste biomass is used) MMC (some reduction, but carbonization impact needs to be considered, unless ashes are received from waste) |
Reduced weight | FML (depending on the amount of biomass) MMC (limited, just owed to ashes’ porosity) |
Mechanical properties | FML (need for fiber treatment not to be reduced) MMC (may even be higher than with ceramic fillers) |
Production | FML (no further complexity) MMC (some processes, such as stir casting, are preferable) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragassa, C.; Santulli, C. Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates. J. Compos. Sci. 2025, 9, 356. https://doi.org/10.3390/jcs9070356
Fragassa C, Santulli C. Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates. Journal of Composites Science. 2025; 9(7):356. https://doi.org/10.3390/jcs9070356
Chicago/Turabian StyleFragassa, Cristiano, and Carlo Santulli. 2025. "Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates" Journal of Composites Science 9, no. 7: 356. https://doi.org/10.3390/jcs9070356
APA StyleFragassa, C., & Santulli, C. (2025). Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates. Journal of Composites Science, 9(7), 356. https://doi.org/10.3390/jcs9070356