Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = leguminous plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1560 KiB  
Article
Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids
by Fouad Meradsi, Adel Lekbir, Oussama A. Bensaci, Abdelkader Tifferent, Asim Abbasi, Assia Djemoui, Nazih Y. Rebouh, Abeer Hashem, Graciela Dolores Avila-Quezada, Khalid F. Almutairi and Elsayed Fathi Abd_Allah
Insects 2025, 16(8), 817; https://doi.org/10.3390/insects16080817 - 7 Aug 2025
Abstract
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages [...] Read more.
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages of the broad bean variety (Histal) against black aphids’ herbivory. This had been achieved through an evaluation of plant resistance mechanisms such as antixenosis and antibiosis. The results regarding an antixenosis test revealed that the four tested phenological stages of V. faba did not have a significant effect on the preference of A. craccivora and A. fabae towards the crop plant. Overall, a slightly higher number of adults settled on the three and four unfolded leaves’ stage of the crop plant. Similarly, the highest number of developed embryos were found in the four leaves’ stage of the crop, and the lowest in the second leaf stage. The adult body size of A. craccivora was slightly larger in the case of the three unfolded leaves. Furthermore, the maximum body size of A. fabae adults was recorded in the case of the first unfolded leaf stage crop. Linear correlations between the biological parameters for both species revealed only one significant relationship between developed and total embryos for A. craccivora. The results of the current study highlight the need to protect broad bean crops against infestations of black aphids, i.e., A. craccivora and A. fabae. This is essential for reducing direct damage and preventing the transmission of phytoviruses. However, future studies should aim to evaluate the susceptibility of all developmental phenological stages of the crop against black aphids to mitigate potential crop losses. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

22 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 181
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 1984 KiB  
Review
Progress on 3-Nitropropionic Acid Derivatives
by Meng-Lin Feng, Zheng-Hui Li and Bao-Bao Shi
Biomolecules 2025, 15(8), 1066; https://doi.org/10.3390/biom15081066 - 24 Jul 2025
Viewed by 310
Abstract
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered [...] Read more.
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered significant research interest. Derivatives of 3-NPA, formed through esterification, have a wide range of biological activities including neurotoxic, antiviral, insecticidal, antimicrobial and antioxidant properties. This review systematically summarizes the structural characteristics, biological activities, and chemical synthesis of 3-NPA-derived compounds, providing valuable insights for further research and therapeutic applications. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives with Antiviral Activity)
Show Figures

Graphical abstract

19 pages, 322 KiB  
Article
Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat
by Jesús Humberto Reyna-Fuentes, Cecilia Carmela Zapata-Campos, Jorge Ariel Torres-Castillo, Daniel López-Aguirre, Juan Antonio Núñez-Colima, Luis Eliezer Cruz-Bacab, Fabián Eliseo Olazarán-Santibáñez, Fernando Sánchez-Dávila, Aida Isabel Leal-Robles and Juan Antonio Granados-Montelongo
Metabolites 2025, 15(7), 457; https://doi.org/10.3390/metabo15070457 - 5 Jul 2025
Viewed by 536
Abstract
Background: Xerophilous scrubland is a semi-desert ecosystem characterized by a wide diversity of shrubs, which have secondary compounds with nutraceutical potential that could be used as feed for livestock, specifically by goats, since this species has developed behavioral and physiological adaptations that [...] Read more.
Background: Xerophilous scrubland is a semi-desert ecosystem characterized by a wide diversity of shrubs, which have secondary compounds with nutraceutical potential that could be used as feed for livestock, specifically by goats, since this species has developed behavioral and physiological adaptations that allow it to take advantage of the plant resources of said scrubland. Objective: To evaluate the nutraceutical potential of Havardia pallens and Vachellia rigidula, native species of the xerophilous scrubland, when incorporated as ingredients in goat diets. Methods: Integral diets for male goats were prepared, formulated with 35% inclusion of Havardia pallens, Vachellia rigidula, and Medicago sativa, the latter used as a plant control species. The content of flavonoids and total phenols was compared using colorimetric methods, and the antioxidant capacity was measured using the FRAP method. RP-HPLC-ESI-MS characterized the bioactive compounds in the different extracts. Statistical analysis was performed by ANOVA. Results: The aqueous extraction of Vachellia rigidula showed the highest concentration of total phenols (x¯ = 18.22 mg GAE/g−1), followed by the ethanolic extract in the same species (x¯ = 17.045 mg GAE/g−1). Similarly, Vachellia rigidula presented the highest antioxidant capacity (x¯ = 144,711.53 µmol TE/g−1), while Medicago sativa presented the lowest (x¯ = 11,701.92 µmol TE/g). The RP-HPLC-ESI-MS analysis revealed that Vachellia rigidula presented a higher abundance of flavones, catechins, flavonols, methoxyflavones, and tyrosols. However, Harvardia pallens presented higher levels of methoxycinnamic and hydroxycinnamic acids. One-way ANOVA results showed that diets containing 35% Vachellia rigidula and Havardia pallens significantly contrasted (p < 0.05), increased the content of secondary compounds and antioxidant capacity compared to the control species. Furthermore, including Vachellia rigidula led to a significantly higher antioxidant capacity (p < 0.05) than diets with Havardia pallens or Medicago sativa. Conclusions: Incorporating the leguminous shrubs Vachellia rigidula and Havardia pallens into the formulation of comprehensive diets for buck goats improves the content and availability of phenols, flavonoids, and antioxidants. However, in vivo evaluation of these diets is important to determine their physiological and productive effects on the animals. Full article
(This article belongs to the Section Food Metabolomics)
18 pages, 1874 KiB  
Article
Soil Drenching with Wood Distillate Modifies the Nutritional Properties of Chickpea (Cicer arietinum L.) Seeds by Increasing the Protein Content and Inducing Targeted Changes in the Proteomic Profile
by Rossana De Salvo, Riccardo Fedeli, Alfonso Carleo, Luca Bini, Stefano Loppi and Laura Bianchi
Plants 2025, 14(13), 2046; https://doi.org/10.3390/plants14132046 - 3 Jul 2025
Viewed by 471
Abstract
The production of food with a naturally enriched protein content is a strategic response to the growing global demand for sustainable protein sources. Wood distillate (WD), a by-product of the pyrolysis of woody biomass, has previously been shown to increase the protein concentration [...] Read more.
The production of food with a naturally enriched protein content is a strategic response to the growing global demand for sustainable protein sources. Wood distillate (WD), a by-product of the pyrolysis of woody biomass, has previously been shown to increase the protein concentration and bioavailability in chickpea seeds. Here, we evaluated the effect of 0.5% (v/v) WD soil drenching on chickpea productivity, nutritional profile, and proteomic pattern. WD treatment significantly improved the yield by increasing plant biomass (+144%), number of pods and seeds (+148% and +147%), and seed size (diameter: +6%; weight: +25%). Nutritional analyses revealed elevated levels of soluble proteins (+15%), starch (+11%), fructose (+135%), and polyphenols (+14%) and a greater antioxidant capacity (25%), alongside a reduction in glucose content, albeit not statistically significant, suggesting an unchanged or even lowered glycemic index. Although their concentration decreased, Ca (−31%), K (−12%), P (−5%), and Zn (−14%) in WD-treated plants remained within normal ranges. To preliminary assess the quality and safety of the protein enrichment, a differential proteomic analysis was performed on coarse flours from individual seeds. Despite the higher protein content, the overall protein profiles of the WD-treated seeds showed limited variation, with only a few storage proteins, identified as legumin and vicilin-like isoforms, being differentially abundant. These findings indicate a general protein concentration increase without a major alteration in the proteoform composition or differential protein synthesis. Overall, WD emerged as a promising and sustainable biostimulant for chickpea cultivation, capable of enhancing both yield and nutritional value, while maintaining the proteomic integrity and, bona fide, food safety. Full article
(This article belongs to the Special Issue Bio-Based Solutions for Sustainable Plant Systems)
Show Figures

Figure 1

33 pages, 498 KiB  
Review
Functional Genomics: From Soybean to Legume
by Can Zhou, Haiyan Wang, Xiaobin Zhu, Yuqiu Li, Bo Zhang, Million Tadege, Shihao Wu, Zhaoming Qi and Zhengjun Xia
Int. J. Mol. Sci. 2025, 26(13), 6323; https://doi.org/10.3390/ijms26136323 - 30 Jun 2025
Viewed by 536
Abstract
The Fabaceae family, the third-largest among flowering plants, is nutritionally vital, providing rich sources of protein, dietary fiber, vitamins, and minerals. Leguminous plants, such as soybeans, peas, and chickpeas, typically contain two to three times more protein than cereals like wheat and rice, [...] Read more.
The Fabaceae family, the third-largest among flowering plants, is nutritionally vital, providing rich sources of protein, dietary fiber, vitamins, and minerals. Leguminous plants, such as soybeans, peas, and chickpeas, typically contain two to three times more protein than cereals like wheat and rice, with low fat content (primarily unsaturated fats) and no cholesterol, making them essential for cardiovascular health and blood sugar management. Since the release of the soybean genome in 2010, genomic research in Fabaceae has advanced dramatically. High-quality reference genomes have been assembled for key species, including soybeans (Glycine max), common beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and model legumes like Medicago truncatula and Lotus japonicus, leveraging long-read sequencing, single-cell technologies, and improved assembly algorithms. These advancements have enabled telomere-to-telomere (T2T) assemblies, pan-genome constructions, and the identification of structural variants (SVs) and presence/absence variations (PAVs), enriching our understanding of genetic diversity and domestication history. Functional genomic tools, such as CRISPR-Cas9 gene editing, mutagenesis, and high-throughput omics (transcriptomics, metabolomics), have elucidated regulatory networks controlling critical traits like photoperiod sensitivity (e.g., E1 and Tof16 genes in soybeans), seed development (GmSWEET39 for oil/protein transport), nitrogen fixation efficiency, and stress resilience (e.g., Rpp3 for rust resistance). Genome-wide association studies (GWAS) and comparative genomics have further linked genetic variants to agronomic traits, such as pod size in peanuts (PSW1) and flowering time in common beans (COL2). This review synthesizes recent breakthroughs in legume genomics, highlighting the integration of multi-omic approaches to accelerate gene cloning and functional confirmation of the genes cloned. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
19 pages, 754 KiB  
Article
Effectiveness of Sunn Hemp (Crotalaria juncea L.) in Reducing Wireworm Damage in Potatoes
by Lorenzo Furlan, Stefano Bona, Roberto Matteo, Luca Lazzeri, Isadora Benvegnù, Nerio Casadei, Elisabetta Caprai, Ilaria Prizio and Bruno Parisi
Insects 2025, 16(7), 674; https://doi.org/10.3390/insects16070674 - 27 Jun 2025
Viewed by 622
Abstract
Wireworms are a major threat to potatoes. Agronomic prevention is always the first IPM strategy to be implemented. This work assesses whether a bioactive cover crop, sunn hemp (Crotalaria juncea L.), a tropical leguminous plant, reduces wireworm damage risk when cultivated as [...] Read more.
Wireworms are a major threat to potatoes. Agronomic prevention is always the first IPM strategy to be implemented. This work assesses whether a bioactive cover crop, sunn hemp (Crotalaria juncea L.), a tropical leguminous plant, reduces wireworm damage risk when cultivated as a crop preceding potatoes. The effects of Crotalaria plants (alive, chopped, and incorporated) on wireworms and tuber-damage prevention were studied in semi-natural (pots) and open-field conditions. The survival of a set number of reared wireworms feeding on Crotalaria plants or potato tubers in soil with incorporated Crotalaria chopped tissues was assessed. Wireworm damage on tubers was assessed in fields where Crotalaria had been cultivated, chopped, and incorporated the previous year. The tuber damage assessment involved counting all the erosions/scars caused by wireworm feeding. The prevalent wireworm species studied was Agriotes sordidus. Our research is the first to demonstrate that Crotalaria as a cover crop can significantly reduce potato damage by wireworms. A major role is likely played by the high pyrrolizidine alkaloid content in Crotalaria juncea tissues, but this has to be specifically proven. Crotalaria juncea may thus represent an effective means for use alone or with complementary ones to produce potatoes with low wireworm damage without using synthetic insecticides. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 3432 KiB  
Article
The Improvement Effects of Intercropping Systems on Saline-Alkali Soils and Their Impact on Microbial Communities
by Yan-Jun Wang, Gao-Xiang Qi, Na-Na Wang, Hong-Yun Dong, Yan Zhang, Han Lu, Ying Li, Hong-Cheng Wang, Xin-Hua Li and Hong-Yuan Liu
Microorganisms 2025, 13(7), 1436; https://doi.org/10.3390/microorganisms13071436 - 20 Jun 2025
Viewed by 433
Abstract
Saline-alkali soil has poor fertility and low organic matter content, which are key factors that limit agricultural productivity. Intercropping systems can enhance biodiversity in farmlands, thereby increasing the organic matter content. During this process, soil microorganisms respond to environmental changes. Therefore, we conducted [...] Read more.
Saline-alkali soil has poor fertility and low organic matter content, which are key factors that limit agricultural productivity. Intercropping systems can enhance biodiversity in farmlands, thereby increasing the organic matter content. During this process, soil microorganisms respond to environmental changes. Therefore, we conducted a three-year intercropping enhancement experiment using saline-alkali soil. To avoid nutrient and microbial differences caused by the varying nutrient demands of different crop types, we systematically sampled the tillage layer of the soil (0–20 cm) from the subsequent crop (wheat season) in the intercropping systems. We found that compared to the control group, the three intercropping systems significantly increased the nutrient content in saline-alkali soil, including total nitrogen, total phosphorus, total potassium, organic matter, available nitrogen, and available potassium. Notably, there were significant increases in total nitrogen, organic matter, and available potassium. The intercropping systems had varying effects on the alpha and beta diversities of soil bacteria and fungi. Specifically, the effect of intercropping on fungal alpha diversity was significantly greater than that on bacterial alpha diversity, whereas its effect on bacterial beta diversity was greater than that on fungal beta diversity. Additionally, intercropping influenced microbial community composition, increasing the abundance of Acidobacteria and Gemmatimonadetes and decreasing the abundance of Actinobacteria. It also increased the abundance of Ascomycota and Mortierella and decreased the abundance of Basidiomycota. Total nitrogen and soil organic matter were identified as the primary environmental factors that significantly affected bacterial community composition; however, they had no significant impact on fungal communities. Intercropping had different effects on the fungal and bacterial networks. It increased the stability and complexity of the bacterial network. However, although it improved the stability of the fungal network, intercropping reduced its complexity. In summary, intercropping with leguminous plants is an effective way to enhance soil nutrients, particularly organic matter, in saline-alkali soils. Simultaneously, intercropping affects the soil microbial community structure of subsequent crops; however, the responses of bacteria and fungi to intercropping are significantly different. The results of this study provide data support for improving saline-alkali land through planting systems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 1927 KiB  
Article
Optimizing Nitrogen Fixation in Vicia sativa: The Role of Host Genetic Diversity
by María Isabel López-Román, Cristina Castaño-Herrero, Lucía De la Rosa and Elena Ramírez-Parra
Agronomy 2025, 15(6), 1479; https://doi.org/10.3390/agronomy15061479 - 18 Jun 2025
Viewed by 513
Abstract
Common vetch (Vicia sativa L.) is a legume widely used both as a grain and as forage due to its high protein content, which provides considerable nutritional enrichment for livestock feed. As a cover crop, it has the potential to fix atmospheric [...] Read more.
Common vetch (Vicia sativa L.) is a legume widely used both as a grain and as forage due to its high protein content, which provides considerable nutritional enrichment for livestock feed. As a cover crop, it has the potential to fix atmospheric nitrogen through symbiosis with rhizobia, contributing to sustainable agricultural systems by enhancing soil fertility and reducing the dependence on chemical fertilizers. Although much research has been focused on optimizing Rhizobium inoculants to enhance biological nitrogen fixation (BNF) in leguminous crops, the role of host plant genetic diversity in BNF has been underexplored. This study analyses a collection of V. sativa genotypes to evaluate their BNF by assaying their nodulation capacity, nodule nitrogenase activity, nitrogen fixation potential, and impact on biomass development. Our results reveal large variability in these parameters among the different genotypes, emphasizing the relevance of host legume diversity in the Rhizobium symbiosis. These findings show a direct relationship between nodule biomass development, nitrogen fixation capacity, shoot biomass production, and nitrogen content. However, no correlation was observed for other parameters such as the number of nodules, nitrogenase activity, and shoot nitrogen content. Taken together, these results suggest that selecting genotypes with high BNF capacity could be a promising strategy to improve nitrogen fixation in legume-based agricultural systems. Full article
(This article belongs to the Special Issue Natural and Non-Conventional Sources of Nitrogen for Plants)
Show Figures

Figure 1

17 pages, 935 KiB  
Article
Feeding Behavior of the European Brown Hare (Lepus europaeus, Leu2 Haplotype) on Pianosa Island: Insights into the Absence of Trophic Competition
by Pierangelo Freschi, Simonetta Fascetti, Francesco Riga, Marco Zaccaroni, Francesca Giannini, Emilia Langella and Carlo Cosentino
Vet. Sci. 2025, 12(6), 546; https://doi.org/10.3390/vetsci12060546 - 3 Jun 2025
Viewed by 497
Abstract
This study investigates the feeding behavior of the European brown hare on Pianosa Island, Italy, focusing on seasonal dietary preferences in coastal and inland areas. We quantified plant species frequencies in vegetation and fecal pellets, assessed α and β diversity, compared diets via [...] Read more.
This study investigates the feeding behavior of the European brown hare on Pianosa Island, Italy, focusing on seasonal dietary preferences in coastal and inland areas. We quantified plant species frequencies in vegetation and fecal pellets, assessed α and β diversity, compared diets via Bray–Curtis matrices, and evaluated selection preferences using the Resource Selection Ratio. During spring, the coastal diet was predominantly composed of grasses, particularly Dactylis glomerata, while non-leguminous forbs like Hedypnois rhagadioloides were prominent inland. Fabaceae, including Lotus ornithopodioides, were highly preferred. In autumn, non-leguminous forbs, such as Crepis foetida, were favored on the coast, while grasses like Bromus hordeaceus dominated inland. Fabaceae, particularly Trifolium species, remained a key component of the diet. Plant diversity peaked in spring and decreased markedly in autumn. Dietary overlap between seasons was moderate, with higher similarity observed in the coastal area. The study underscores the importance of Fabaceae and seasonal vegetation changes in shaping the hare’s diet. These findings provide valuable insights for conservation, emphasizing the need to preserve key plant species and habitats to support isolated hare populations in Mediterranean ecosystems. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

31 pages, 2935 KiB  
Article
Comprehensive Assessment of Alfalfa Aluminum Stress Resistance Using Growth and Physiological Trait Analysis
by Nannan Tang, Xiangming Zeng, Jizhi Wei, Zhou Li, Xuechun Zhao, Jihui Chen, Xinyao Gu, Chao Chen and Rui Dong
Agriculture 2025, 15(11), 1168; https://doi.org/10.3390/agriculture15111168 - 29 May 2025
Viewed by 439
Abstract
Alfalfa (Medicago sativa L.) is an important perennial leguminous forage; however, its high sensitivity to aluminum (Al) stress severely restricts its cultivation in regions with acidic soil. Therefore, this study conducted an integrated assessment of Al stress tolerance by performing systematic evaluations [...] Read more.
Alfalfa (Medicago sativa L.) is an important perennial leguminous forage; however, its high sensitivity to aluminum (Al) stress severely restricts its cultivation in regions with acidic soil. Therefore, this study conducted an integrated assessment of Al stress tolerance by performing systematic evaluations of 11 growth and physiological parameters across 30 alfalfa cultivars under Al stress, and calculated the Al tolerance coefficients based on these parameters. The results revealed that Al stress markedly inhibited root growth and biomass accumulation in alfalfa, thereby triggering increased malondialdehyde (MDA) content in roots across most cultivars, the scope of increase is 0.19–183.07%. Moreover, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased by 7.50–121.44%, 2.50–135.89%, and 3.84–70.01%, respectively. Based on the comprehensive evaluation value (D) obtained via principal component analysis and membership function, the 30 alfalfa cultivars were categorized into four distinct groups: 4 highly Al-tolerant cultivars, 11 moderately high-Al-tolerant cultivars, 9 moderately low-Al-tolerant cultivars, and 6 low-Al-tolerant cultivars. Stepwise linear regression analysis identified root elongation rate, root-to-shoot ratio, root volume, SOD, MDA, CAT, root dry weight, POD, and root length as pivotal indicators for predicting and evaluating Al stress tolerance in alfalfa cultivars. The qRT-PCR analysis showed dynamic changes in ABC transporter gene expression in alfalfa roots over time under aluminum stress. Therefore, this study comprehensively evaluated Al tolerance by systematically investigating the morphophysiological effects of Al stress across 30 alfalfa cultivars using principal component analysis (PCA), membership function, and hierarchical clustering analysis. It provides a practical solution for expanding alfalfa planting in acid soil and improving feed production in acidic environments. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

22 pages, 3897 KiB  
Article
Integrative Identification of Chloroplast Metabolism-Related RETICULATA-RELATED Genes in Soybean
by Qianli Dong, Lu Niu, Xiyu Gong, Qianlong Xing, Jie Liang, Jun Lang, Tianya Wang and Xiangdong Yang
Plants 2025, 14(10), 1516; https://doi.org/10.3390/plants14101516 - 19 May 2025
Viewed by 508
Abstract
As a globally important leguminous crop, soybean (Glycine max L.) serves as a vital source of edible oils and proteins for humans and livestock. Oils in leaves can help crops combat fungal infections, adapt to temperature changes via fatty acid modulation, and [...] Read more.
As a globally important leguminous crop, soybean (Glycine max L.) serves as a vital source of edible oils and proteins for humans and livestock. Oils in leaves can help crops combat fungal infections, adapt to temperature changes via fatty acid modulation, and support resource recycling during leaf senescence. However, accumulating oils in leaves is a fundamental challenge due to the need to balance the inherently competing photosynthesis and fatty acid biosynthesis processes within chloroplasts. RETICULATA-RELATED (RER), known to regulate chloroplast function and plastid metabolism in Arabidopsis, plays an essential role in leaf development. Here, 14 non-redundant GmRER genes were identified in soybean and phylogenetically classified into four subclades. Most Arabidopsis RER genes were evolutionarily preserved as gene duplicates in soybean, except for GmRER5 and GmRER6. RNA secondary structures spanning the coding sequences (CDSs), the 5′- and 3′- untranslated regions (UTRs) of GmRERs, displayed exceptional structural plasticity in CDSs, while exhibiting limited conservation in UTRs. In contrast, protein structures retained conserved folds, underscoring evolutionary constraints on functional domains despite transcriptional plasticity. Notably, GmRER4a and GmRER4b represented an exceptional case of high similarity in both protein and RNA structures. Expression profiling across fourteen tissues and three abiotic stress conditions revealed a dynamic shift in expression levels between leaf-predominant and root-enriched GmRER paralogs after stress treatments. A comparative transcriptome analysis of six soybean landraces further revealed transcriptional polymorphism in the GmRER family, which was associated with the expression patterns of lipid biosynthesis regulators. Our comprehensive characterization of GmRERs may offer potential targets for soybean breeding optimization in overall plant oil production. Full article
(This article belongs to the Special Issue Advances in Oil Regulation in Seeds and Vegetative Tissues)
Show Figures

Figure 1

16 pages, 3190 KiB  
Article
Transcriptomic Analysis for Key Periods of Radicle Development in Contrasting Soybean Varieties HN75 and HN76
by Fengli Yu, Liang Mi and Dawei Xin
Agronomy 2025, 15(5), 1186; https://doi.org/10.3390/agronomy15051186 - 14 May 2025
Viewed by 440
Abstract
The root conformation of soybean is critical to achieve physiological activities such as nodulation and nitrogen fixation; however, the molecular determinants behind genotypic differences in its early development remain poorly described. In this study, we compared the characteristics of the soybean varieties HN75 [...] Read more.
The root conformation of soybean is critical to achieve physiological activities such as nodulation and nitrogen fixation; however, the molecular determinants behind genotypic differences in its early development remain poorly described. In this study, we compared the characteristics of the soybean varieties HN75 and HN76 and examined developmental disparities in their root architectural characteristics and the transcriptomic profiles of radicles between them. The plant height and 100-grain weight of HN75, which had a longer growth cycle of 170 days, were slightly higher than those of HN76, which had a shorter growth cycle of 120 days. However, the numbers of pods and grains per plant were slightly lower. In terms of quality traits, HN75 had a higher oil content (23.40% versus 21.50%), whereas HN76 had a higher protein content (41.39% versus 35.71%). HN75 exhibited markedly superior root elongation (13.27 cm versus 10.15 cm), enhanced lateral root proliferation, and significantly greater nodule formation (19.53 versus 8.60 nodules per plant) relative to HN76 at 30 days post-germination, notwithstanding comparable nodule biomass. Chronobiological analysis (0–96 h post-germination) identified a pivotal developmental window of 48–72 h post-germination. Transcriptomic profiling of radicle tissues revealed 4792 differentially expressed genes (DEGs) in HN75 compared to 896 in HN76 during this critical interval, indicating substantially heightened transcriptional activity in HN75. Functional annotation enrichment demonstrated that HN75 DEGs were significantly enriched in phytohormone signalling cascades and isoprenoid biosynthetic pathways, whereas HN76 DEGs were predominantly associated with protein processing within the endoplasmic reticulum. We screened for eight genes (Glyma 10G071400, Glyma 13G057500, Glyma 08G016900, Glyma 09G028000, Glyma 18G265800, Glyma 03G032800, Glyma 02G064100, and Glyma 01G238600) that may play a role in the critical period of radicle development by performing network analyses and verified their dramatic changes in expression during this period by qRT-PCR. These results elucidate varietal-specific physiological and molecular mechanisms governing early radicle development in soybeans. These findings unravel mechanisms governing leguminous radicle development while establishing molecular blueprints for engineering cultivation protocols that would enhance soybean sustainability in edaphically constrained environments. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

27 pages, 4786 KiB  
Article
Transcriptomic Regulatory Mechanisms of Isoflavone Biosynthesis in Trifolium pratense
by Kefan Cao, Sijing Wang, Huimin Zhang, Yiming Ma, Qian Wu, Fan Huang and Mingjiu Wang
Agronomy 2025, 15(5), 1061; https://doi.org/10.3390/agronomy15051061 - 27 Apr 2025
Viewed by 547
Abstract
Isoflavones are important secondary metabolites in leguminous plants with significant physiological functions and economic value. However, the genetic variation, transcriptional regulation, and metabolic pathways governing isoflavone biosynthesis in Trifolium pratense remain largely unexplored. In this study, we systematically analyzed 500 accessions of T. [...] Read more.
Isoflavones are important secondary metabolites in leguminous plants with significant physiological functions and economic value. However, the genetic variation, transcriptional regulation, and metabolic pathways governing isoflavone biosynthesis in Trifolium pratense remain largely unexplored. In this study, we systematically analyzed 500 accessions of T. pratense for isoflavone content and performed RNA-seq-based transcriptomic profiling to investigate the molecular mechanisms underlying isoflavone biosynthesis. Cluster analysis revealed significant genetic variation, with distinct transcriptional profiles between high- (H1, H2, H3) and low-isoflavone (L1, L2, L3) groups. GO and KEGG pathway enrichment analyses identified key metabolic pathways, including phenylpropanoid metabolism, flavonoid biosynthesis, carbohydrate metabolism, and hormone signaling, which play crucial roles in isoflavone regulation. Weighted gene co-expression network analysis (WGCNA) identified three key gene modules—MEblue, MEturquoise, and MEyellow—strongly correlated with isoflavone content. The MEturquoise and MEyellow modules were upregulated in high-isoflavone groups and were enriched in phenylpropanoid biosynthesis, lipid metabolism, and transcriptional regulation, suggesting that these pathways actively promote isoflavone accumulation. Conversely, the MEblue module, highly expressed in low-isoflavone groups, was enriched in sugar metabolism and MAPK signaling, indicating a potential metabolic flux shift away from secondary metabolism. Moreover, key rate-limiting enzymes (PAL, C4H, 4CL, CHS, and IFS) exhibited higher expression in high-isoflavone groups, highlighting their importance in precursor supply and enzymatic catalysis. Additionally, transcription factors such as MYB, WRKY, and NAC were identified as potential regulators of isoflavone biosynthesis, indicating a complex interplay between hormonal, circadian, and environmental signals. This study provides a comprehensive molecular framework for understanding isoflavone biosynthesis in T. pratense and identifies key regulatory genes and metabolic pathways that could be targeted for genetic improvement, metabolic engineering, and molecular breeding. The findings offer valuable insights into enhancing isoflavone production in legumes for agricultural, nutritional, and pharmaceutical applications. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

19 pages, 2133 KiB  
Article
Phytochemical Characterization and Antioxidant Activity of Cajanus cajan Leaf Extracts for Nutraceutical Applications
by Mariel Monrroy and José Renán García
Molecules 2025, 30(8), 1773; https://doi.org/10.3390/molecules30081773 - 15 Apr 2025
Viewed by 1079
Abstract
Cajanus cajan (guandú) is a widely cultivated leguminous plant in Panama; however, its phytochemical composition remains underexplored. Traditionally used in Asia and Africa for its medicinal properties, the plant’s bioactive compounds responsible for these benefits have not been fully identified. The phytochemical profile [...] Read more.
Cajanus cajan (guandú) is a widely cultivated leguminous plant in Panama; however, its phytochemical composition remains underexplored. Traditionally used in Asia and Africa for its medicinal properties, the plant’s bioactive compounds responsible for these benefits have not been fully identified. The phytochemical profile and antioxidant capacity of C. cajan leaf extracts from Panama were characterized, highlighting their potential applications. Ethanolic extracts obtained via ultrasonication were analyzed through phytochemical screening, confirming the presence of alkaloids, tannins, saponins, and steroids. Spectrophotometric analysis revealed high total phenolic (71 mg g−1) and flavonoid (30 mg g−1) contents. Antioxidant assays demonstrated significant 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+) inhibition and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Gas chromatography–mass spectrometry (GC-MS) analysis identified 35 bioactive compounds in C. cajan leaves for the first time, including lupeol (antimicrobial and antitumor), lupenone (antidiabetic), squalene (antitumor and antioxidant), tocopherol (antioxidant), and β-amyrin (antibacterial and anti-Alzheimer’s). These findings expand the known phytochemical profile of C. cajan, supporting its pharmaceutical, nutraceutical, and agro-industrial potential. Moreover, this research provides a foundation for further studies on the plant’s bioactive compounds and their applications in human health and sustainable agriculture. Full article
(This article belongs to the Special Issue Natural Antioxidants in Functional Food)
Show Figures

Figure 1

Back to TopTop