Effectiveness of Sunn Hemp (Crotalaria juncea L.) in Reducing Wireworm Damage in Potatoes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Crotalaria juncea Characteristics—Sampling and Content Analysis
2.1.1. Crotalaria juncea Plant Sampling
2.1.2. Sample Preparation
2.1.3. Analytical Standards and Reagents
2.1.4. Performance Evaluation
2.1.5. LC-MS/MS System and Chromatographic Conditions for Analysis
2.2. Pot Experiments
2.2.1. Trial 1—Effect of Growing Crotalaria Plants on Wireworms
- Crotalaria juncea: 10 seeds per pot with no larvae (wireworms);
- Crotalaria juncea + larvae at sowing: 10 seeds per pot with six Agriotes litigiosus Rossi larvae introduced two days after pot preparation. Larvae head width ranged from 0.90 mm to 1.20 mm;
- Crotalaria juncea + larvae after sowing: plants thinned out at three per pot at the 6–7 true leaf stage, immediately followed by introduction of 12 A. litigiosus Rossi larvae from the same group used for Treatment 2 introduced.
2.2.2. Trial 2—Effect of Incorporating Crotalaria Biomass on Wireworms
- (1)
- Crotalaria juncea Madras® (Nutrien Italia, Livorno, Italy) (CROTALARIA), 9.25 g per liter of soil (i.e., 37 t/ha fresh weight or 10.175 g/pot);
- (2)
- Metarhizium brunneum strain Ma43 BIPESCO 5 powder (Agrifutur, Alfianello, Italy) (METARHIZIUM), 0.2 g/m2 at seeding and 0.1 g/m2 once every 3 weeks, added to 150 mL water;
- (3)
- Untreated tubers.
2.2.3. Pot Inspections and Surveys
Larvae Survival/Mortality
- Alive and moving (left on the towel, they moved away quickly);
- Dying (left on the towel for a minute, they could not move in a specific direction), or almost immobile but alive;
- Dead.
Trial 1—Survey on C. juncea Plants
Trial 2—Survey on Potato Tubers
- -
- Number of superficial scars/holes;
- -
- Number of deep scars/holes.
2.3. Field Experiments
2.3.1. Crotalaria Cultivation Information
2.3.2. Potato Cultivation and Experiment Information
2.3.3. Assessment of Wireworm Species/Level
2.3.4. Estimation of Soil Pest Damage to Potato Tubers
2.4. Larvae Identification
2.5. Statistical Analysis
3. Results
3.1. Pot Trials
3.1.1. Trial 1
3.1.2. Trial 2
3.2. Field Experiments
3.2.1. Crotalaria Characteristics: Biomass Production and Alkaloid Analysis Results
Roots | MAD | Stems | MAD | Leaves | MAD | Flowers | MAD | ||
---|---|---|---|---|---|---|---|---|---|
Intermedine | (µg kg−1) | 0.0 (10.25) | 0.00 | ||||||
Intermedine N-oxide | (µg kg−1) | 2.0 (40.43) | 2.00 | ||||||
Lycopsamine | (µg kg−1) | 0.0 (40.18) | 0.00 | ||||||
Lycopsamine N-oxide | (µg kg−1) | 0.0 (44.58) | 0.00 | ||||||
Monocrotaline N-oxide | (µg kg−1) | 0.0 (4.95) | 0.00 | 0.0 (2.33) | 0.00 | ||||
Isatidine (Retrorsine N-oxide) | (µg kg−1) | 0.0 (2.80) | 0.00 | 0.0 (3.73) | 0.00 | 6.45 (12.40) | 3.85 | ||
Seneciphylline | (µg kg−1) | 0.0 (3.30) | 0.00 | 0.0 (11.30) | 0.00 | 0.0 (16.18) | 0.00 | ||
Senecionine N-oxide | (µg kg−1) | 0.0 (34.45) | 0.00 | ||||||
Senecivernine | (µg kg−1) | 0.0 (50.45) | 0.00 | ||||||
Trichodesmine | (µg kg−1) | 291.95 (1603.28) | 46.05 | 50.25 (360.93) | 12.25 | 09.40 (47.68) | 1.70 | 0.0 (1.38) | 0.00 |
Total Alkaloids in whole plant | (µg kg−1) | 808.75 (2053.83) | 512.80 | 74.65 (377.78) | 36.65 | 69.50 (77.73) | 60.10 | 10.45 (55.93) | 2.75 |
Total Alkaloids per hectare | (g ha−1) | 0.75 (2.97) | 0.36 | 0.56 (3.17) | 0.33 | 0.23 (0.34) | 0.20 | 0.0 (0.02) | 0.00 |
3.2.2. Assessment of Wireworm Species/Density
3.2.3. Effect of Crotalaria Incorporation on Potato Damage by Wireworms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veres, A.; Wyckhuys, K.A.; Kiss, J.; Tóth, F.; Burgio, G.; Pons, X.; Avilla, C.; Vidal, S.; Razinger, J.; Bazok, R.; et al. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environ. Sci. Pollut. Res. 2020, 27, 29867–29899. [Google Scholar] [CrossRef]
- Furlan, L.; Tóth, M. Cooperators. Occurrence of click beetle pest spp. (Coleoptera, Elateridae) in Europe as detected by pheromone traps: Survey results of 1998-2006. IOBC/WPRS Bull. 2007, 30, 19–25. [Google Scholar]
- Vernon, R.S.; van Herk, W.G. Wireworms as pests of potato. In Insect Pests of Potato: Global Perspectives on Biology and Management; Academic Press: Cambridge, MA, USA, 2013; pp. 103–164. [Google Scholar] [CrossRef]
- Kuhar, T.P.; Speese, J., III; Whalen, J.; Alvarez, J.M.; Alyokhin, A.; Ghidiu, G.; Spellman, M.R. Current status of insecticidal control of wireworms in potatoes. Pestic. Outlook 2003, 14, 265–267. [Google Scholar] [CrossRef]
- Furlan, L.; Bona, S.; Benvegnù, I.; Cacitti, V.; Govoni, F.; Parisi, B. Integrated Pest Management of Wireworms in Potatoes: Use of Tolerant Varieties to Implement Damage Prevention. Insects 2024, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Tijjani, A.; Abdullahi, A.; Khairulmazmi, A. The role of crop protection in sustainable potato (Solanum tuberosum L.) production to alleviate global starvation problem: An overview. In Solanum tuberosum—A Promising Crop for Starvation Problem; Yildiz, M., Ozgen, Y., Eds.; Intech Open: London, UK, 2021. [Google Scholar] [CrossRef]
- Pisa, L.; Goulson, D.; Yang, E.-C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.K.; Giorio, C.; et al. An update of the worldwide integrated assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. 2017, 28, 11749–11797. [Google Scholar] [CrossRef]
- Beaumelle, L.; Tison, L.; Eisenhauer, N.; Hines, J.; Sandhya Malladi, S.; Pelosi, C.; Thouvenot, L.; Phillips, H.R.P. Pesticide effects on soil fauna communities. A meta-analysis. J. Appl. Ecol. 2023, 60, 1239–1253. [Google Scholar] [CrossRef]
- Le Cointe, R.; Larroudé, P.; Thibord, I.B.; Lehmus, J.; Ogier, J.C.; Mahéo, F.; Malet, M.; Dolo, P.; Ngala, B.; Plantegenest, M. Etat des lieux des connaissances sur les taupins (Coléoptères: Elatéridés) et des stratégies alternatives aux pesticides pour la gestion des dégâts. Innov. Agron. 2023, 89, 78–90. [Google Scholar]
- European Court of Auditors. Special Report, Sustainable Use of Plant Protection Products: Limited Progress in Measuring and Reducing Risks. 2020. Available online: https://op.europa.eu/webpub/eca/special-reports/pesticides-5-2020/en/index.html (accessed on 1 May 2025).
- Furlan, L.; Bonetto, C.; Finotto, A.; Lazzeri, L.; Malaguti, L.; Patalano, G.; Parker, W. The efficacy of biofumigant meals and plants to control wireworm populations. Ind. Crops Prod. 2010, 31, 245–254. [Google Scholar] [CrossRef]
- Curto, G.; Dallavalle, E.; Lazzeri, L. Life cycle duration of Meloidogyne incognita and host status of Brassicaceae and Capparaceae selected for glucosinate content. Nematology 2005, 7. [Google Scholar] [CrossRef]
- Meena, R.S.; Lal, R. Legumes and Sustainable Use of Soils. In Legumes for Soil Health and Sustainable Management; Das, A., Yadav, G., Lal, R., Eds.; Springer: Singapore, 2018; pp. 1–31. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Sengupta, S.; Debnath, S. Development of sunn hemp (Crotalaria juncea) fibre based unconventional fabric. Ind. Crops Prod. 2018, 116, 109–115. [Google Scholar] [CrossRef]
- Schramm, S.; Köhler, N.; Rozhon, W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules 2019, 24, 498. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.D.; Deokule, S.S.; Bhosle, S.V. Some unique ethnomedicinal uses of plants used by the Korku tribe of Amravati district of Maharashtra, India. J. Ethnopharmacol. 2006, 107, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Letsyo, E.; Dzikunoo, J.; Dzah, C.S.; Adams, Z.S.; Asante-Donyinah, D. Hepatic phytotoxins in herbal medicines: A review of Africa’s pyrrolizidine alkaloid-containing plants, their traditional uses, contamination pathways and associated health risks. South Afr. J. Bot. 2023, 161, 78–89. [Google Scholar] [CrossRef]
- Kumar, R.; Bordoloi, N. Combined impact of reduced N fertilizer and green manure on wheat yield, nitrogen use efficiency and nitrous oxide (N2O) emissions reduction in Jharkhand, eastern India. Field Crops Res. 2024, 318, 109591. [Google Scholar] [CrossRef]
- Arone, G.J.; Ocaña, R.; Sánchez, A.; Villadas, P.J.; Fernández-López, M. Benefits of Crotalaria juncea L. as Green Manure in Fertility and Soil Microorganisms on the Peruvian Coast. Microorganisms 2024, 12, 2241. [Google Scholar] [CrossRef]
- Wang, K.H.; Sipes, B.S.; Schmitt, D.P. Suppression of Rotylenchulus reniformis by Crotalaria juncea, Brassica napus and Tagetes erecta. Nematropica 2001, 31, 235–249. [Google Scholar]
- Wang, K.H.; Sipes, B.S.; Schmitt, D.P. Crotalaria as a cover crop for nematode management. Nematropica 2002, 32, 35–57. [Google Scholar]
- Thoden, T.; Boppré, M. Plants producing pyrrolizidine alkaloids: Sustainable tools for nematode management? Nematology 2010, 12, 1–24. [Google Scholar] [CrossRef]
- Dinardo-Miranda, L.; Gil, M.A. Efeito da rotação com Crotalaria juncea na produtividade da cana-de-açúcar, tratada ou não com nematicidas no plantio. Nematol. Bras. 2005, 29, 63–66. [Google Scholar]
- Hartmann, T.; Ober, D. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Top. Curr. Chem. 2000, 209, 207–244. [Google Scholar] [CrossRef]
- Wageningen Food and Safety Research. EURL MP-Background Doc_003 Guidance Document Performance Criteria v1.4 Draft; Wageningen Food and Safety Research: Wageningen, The Netherlands, 2024. [Google Scholar]
- Wageningen Food and Safety Research. EURL MP-Method_002 v2, 2019, Determination of Pyrrolizidine Alkaloids in Plantbased Food and Feed Materials, Including (Herbal) Teas, Herbal Food Supplements, Fodder and Feedstuffs by LC-MS/MS; Wageningen Food and Safety Research: Wageningen, The Netherlands, 2019. [Google Scholar]
- Furlan, L. The biology of Agriotes sordidus Illiger (Col.; Elateridae). J. Appl. Entomol. 2004, 128, 696–706. [Google Scholar] [CrossRef]
- Civolani, S.; Benvegnù, I.; Accinelli, G.; Martina, B.; Bernacchia, G.; Parisi, B.; Furlan, L. Evaluation of natural active ingredients for the protection of potato tubers from wireworm damage. Arthropod-Plant Interact. 2023, 17, 455–463. [Google Scholar] [CrossRef]
- Furlan, L. IPM thresholds for Agriotes wireworm species in maize in Southern Europe. J. Pest. Sci. 2014, 87, 609–617. [Google Scholar] [CrossRef]
- Furlan, L.; Benvegnù, I.; Bilò, M.F.; Lehmhus, J.; Ruzzier, E. Species identification of wireworms (Agriotes spp.; coleoptera: Elateridae) of agricultural importance in Europe: A new “horizontal identification table”. Insects 2021, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Corporation. Microsoft Excel (Version 16.0.4266.1001); Microsoft Corporation: Redmond, WA, USA, 2016. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Noguchi, K.; Abel, R.S.; Marmolejo-Ramos, F.; Konietschke, K. Nonparametric multiple comparisons. Behav. Res. Methods 2020, 52, 489–502. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 May 2025).
- Lyford, C.L.; Vergava, G.G.; Moeller, D.D. Hepatic veno-occlusive disease originating in Ecuador. Gastroenterology 1976, 70, 105–108. [Google Scholar] [CrossRef]
- Kostenko, O.; Mulder, P.P.; Bezemer, T.M. Effects of root herbivory on pyrrolizidine alkaloid content and aboveground plant-herbivore-parasitoid interactions in Jacobaea vulgaris. J. Chem. Ecol. 2013, 39, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Kato, N.; Matsuoka, M. Variety and Seeding Time Influence on Flowering Characteristics and Trichodesmine Content in Sunn Hemp (Crotalaria juncea L.). Legume Res. 2022, 45, 888–892. [Google Scholar] [CrossRef]
- Colegate, S.M.; Gardner, D.R.; Joy, R.J.; Betz, J.M.; Panter, K.E. Dehydropyrrolizidine alkaloids, including monoesters with an unusual esterifying acid, from cultivated Crotalaria juncea (Sunn Hemp cv. ‘Tropic Sun’). J. Agric. Food Chem. 2012, 60, 3541–3550. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; World Health Organization, International Agency for Research on Cancer: Geneva, Switzerland, 1976; 1972–PRESENT. (Multivolume work); Volume 10, p. 270. Available online: https://publications.iarc.fr/28 (accessed on 7 June 2025).
- WHO. Environ Health Criteria 80: Pyrrolizidine Alkaloids. 1988. Available online: https://www.inchem.org/documents/ehc/ehc/ehc080.htm (accessed on 7 June 2025).
- Caprai, E.; Prizio, I.; Peloso, M.; Minkoumba Sonfack, G.; Bonan, S.; Benini, N.; Ghidini, S.; Varrà, M.O.; Zanardi, E.; Lanza, G.T.; et al. Case reports of tropane alkaloid contamination in spinach from Italy and its potential implications for consumer health. Food Control 2024, 160, 110334. [Google Scholar] [CrossRef]
- Meagher, R.L.; Nagoshi, R.N.; Brown, J.T. Flowering of the Cover Crop Sunn Hemp, Crotalaria juncea L. Hortscience 2017, 52, 986–990. [Google Scholar] [CrossRef]
- Treadwell, D.D.; Alligood, M. Sunn hemp (Crotalaria juncea L.): A Summer Cover Crop for Florida Vegetable Producers. Publication #HS1126. Univ. of Florida IFAS Extension. 2008. Available online: https://journals.flvc.org/edis/article/view/117221/115337 (accessed on 7 June 2025).
Geographical coordinates | 44.37036 N–11.35094 E |
Soil texture classification | sandy clay loam |
Tillage operations prior sunn hemp sowing | Harrowing |
Tillage operations after sunn hemp sowing | no operations |
Preceding crops (Two-year basis) | 2018, sugar beet→ durum wheat; 2019, sugar beet→ barley |
Sunn hemp cultivar | Madras® |
Seed spacing (cm) | 4.5 × 22.5 |
Date of sowing | 9 July 2018 27 June 2019 |
Mineral fertilization at sowing (kg/ha of N, P2O5, K2O) | 36 (N) 36 (P2O5) 51 (K2O) |
Mineral fertilization at plant height 25–30 cm (kg/ha of N, K2O, MgO) | 70 (N) |
Irrigation systems | rain gun hose reel |
Disease chemical control (Active ingredient/commercial products/no. of foliar sprayings) | no treatments |
Pest chemical control (Active ingredient/commercial products/no. of foliar sprayings) | no treatments |
Date of plant chopping of green manure | 21 October 2018 14 October 2019 |
Date of ploughing of green manure | 23 October 2018 16 October 2019 |
Type of Erosion | Diameter (mm) | Characteristics |
---|---|---|
Small | 1–2 | Open wound |
Ordinary | 2–5 | Open wound |
Large | >5 | Open wound |
Old | Variable | Healed, deformed hole due to early attack and tuber development |
Field Code Treatment | Green Manure Prior to Potato Crop | Wireworm Control by | ||
---|---|---|---|---|
Application of Soil Insecticide in Furrow at Planting | Application of Soil Insecticide in Furrow at Row-Ridging | Drip Application | ||
1-NT-NS | === | === | === | === |
2-T-NS | === | Mocap® * | Force Evo® ** | === |
3-T-NS | === | Mocap® * | Force Evo® ** | Organic Fertilizer *** (five times) |
4-T-NS | === | === | === | Organic Fertilizer *** (five times) |
1-NT-CJ | Crotalaria **** | === | === | === |
2-T-CJ | Crotalaria **** | Mocap® * | Force Evo® ** | === |
3-T-CJ | Crotalaria **** | Mocap® * | Force Evo® ** | Organic Fertilizer *** (five times) |
4-T-CJ | Crotalaria **** | === | === | Organic Fertilizer *** (five times) |
Treatment | Plant Height (cm) | Root Length (cm) | Damaged Plants (no.) | Damaged Plants (%) | Shoots Fresh Weight (g) | Roots Fresh Weight (g) | Total Fresh Weight (g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No wireworms | 50.0 (48.63) | A | 17.0 (18.83) | A | 0.0 (0.0) | B | 0.0 (0.0) | b | 1.55 (1.59) | B | 0.2 (0.25) | b | 1.84 (1.84) | B |
Wireworms at sowing | 54.5 (52.3) | A | 15.0 (17.16) | B | 2.5 (2.25) | A | 33.04 (30.8) | ab | 1.78 (1.76) | B | 0.21 (0.25) | b | 1.95 (2.01) | B |
Wireworms after emergence | 48.0 (50.55) | B | 14.0 (14.45) | C | 2.0 (1.75) | B | 66.67 (66.67) | a | 2.05 (2.05) | A | 0.23 (0.24) | a | 2.33 (2.28) | A |
Treatment | Wireworms Introduced | Live Wireworms | Dead Wireworms | Adult Wireworms | Total Wireworms | Exuviae | Alive Wireworms (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wireworms at sowing | 6.0 (6.0) | 4.0 (3.25) | a | 0.0 (0.0) | A | 0.0 (0.25) | a | 4.0 (3.5) | A | 1.0 (0.75) | a | 66.67 (58.33) | A | |
Wireworms after emergence | 12.0 (12.0) | 8.5 (8.25) | a | 0.0 (0.25) | A | 0.0 (0.0) | a | 9.0 (8.5) | A | 0.5 (0.5) | b | 70.83 (68.75) | A |
Treatment | Total Erosions | Severe Erosions | Small Erosions | |||
---|---|---|---|---|---|---|
Crotalaria | 2.00 (1.50) | b | 0.50 (0.75) | b | 0.50 (0.50) | B |
Metarhizium | 4.00 (3.50) | b | 1.00 (1.25) | b | 2.50 (2.25) | Ab |
Untreated | 9.50 (8.25) | a | 4.00 (4.00) | a | 4.00 (4.00) | A |
Treatment | Alive Larvae | Dying Larvae | Dead Larvae | Missing Larvae |
---|---|---|---|---|
Crotalaria | 75.00 (70.83) | 0.00 (4.17) | 0.00 (0.00) | 25.00 (25.00) |
Metarhizium | 58.33 (54.17) | 0.00 (0.00) | 0.00 (0.00) | 41.67 (45.83) |
Untreated | 66.67 (62.50) | 0.00 (0.00) | 0.00 (4.17) | 33.33 (33.33) |
UM | Roots | Stems | Leaves | Flowers | Total | |
---|---|---|---|---|---|---|
Fresh weight | Mg ha−1 | 4.5 ± 0.2 | 29.6 ± 7.1 | 18.4 ± 2.7 | 2.1 ± 0.6 | 54.6 ± 9.9 |
Dry weight | Mg ha−1 | 1.4 ± 0.2 | 7.7 ± 2.1 | 4.9 ± 1.1 | 0.5 ± 0.2 | 14.4 ± 3.4 |
Nitrogen | kg ha−1 | 12.2 ± 1.0 | 123.6 ± 34.1 | 191.5 ± 42.5 | 22.5 ± 7.5 | 349.9 ± 82.7 |
Year | Period | Trial | Wireworm Species | ||
---|---|---|---|---|---|
No. in Bait Trap * | MAD ** | No. in Damaged Tubers | |||
2018 | Autumn | 1 | 1.00 (0.81) A. sordidus | 1.00 | not applicable |
2019 | Harvest | 1 | n.a. | n.a. | 4, A. sordidus |
2020 | Harvest | 2 | n.a. | n.a. | 6, A. sordidus |
Mocap® | ||||||
---|---|---|---|---|---|---|
Green Manure Prior to Potato Crop | YES | NO | Median (Average) | |||
Untreated | 16.13 (15.59) | 39.76 (38.84) | 22.02 (27.22) | A | ||
Crotalaria juncea | 10.43 (12.11) | 18.89 (21.28) | 15.14 (16.69) | B | ||
Median (average) | 13.85 (14.60) | B | 25.75 (30.06) | A |
Mocap® | |||||
---|---|---|---|---|---|
Green Manure Prior to Potato Crop | YES | NO | Median (Average) | ||
NO | 33.48 (14.41) | B | 85.69 (85.33) | a | 60.69 (60.01) a |
Crotalaria juncea | 14.41 (18.82) | B | 59.15 (56.41) | a | 31.73 (37.62) b |
Median (average) | 28.92 (26.75) | A | 77.55 (70.87) | b |
Severe Damage (%) | BIOFENCE FL (Drip Irrigation) | Mocap® + Force Evo® | Median (Average) | ||
---|---|---|---|---|---|
NO | YES | NO | YES | ||
Untreated | 83 (69) | 57 (57) | 84 (83) | 32 (33) | 74 (62) a |
Crotalaria | 27 (34) | 49 (40) | 59 (54) | 13 (17) | 30 (37) b |
Severe Damage (%) | BIOFENCE FL (Drip Irrigation) | Mocap® + Force Evo® | Median (Average) | ||
---|---|---|---|---|---|
NO | YES | NO | YES | ||
Untreated | 3.48 (3.49) | 2.64 (3.20) | 4.17 (4.52) | 2.00 (2.17) | 2.79 (3.35) a |
Crotalaria | 1.83 (2.28) | 2.06 (2.26) | 2.56 (2.71) | 1.79 (1.83) | 1.96 (2.27) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furlan, L.; Bona, S.; Matteo, R.; Lazzeri, L.; Benvegnù, I.; Casadei, N.; Caprai, E.; Prizio, I.; Parisi, B. Effectiveness of Sunn Hemp (Crotalaria juncea L.) in Reducing Wireworm Damage in Potatoes. Insects 2025, 16, 674. https://doi.org/10.3390/insects16070674
Furlan L, Bona S, Matteo R, Lazzeri L, Benvegnù I, Casadei N, Caprai E, Prizio I, Parisi B. Effectiveness of Sunn Hemp (Crotalaria juncea L.) in Reducing Wireworm Damage in Potatoes. Insects. 2025; 16(7):674. https://doi.org/10.3390/insects16070674
Chicago/Turabian StyleFurlan, Lorenzo, Stefano Bona, Roberto Matteo, Luca Lazzeri, Isadora Benvegnù, Nerio Casadei, Elisabetta Caprai, Ilaria Prizio, and Bruno Parisi. 2025. "Effectiveness of Sunn Hemp (Crotalaria juncea L.) in Reducing Wireworm Damage in Potatoes" Insects 16, no. 7: 674. https://doi.org/10.3390/insects16070674
APA StyleFurlan, L., Bona, S., Matteo, R., Lazzeri, L., Benvegnù, I., Casadei, N., Caprai, E., Prizio, I., & Parisi, B. (2025). Effectiveness of Sunn Hemp (Crotalaria juncea L.) in Reducing Wireworm Damage in Potatoes. Insects, 16(7), 674. https://doi.org/10.3390/insects16070674