Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Collection
2.3. Bromatological Analysis
2.4. Metabolite Extraction and Secondary Compound Analysis
2.5. Total Flavonoids
2.6. Total Phenols
2.7. Antioxidant Capacity by the Ferric Iron (Fe+3) Reduction Method (FRAP)
2.8. RP-HPLC-ESI-MS
2.9. Diet Formulation and Standardization
2.10. Statistical Analysis
3. Results
3.1. Bromatological Analysis
3.2. Total Phenolic (TPC) and Flavonoid Content (TFC)
3.3. Antioxidative Capacity
3.4. Identification of Phytochemicals
4. Discussion
4.1. Bromatological Analysis
4.2. Phenolic Acids
4.3. Antioxidative Capacity
4.4. Phytochemical Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
GAE | Gallic acid equivalent |
TE | Trollox equivalents |
mmol | Millimole |
Mg | Milligram |
g | Gram |
kg | Kilogram |
RP-HPLC-ESI-MS | Reverse Phase-High Performance Liquid Chromatography-electrospray Ionization-Mass Spectrometry |
FAO | Food and Agriculture Organization of the United Nations |
CP | Crude protein |
NDF | Neutral detergent fiber |
ADF | Acid detergent fiber |
N | North |
W | West |
°C | Centigrade degrees |
mm | Milimeters |
m | Meters |
DM | Dry matter |
Co. | Company |
USA | United States of America |
mL | Milliliter |
min | Minutes |
No. | Number |
rpm | Revolutions per minute |
v/v | volume/volume |
µL | Microliter |
nm | Nanometers |
QE | Quercetin equivalents |
Fe+3 | Ferric iron |
Fe+2 | Ferrous |
FRAP | Ferric reducing antioxidant power |
pH | Hydrogen potential |
TPTZ | 2,4,6-TRI (2-Pyridil) -1,3,5-triazine |
mM | Molar mass |
HCl | Hydrochloric acid |
FeCl3 | Iron chloride |
µm | Millionth of mol |
[M-H] (m/z) | mass |
kV | Kilovolt |
V | Volts |
h | hour |
SEM | StanDVRd error of mean |
RT | Retention time |
PRPs | Production of salivary proline-rich proteins |
ROS | Reactive oxygen species |
DNA | Deoxyribonucleic acid |
MJ | Megajoules |
CO2 | Carbon dioxide |
H2 | Hydrogen |
References
- Pérez-Escamilla, R.; Salles-Costa, R.; Segall-Corrêa, A.M. Food insecurity experience-based scales and food security governance: A case study from Brazil. Glob. Food Secur. 2024, 41, 100766. [Google Scholar] [CrossRef]
- Rout, P.K.; Behera, B.K. Goat and sheep farming. In Sustainability in Ruminant Livestock; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Taniguchi, M. Utilizing Indigenous Animal Genetic Resources—Based on research into indigenous cattle breeds in the Basque Country in Northern Spain and indigenous pig breeds in Vietnam. Anim. Sci. J. 2025, 96, e70046. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Park, C.S.; Adeola, O. Nutritional potentials of atypical feed ingredients for broiler chickens and pigs. Animals 2021, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Jacobo, M.A.; Herrera-Haro, J.G.; Hernández-Garay, A.; Vaquera-Huerta, H.; Alejos De La Fuente, J.I.; Cadena-Villegas, S. Yield of five alfalfa varieties during four years of evaluation. Rev. Mex. Cienc. Agríc. 2020, 11, 141–152. [Google Scholar] [CrossRef]
- Kazemi, M. An investigation on chemical/mineral compositions, ruminal microbial fermentation, and feeding value of some leaves as alternative forages for finishing goats during the dry season. AMB Express 2021, 11, 76. [Google Scholar] [CrossRef]
- Ramirez, R.G.; Ledezma-Torres, R.A. Forage utilization from native shrubs Vachellia rigidula and Vachellia farnesiana by goats and sheep. Small Rumin. Res. 1997, 25, 43–50. [Google Scholar] [CrossRef]
- Ngangyo Heya, M.; Maiti, R.; Pournavab, R.F.; Carrillo-Parra, A.; Heya, M.N.; Pournavab, R.F.; Salas Cruz, L.R. Timber-yielding plants of the Tamaulipan thorn scrub: Forest, fodder, and bioenergy potential. In Biology, Productivity and Bioenergy of Timber-Yielding Plants: An Experimental Technology; Springer: Cham, Switzerland, 2017; pp. 1–119. [Google Scholar] [CrossRef]
- Foroughbakhch, R.; Hernández-Piñero, J.L.; Carrillo-Parra, A.; Rocha-Estrada, A. Composition and animal preference for plants used for goat feeding in semiarid Northeastern Mexico. J. Anim. Plant Sci. 2013, 23, 1034–1040. [Google Scholar]
- Zapata-Campos, C.C.; Mellado-Bosque, M.A. The goat: Selection and consumption habits of native plants in arid pastures. CienciaUAT 2021, 15, 169–185. [Google Scholar] [CrossRef]
- National Institute of Statistics and Geography (INEGI). Geography and Environment; INEGI: Aguascalientes, Mexico, 2024. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre, and non-starch carbohydrates in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984, 61, 928–931. [Google Scholar] [CrossRef]
- Brand, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ascacio-Valdés, J.A.; Aguilera-Carbó, A.F.; Buenrostro, J.J.; Prado-Barragán, A.; Rodríguez-Herrera, R.; Aguilar, C.N. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation. J. Basic Microbiol. 2016, 56, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Cerda-Cejudo, N.D.; Buenrostro-Figueroa, J.J.; Sepúlveda, L.; Torres-Leon, C.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Aguilar, C.N. Recovery of ellagic acid from Mexican rambutan peel by solid-state fermentation-assisted extraction. Food Bioprod. Process 2022, 134, 86–94. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT User’s Guide, Version 9.2; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Nardi, M.; Baldelli, S.; Ciriolo, M.R.; Costanzo, P.; Procopio, A.; Colica, C. Oleuropein aglycone peracetylated (3,4-DHPEA-EA(P)) attenuates H2O2-mediated cytotoxicity in C2C12 myocytes via inactivation of p-JNK/p-c-Jun signaling pathway. Molecules 2020, 25, 5472. [Google Scholar] [CrossRef] [PubMed]
- Saba, E.; Lee, Y.S.; Yang, W.K.; Lee, Y.Y.; Kim, M.; Woo, S.M.; Kim, K.; Kwon, Y.S.; Kim, T.H.; Kwak, D.; et al. Effects of an herbal formulation, KGC3P, and its individual component, nepetin, on coal fly dust-induced airway inflammation. Sci. Rep. 2020, 10, 14036. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Kumar, B. LC-MS Identification of Proanthocyanidins in Bark and Fruit of six Terminalia species. Nat. Prod. Commun. 2018, 13, 555–560. [Google Scholar] [CrossRef]
- Liang, J.; Huang, X.; Ma, G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv. 2022, 12, 29197–29213. [Google Scholar] [CrossRef]
- Syarafina, Z.Y.I.; Safithri, M.; Bintang, M.; Kurniasih, R. In silico screening of cinnamon (Cinnamomum burmannii) bioactive compounds as acetylcholinesterase inhibitors. J. Kim. Sains Apl. 2022, 25, 97–107. [Google Scholar] [CrossRef]
- Isemura, M. Catechin in human health and disease. Molecules 2019, 24, 528. [Google Scholar] [CrossRef]
- Gómez-Martínez, M.; Ascacio-Valdés, J.A.; Flores-Gallegos, A.C.; González-Domínguez, J.; Gómez-Martínez, S.; Aguilar, C.N.; Morlett-Chávez, J.A.; Rodríguez-Herrera, R. Location and tissue effects on phytochemical composition and in vitro antioxidant activity of Moringa oleifera. Ind. Crops Prod. 2020, 151, 112439. [Google Scholar] [CrossRef]
- Elloumi, W.; Mahmoudi, A.; Ortiz, S.; Boutefnouchet, S.; Chamkha, M.; Sayadi, S. Wound healing potential of quercetin-3-O-rhamnoside and myricetin-3-O-rhamnoside isolated from Pistacia lentiscus distilled leaves in rats model. Biomed. Pharmacother. 2022, 146, 112574. [Google Scholar] [CrossRef] [PubMed]
- Hikal, W.M.; Baeshen, R.S.; Said-Al-Ahl, H.A.H. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar] [CrossRef]
- Punia, A.; Singh, V.; Thakur, A.; Chauhan, N.S. Impact of caffeic acid on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius). Heliyon 2023, 9, e14593. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Kaur, A.; Sohal, S.K.; Arora, S.; Kaur, H. Bio-efficacy of Vachellia auriculiformis against Bactrocera cucurbitae. In Recent Research Advances in Biology; Book Publisher International (SCIENCEDOMAIN): Istanbul, Turkey, 2021; Volume 9, pp. 87–98. [Google Scholar]
- Qu, Z.; Liu, A.; Li, P.; Liu, C.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Advances in physiological functions and mechanisms of (−)-epicatechin. Crit. Rev. Food Sci. Nutr. 2021, 61, 211–233. [Google Scholar] [CrossRef]
- Gupta, G.; Siddiqui, M.A.; Khan, M.M.; Ajmal, M.; Ahsan, R.; Rahaman, M.A.; Ahmad, M.A.; Arshad, M.; Khushtar, M. Current pharmacological trends on Myricetin. Drug Res. 2020, 70, 448–454. [Google Scholar] [CrossRef]
- Taheri, Y.; Suleria, H.A.R.; Martins, N.; Sytar, O.; Beyatli, A.; Yeskaliyeva, B.; Seitimova, G.; Salehi, B.; Semwal, P.; Painuli, S.; et al. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complement. Med. Ther. 2020, 20, 241. [Google Scholar] [CrossRef]
- Szczepańska, J.; Barba, F.J.; Skąpska, S.; Marszałek, K. High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chem. 2020, 307, 125549. [Google Scholar] [CrossRef]
- Han-Jie, L.; Jantan, I.; Yusoff, S.D.; Jalil, J.; Husain, K. Sinensetin: An insight on its pharmacological activities, mechanisms of action and toxicity. Front. Pharmacol. 2020, 11, 553404. [Google Scholar] [CrossRef]
- Kim, H.H.; Kim, J.K.; Kim, J.; Jung, S.H.; Lee, K. Characterization of caffeoylquinic acids from Lepisorus thunbergianus and their melanogenesis inhibitory activity. ACS Omega 2020, 5, 30946–30955. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Liu, W.; Bashir, M.; Nisar, M.F.; Wan, C.C. Eriocitrin: A review of pharmacological effects. Biomed. Pharmacother. 2022, 154, 113563. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.V.; Patti, A.M.; Nikolic, D.; Li-Volti, G.; Al-Rasadi, K.; Katsiki, N.; Mikhailidis, D.P.; Montalto, G.; Ivanova, E.; Orekhov, A.N.; et al. The effect of bergamot on dyslipidemia. Phytomedicine 2016, 23, 1175–1181. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in macronutrient content, phytochemical constitution and in vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef]
- Drioiche, A.; Ailli, A.; Remok, F.; Saidi, S.; Gourich, A.A.; Asbabou, A.; Zair, T. Analysis of the chemical composition and evaluation of the antioxidant, antimicrobial, anticoagulant, and antidiabetic properties of Pistacia lentiscus from Boulemane as a natural nutraceutical preservative. Biomedicines 2023, 11, 2372. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Liu, F.; Tong, L.; Chen, Z.; Chen, J.; He, H.; Xu, R.; Ma, Y.; Huang, C. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. Eur. J. Pharmacol. 2019, 858, 172500. [Google Scholar] [CrossRef]
- Delgado-Pertíñez, M.A.; Horcada, M.A. Better Animal Feeding for Improving the Quality of Ruminant Meat and Dairy. Foods 2021, 10, 1076. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W. Effects of nutritional factors on fat content, fatty acid composition, and sensorial properties of meat and milk from domesticated ruminants: An overview. Animals 2024, 14, 840. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Quijada, J.; Chan-Perez, I.; Dakheel, M.M.; Kommuru, D.S.; Terrill, T.H. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Adv. Parasitol. 2016, 93, 239–351. [Google Scholar] [CrossRef]
- Tracy, B.; Fike, J.; Brennan, K.; Blackmon, T.; Kaur, S. Evaluation of alfalfa (Medicago sativa) and sericea lespedeza (Lespedeza cuneata) to improve animal performance in a tall fescue-based grazing system. Agronomy 2022, 12, 870. [Google Scholar] [CrossRef]
- Ramirez, R.G.; Gonzalez-Rodriguez, H.; Gomez-Mesa, M.V.; Perez-Rodriguez, M.A. Feed value of foliage from Vachellia rigidula, Vachellia berlandieri and Vachellia farnesiana. J. Appl. Anim. Res. 1999, 16, 23–32. [Google Scholar] [CrossRef]
- Ramírez-Lozano, R.G. Nutritional Characteristics of Browse Species from Northeastern Mexico Consumed by Small Ruminants. BSAP Occas. Publ. 2006, 34, 251–260. [Google Scholar] [CrossRef]
- Ramírez-Orduña, R.; Ramírez-Lozano, R.G.; López-Gutiérrez, F. Factores Estructurales de la Pared Celular del Forraje que Afectan su Digestibilidad. Ciencia UANL 5.2. 2002. Available online: http://eprints.uanl.mx/id/eprint/1175 (accessed on 2 July 2024).
- El-Sabrout, K.; Khalifah, A.; Mishra, B. Application of Botanical Products as Nutraceutical Feed Additives for Improving Poultry Health and Production. Vet. World 2023, 16, 369–379. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Legume proteins, peptides, water extracts, and crude protein extracts as antifungals for food applications. Trends Food Sci. Technol. 2021, 112, 16–24. [Google Scholar] [CrossRef]
- Torres-Fajardo, R.A.; González-Pech, P.G.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A. Nutraceutical potential of the low deciduous forest to improve small ruminant nutrition and health: A systematic review. Agronomy 2021, 11, 1403. [Google Scholar] [CrossRef]
- Goetsch, A.L. Recent advances in the feeding and nutrition of dairy goats. Asian-Australas J. Anim. Sci. 2019, 32, 1296. [Google Scholar] [CrossRef]
- Mellado, M.; Aguilar, C.N.; Arevalo, J.R.; Rodríguez, A.; García, J.E.; Mellado, J. Selection for nutrients by pregnant goats on a microphyll desert scrub. Animal 2011, 5, 972–979. [Google Scholar] [CrossRef]
- Gaytán, L.; Salem, A.F.Z.; Rodríguez, A.; García, J.E.; Arévalo, J.R.; Mellado, M. Age and season effects on quality of diets selected by Criollo crossbred goats on rangeland. Anim. Prod. Sci. 2015, 55, 758–765. [Google Scholar] [CrossRef]
- Gholve, A.U.; Deshpande, K.Y.; Munde, V.K.; Amurtkar, S.A.; Sonale, P.D.; Naitam, N.D. Effect of partial replacement of concentrate mixture by Sesbania (Sesbania sesban) on nutrient utilization, growth performance, blood metabolites and economics of production in growing Osmanabadi goats. Anim. Nutr. Feed Technol. 2021, 21, 151–165. [Google Scholar] [CrossRef]
- Schmitt, M.H.; Ward, D.; Shrader, A.M. Salivary tannin-binding proteins: A foraging advantage for goats? Livest. Sci. 2020, 234, 103974. [Google Scholar] [CrossRef]
- Lu, C.D. The role of goats in the world: Society, science, and sustainability. Small Rumin. Res. 2023, 227, 107056. [Google Scholar] [CrossRef]
- Villalba, J.J.; Spackman, C.; Goff, B.M.; Klotz, J.L.; Griggs, T.; MacAdam, J.W. Interaction between a tannin-containing legume and endophyte-infected tall fescue seed on lambs’ feeding behavior and physiology. J. Anim. Sci. 2016, 94, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P. Measurement of total phenolics and tannins using Folin-Ciocalteu method. In Quantification of Tannins in Tree and Shrub Foliage; Springer: Dordrecht, The Netherlands, 2003; pp. 49–51. [Google Scholar] [CrossRef]
- Vinogradova, N.; Vinogradova, E.; Chaplygin, V.; Mandzhieva, S.; Kumar, P.; Rajput, V.D.; Minkina, T.; Seth, C.S.; Buracesvskaya, M.; Lysenko, D.; et al. Phenolic compounds of the medicinal plants in an anthropogenically transformed environment. Molecules 2023, 28, 6322. [Google Scholar] [CrossRef]
- Bhat, T.K.; Kannan, A.; Singh, B.; Sharma, O.P. Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agric. Res. 2013, 2, 189–206. [Google Scholar] [CrossRef]
- Kolesnik, N.S.; Bogolyubova, N.V.; Zelenchenkova, A.A. The effect of different classes of tannins on methanogenesis in ruminants. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2024, 59, 221–236. [Google Scholar] [CrossRef]
- Kadigi, J.H.; Bashiri, I.; Schreiber, S. Potential benefits of tannins on ruminant health, production and environmental sustainability. Eur. J. Nutr. Food Saf. 2024, 16, 13–24. [Google Scholar] [CrossRef]
- Villalba, J.J.; Ramsey, R.D.; Athanasiadou, S. Herbivory and the power of phytochemical diversity on animal health. Animal 2024, 101287. [Google Scholar] [CrossRef]
- Delgadillo-Puga, C.; Cuchillo-Hilario, M.; León-Ortiz, L.; Ramírez-Rodríguez, A.; Cabiddu, A.; Navarro-Ocaña, A.; Pedraza-Chaverri, J. Goats’ feeding supplementation with Acacia farnesiana pods and their relationship with milk composition: Fatty acids, polyphenols, and antioxidant activity. Animals 2019, 9, 515. [Google Scholar] [CrossRef]
- Abdulrazak, S.A.; Fujihara, T.; Ondiek, J.K.; Ørskov, E.R. Nutritive evaluation of some Vachellia tree leaves from Kenya. Anim. Feed Sci. Technol. 2000, 85, 89–98. [Google Scholar] [CrossRef]
- Kumar, P.P.; Kumaravel, S.; Lalitha, C. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr. J. Biochem. Res. 2010, 4, 191–195. [Google Scholar]
- Arenaz, P. Total Flavonoid Content, Total Phenolic Content, Antimicrobial and Antioxidant Activities of Acacia Rigidula Leaf Extracts. Theses and Dissertations. 169. 2021. Available online: https://rio.tamiu.edu/etds/169 (accessed on 2 July 2024).
- Elshamy, S.; Handoussa, H.; El-Shazly, M.; Mohammed, E.D.; Kuhnert, N. Metabolomic profiling and quantification of polyphenols from leaves of seven Acacia species by UHPLC-QTOF-ESI-MS. Fitoterapia 2024, 172, 105741. [Google Scholar] [CrossRef]
- Delgadillo-Puga, C.; Cuchillo-Hilario, M. Reviewing the benefits of grazing/browsing semiarid rangeland feed resources and the transference of bioactivity and pro-healthy properties to goat milk and cheese: Obesity, insulin resistance, inflammation and hepatic steatosis prevention. Animals 2021, 11, 2942. [Google Scholar] [CrossRef]
- Huynh, T.T.H.; Wongmaneepratip, W.; Vangnai, K. Relationship between flavonoid chemical structures and their antioxidant capacity in preventing polycyclic aromatic hydrocarbons formation in heated meat model system. Foods 2024, 13, 1002. [Google Scholar] [CrossRef]
- Adelakun, A.O.; Fasalejo, O.F.; Offiah, C.J.; Adebusuyi, T.S. Determination of antioxidants and nutritional compositions of the flower, leaf and seed of Moringa oleifera Lam. Plants Environ. 2019, 1, 97–103. [Google Scholar]
- Deuri, P.; Sood, N.; Wadhwa, M.; Bakshi, M.P.S.; Salem, A.Z.M. Screening of tree leaves for bioactive components and their impact on in vitro fermentability and methane production from total mixed ration. Agrofor. Syst. 2020, 94, 1455–1468. [Google Scholar] [CrossRef]
- Smigielski, L.; Laubach, E.; Pesch, L.; Glock, J.M.L.; Albrecht, F.; Slusarenko, A.; Panstruga, R.; Kuhn, H. Nodulation induces systemic resistance of Medicago truncatula and Pisum sativum against Erysiphe pisi and primes for powdery mildew-triggered salicylic acid accumulation. Mol. Plant Microbe Interact. 2019, 32, 1243–1255. [Google Scholar] [CrossRef]
- Cavazos, P.; Gonzalez, D.; Lanorio, J.; Ynalvez, R. SeconDVRy metabolites, antibacterial and antioxidant properties of the leaf extracts of Vachellia rigidula Benth. and Vachellia berlandieri Benth. SN Appl. Sci. 2021, 3, 522. [Google Scholar] [CrossRef]
- Al-Snafi, A.E.; Khadem, H.S.; Al-Saedy, H.A.; Alqahtani, A.M.; El-Saber, G. A review on Medicago sativa: A potential medicinal plant. Int. J. Biol. Pharm. Sci. Arch. 2021, 1, 22–33. [Google Scholar] [CrossRef]
- Srisaikham, S. A comparison of nutritional values, bioactive compounds, amino acids, and antioxidant activities of alfalfa (Medicago sativa) plant and pellet for use as beneficial material ruminant feed. Walailak J. Sci. Technol. 2021, 18, 10312–10316. [Google Scholar] [CrossRef]
- Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules 2022, 27, 3863. [Google Scholar] [CrossRef]
- Sebastian, R.; Jaykar, B.; Gomathi, V. Current status of anticancer research in Fabaceae family. Pharma Innov. 2020, 9, 52–60. [Google Scholar]
- Bhatia, S.; Al-Harrasi, A.; Shah, Y.A.; Altoubi, H.W.K.; Kotta, S.; Sharma, P.; Anwer, M.K.; Kaithavalappil, D.S.; Koca, E.; Aydemir, L.Y. Fabrication, characterization, and antioxidant potential of sodium alginate/Vachellia gum hydrogel-based films loaded with cinnamon essential oil. Gels 2023, 9, 337. [Google Scholar] [CrossRef]
- Alanís-Garza, B.A.; Arroyo, J.L.; González, G.G.; González, E.G.; De Torres, N.W.; Aranda, R.S. Anti-fungal and anti-mycobacterial activity of plants of Nuevo Leon Mexico. Pak. J. Pharm. Sci. 2017, 30, 17–21. [Google Scholar]
- Escárcega-González, C.E.; Garza-Cervantes, J.A.; Vázquez-Rodríguez, A.; Montelongo-Peralta, L.Z.; Treviño-González, M.T.; Castro, E.D.B.; Saucedo-Salazar, E.M.; Morales, R.M.C.; Regalado-Soto, D.I.; Treviño-González, F.M.; et al. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Vachellia rigidula as a reducing and capping agent. Int. J. Nanomed. 2018, 13, 2349–2363. [Google Scholar] [CrossRef]
- Madjid, A.M.O.; Sanni, A.; Lagnika, L. Chemical diversity and pharmacological properties of genus Vachellia. Asian J. Appl. Sci. 2020, 13, 40. [Google Scholar] [CrossRef]
- Pawar, R.S.; Grundel, E.; Fardin-Kia, A.R.; Rader, J.I. Determination of selected biogenic amines in Vachellia rigidula plant materials and dietary supplements using LC-MS/MS methods. J. Pharm. Biomed. Anal. 2014, 88, 457. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chang, T.C.; Chang, S.T. A review of antioxidant and pharmacological properties of phenolic compounds in Vachellia confuse. J. Tradit. Complement. Med. 2018, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A.; Ikryannikova, L.N. Plant seconDVRy metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Mitre, G.F.; Olmedo-Juárez, A.; Rojo-Rubio, R.; González-Cortazar, M.; Mendoza-de Gives, P.; Hernández-Beteta, E.E.; Reyes-Guerrero, D.E.; López-Arellano, M.E.; Vazquez-Armijo, J.F.; Ramírez-Vargas, G.; et al. Caffeoyl and coumaroyl derivatives from Vachellia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J. Ethnopharmacol. 2017, 204, 125–131. [Google Scholar] [CrossRef]
- Ampode, K. Plant seconDVRy compounds as an alternative anthelmintic in mitigating gastrointestinal nematodes in ruminants: A review. Int. J. Biosci. 2019, 14, 598–603. [Google Scholar] [CrossRef]
- Castañeda-Ramírez, G.S.; Rodríguez-Labastida, M.; Ortiz-Ocampo, G.I.; González-Pech, P.G.; Ventura-Cordero, J.; Borges-Argáez, R.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mathieu, C. An in vitro approach to evaluate the nutraceutical value of plant foliage against Haemonchus contortus. Parasitol. Res. 2018, 117, 3979–3991. [Google Scholar] [CrossRef]
- Galicia-Aguilar, H.; Rodríguez-González, L.; Capetillo-Leal, C.; Cámara-Sarmiento, R.; Aguilar-Caballero, A.; Sandoval-Castro, C.; Torres-Acosta, J.F.J. Effects of Havardia albicans supplementation on feed consumption and dry matter digestibility of sheep and the biology of Haemonchus contortus. Anim. Feed Sci. Technol. 2012, 176, 178–184. [Google Scholar] [CrossRef]
- Sandoval-Pelcastre, A.A.; Ramirez-Mella, M.; Rodríguez-Ávila, N.L.; Candelaria-Martinez, B. Tropical trees and shrubs with potential to decrease methane production in ruminants. Trop. Subtrop. Agroecosyst. 2020, 23, 1–16. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. A new perspective on the use of plant seconDVRy metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]
- Estrada-Castillón, E.; Villarreal-Quintanilla, J.Á.; Rodríguez-Salinas, M.M.; Encinas-Domínguez, J.A.; González-Rodríguez, H.; Figueroa, G.R.; Arévalo, J.R. Ethnobotanical survey of useful species in Bustamante, Nuevo León, Mexico. Hum. Ecol. 2018, 46, 117–132. [Google Scholar] [CrossRef]
- Muhammad, S.; Hariyono, D. The beneficial impact of legume supplementation on nutrient intake, digestibility, growth and reproductive performance of goats: A brief review. J. Adv. Vet. Res. 2025, 15, 148–152. [Google Scholar]
- Ganai, I.A.; Sharma, R.K.; Pathak, A.K.; Khan, N.; Rastogi, A.; Sahib, Q.S. Effect of dietary utilization of a mixture of tropical tree foliage leaves on growth performance, nutrient utilization, blood biochemistry, and immune status of goats. Trop. Anim. Health Prod. 2025, 57, 3. [Google Scholar] [CrossRef] [PubMed]
- Mierlita, D.; Mierlita, S.; Struti, D.I.; Mintas, O.S. Effects of hemp seed on the production, fatty acid profile, and antioxidant capacity of milk from goats fed hay or a mixed shrubs–grass rangeland. Animals 2023, 13, 3435. [Google Scholar] [CrossRef] [PubMed]
- Neha, A.; Shaik, A.; Chelkapally, S.C.; Kolikapongu, R.S.; Namani, S.C.; Erukulla, T.; Batchu, P.; Mendez, N.; Smith, Y.; Brown, D.; et al. Effect of feeding a blackseed meal-sericea lespedeza leaf meal pellet on gastrointestinal nematode and coccidia infection and animal performance in young goats. Vet. Parasitol. 2024, 331, 110253. [Google Scholar] [CrossRef] [PubMed]
Ingredient (%) | DME | DVR | DHP |
---|---|---|---|
M. sativa | 35 | - | - |
V. rigidula | - | 35 | - |
H. Pallens | - | - | 35 |
Ground sorghum | 35 | 35 | 35 |
Sorghum straw | 14 | 14 | 14 |
Molasses | 7 | 7 | 7 |
Soybean meal | 8 | 8 | 8 |
Minerals | 1 | 1 | 1 |
Salt | 0.10 | 0.10 | 0.10 |
Total | 100 | 100 | 100 |
Plant | ADF | NDF | CP | ASH | Lignin |
---|---|---|---|---|---|
H. pallens | 31.43 ± 4.75 ab | 48.3 ± 3.05 a | 20.67 ± 1.69 ab | 7.39 ± 0.37 c | 9.91 ± 1.03 b |
V. rigidula | 40.48 ± 4.71 a | 49.72 ± 7.90 a | 12.84 ± 2.21 c | 5.92 ± 0.70 c | 21.4 ± 3.43 a |
M. sativa | 24.44 ± 1.81 bc | 46.73 ± 6.21 ab | 22.66 ± 2.13 a | 8.3 ± 2.08 bc | 8.70 ± 0.61 b |
DVR | 21.18 ± 0.54 bc | 37.47 ± 0.90 bc | 13.4 ± 0.05 c | 10.15 ± 0.02 ab | * |
DHP | 14.86 ± 0.25 c | 31.54 ± 1.28 c | 14.25 ± 0.35 c | 11.33 ± 0.10 a | * |
DME | 15.81 ± 0.36 c | 31.38 ± 0.17 c | 16.7 ± 0.01 bc | 11.86 ± 0.09 a | * |
Type of Extraction | Phenols (mg/GAE/g−1) | Flavonoids (mg/QE/g−1) |
---|---|---|
V. rigidula aqueous extraction | 18.22 ± 0.11 a | 1.16 ± 0.0049 |
H. pallens aqueous extraction | 11.23 ± 0.02 abc | 0.88 ± 0.0048 |
M. sativa aqueous extraction | 8.68 ± 0.03 bc | 9.422 ± 0.4833 |
V. rigidula methanolic extraction | 16.82 ± 0.29 ab | 0.295 ± 0.0119 |
H. pallens methanolic extraction | 8.16 ± 0.09 bc | 0.302 ± 0.0047 |
M. sativa methanolic extraction | 7.61 ± 0.10 c | 1.285 ± 0.0124 |
V. rigidula ethanolic extraction | 17.04 ± 0.08 ab | 0.311 ± 0.0049 |
H. pallens ethanolic extraction | 9.59 ± 0.05 abc | 0.336 ± 0.0019 |
M. sativa ethanolic extraction | 7.61 ± 0.10 c | 1.260 ± 0.01 |
Secondary Compounds | DME | DVR | DHP | SEM | p-Value |
---|---|---|---|---|---|
Phenols | 22 b | 57 a | 47 a | 0.006 | 0.007 |
Flavonoids | 210 ab | 230 a | 180 b | 0.008 | 0.005 |
Species | Antioxidative Capacity (μmol/L /TE/g−1) |
---|---|
V. rigidula | 144,711.53 ± 10,442.87 a |
H. pallens | 16,800.21 ± 1287.84 b |
M. sativa | 11,701.92 ± 319.16 b |
Type of Extraction by Species | μmol/ET/g−1 |
---|---|
DVR aqueous extraction | 147,966.66 ± 10,315.38 a |
DHP aqueous extraction | 17,949.30 ± 1441.13 b |
DME aqueous extraction | 19,143.74 ± 2908.89 b |
DVR methanol extraction | 139,847.44 ± 11,097.05 a |
DHP methanol extraction | 10,591.66 ± 474.040 b |
DME methanol extraction | 8206.24 ± 1460.67 b |
Mixture without V. rigidula aqueous extraction | 9204.06 ± 978.95 b |
Mixture without H. pallens aqueous extraction | 8154.91 ± 481.25 b |
Mixture without M. sativa aqueous extraction | 9204.06 ± 978.95 b |
Mixture without V. rigidula methanol extraction | 9159.19 ± 25.90 b |
Mixture without H. pallens methanol extraction | 7772.43 ± 381.45 b |
Mixture without M. sativa methanol extraction | 9159.18 ± 25.90 b |
RT (min) | [M-H]-(m/z) | Compounds | Solvent | Family | Effects | Reference |
---|---|---|---|---|---|---|
5.369 | 376.8 | 3,4-DHPEA-EA | A, E, M | Tyrosols | Antioxidant | [21] |
18.417 | 314.9 | Nepetin | A, E, M | Methoxyflavones | Antibacterial, antioxidant, anti-inflammatory, cytotoxic | [22] |
22.852 | 576.8 | Procyanidin dimer B1 | A | Proanthocyanidin dimers | Antioxidant, antimicrobial, anthelmintic, anti-inflammatory, gastro-protective, and insecticidal activities. | [23] |
23.893 | 386.9 | Medioresinol | (A) | Lignans | Potential for AChE inhibition and antimicrobial | [24,25] |
25.567 | 288.9 | (+)-Catechin | A, E, M | Catechins | Antioxidant, antimicrobial, anti-acne, anthelmintic, anti-inflammatory, gastro-protective, and insecticidal activities. | [26] |
27.847 | 562.8 | Apigenin arabinoside-glucoside | A, E, M | Flavones | Antioxidant | [27] |
31.107 | 462.8 | Myricetin 3-O-rhamnoside | A, E, M | Flavonols | Antioxidant, antifungal, antimicrobial. | [28] |
34.75 | 446.8 | Luteolin 6-C-glucoside | A, E, M | Flavones | Insecticide (pests by influencing their behavior, growth, and development) | [29] |
7.827 | 340.8 | Caffeic acid 4-O-glucoside | E | Hydroxycinnamic acids | Antioxidant (anti-melanogenesis and anti-tyrosinase), insecticide | [30] |
18.747 | 592.7 | Apigenin 6,8-di-C-glucoside | E | Flavones | Antioxidant, anti-cancer and insecticide | [31,32] |
21.758 | 288.8 | (−)-Epicatechin | E | Catechins | Antioxidant, anti-inflammatory, anti-cancer, antidiabetic, cardio and neuroprotective. | [33] |
27.614 | 562.8 | Apigenin galactoside-arabinoside | M | Flavones | Antioxidant | [34] |
RT (min) | [M-H]-(m/z) | Compounds | Solvent | Family | Effects | Reference |
---|---|---|---|---|---|---|
5.079 | 316.8 | Myricetin | A | Flavonols | Antioxidant, antibacterial, antiviral, anti-inflammatory, anti-allergic. | [34,35] |
17.905 | 354.8 | Ferulic acid 4-O-glucoside | A, E, M | Methoxycinnamic acids | Antioxidant, antimicrobial, anti-inflammatory, anticancer, cardio, gastro and neuroprotective | [36] |
26.993 | 370.8 | Sinensetin | A | Methoxyflavones | Antioxidant, anti-inflammatory, antimicrobial, anti-obesity, anti- dementia and vasorelaxant activities. | [37] |
34.851 | 518.9 | 5,3′,4′-Trihydroxy-3-methoxy-6:7-methylenedioxyflavone 4′-O-glucuronide | A, E, M | Methoxyflavonols | Antioxidant | [26] |
6.405 | 341 | Caffeic acid 4-O-glucoside | A, E, M | Hydroxycinnamic acids | Antioxidant (anti-melanogenesis and anti-tyrosinase), insecticide | [30,38] |
38.99 | 595 | Eriocitrin | A, E, M | Flavanones | Antioxidant, antitumor, anti-allergic, antidiabetic and anti-inflammatory | [39] |
40.858 | 595 | Neoriocitrin | A, E | Flavanones | Antioxidant | [40] |
24.596 | 354.9 | Feruloyl glucose | M | Methoxycinnamic acids | Antioxidant | [41] |
39.613 | 463 | Myricetin 3-O-rhamnoside | M | Flavanones | Antioxidant, antifungal, antimicrobial. | [42] |
41.385 | 505 | Peonidin 3-O-(6″-acetyl-glucoside) | M | Flavonols | Antioxidant, neuroprotective, anti-inflammatory. | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyna-Fuentes, J.H.; Zapata-Campos, C.C.; Torres-Castillo, J.A.; López-Aguirre, D.; Núñez-Colima, J.A.; Cruz-Bacab, L.E.; Olazarán-Santibáñez, F.E.; Sánchez-Dávila, F.; Leal-Robles, A.I.; Granados-Montelongo, J.A. Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat. Metabolites 2025, 15, 457. https://doi.org/10.3390/metabo15070457
Reyna-Fuentes JH, Zapata-Campos CC, Torres-Castillo JA, López-Aguirre D, Núñez-Colima JA, Cruz-Bacab LE, Olazarán-Santibáñez FE, Sánchez-Dávila F, Leal-Robles AI, Granados-Montelongo JA. Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat. Metabolites. 2025; 15(7):457. https://doi.org/10.3390/metabo15070457
Chicago/Turabian StyleReyna-Fuentes, Jesús Humberto, Cecilia Carmela Zapata-Campos, Jorge Ariel Torres-Castillo, Daniel López-Aguirre, Juan Antonio Núñez-Colima, Luis Eliezer Cruz-Bacab, Fabián Eliseo Olazarán-Santibáñez, Fernando Sánchez-Dávila, Aida Isabel Leal-Robles, and Juan Antonio Granados-Montelongo. 2025. "Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat" Metabolites 15, no. 7: 457. https://doi.org/10.3390/metabo15070457
APA StyleReyna-Fuentes, J. H., Zapata-Campos, C. C., Torres-Castillo, J. A., López-Aguirre, D., Núñez-Colima, J. A., Cruz-Bacab, L. E., Olazarán-Santibáñez, F. E., Sánchez-Dávila, F., Leal-Robles, A. I., & Granados-Montelongo, J. A. (2025). Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat. Metabolites, 15(7), 457. https://doi.org/10.3390/metabo15070457