Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant
2.2. Aphids
2.3. Antixenosis Test for A. craccivora and A. fabae
2.4. Antibiosis
Dissection of Aphids
2.5. Statistical Analysis
3. Results
3.1. Antixenosis
3.1.1. Test for A. craccivora
3.1.2. Test for A. fabae
3.2. Antibiosis
3.2.1. Potential Fecundity of A. craccivora
3.2.2. Body Size of A. craccivora Adult
3.2.3. Body Size of A. fabae Adults
3.2.4. Body Weight of A. fabae Adults
3.2.5. Relationships Between Biological Parameters of A. craccivora and A. fabae
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mínguez, M.I.; Rubiales, D. Chapter 15 in Faba bean. In Crop Physiology Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 452–481. ISBN 9780128191941. [Google Scholar] [CrossRef]
- Goyoaga, C.; Burbano, C.; Cuadrado, C.; Romero, R.; Guillamo’n, E.; Varela, A.; Pedrosa, M.M.; Muzquiz, M. Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. J. Food Compo. Anal. 2011, 24, 391–397. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kidwai, M.K.; Noor, R.; Chawla, P.; Rose, P.K. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Sci. 2022, 4, e129. [Google Scholar] [CrossRef]
- Temirbekova, S.K.; Kulikov, I.M.; Ashirbekov, M.Z.; Afanasyeva, Y.V.; Beloshapkina, O.O.; Tyryshkin, L.G.; Zuev, E.V.; Kirakosyan, R.N.; Glinushkin, A.P.; Potapova, E.S.; et al. Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr)Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia. Plants 2022, 11, 699. [Google Scholar] [CrossRef]
- Bond, D.A.; Jellis, G.J.; Rowland, G.G.; Le Guen, J.; Robertson, L.D.; Khalil, S.A.; Li-Juan, L. Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica 1994, 73, 151–166. [Google Scholar] [CrossRef]
- Boutagayout, A.; Nassiri, L.; Bouiamrine, E.; Belmalha, S. Mulching effect on weed control and faba bean (Vicia faba L. Minor) yield in Meknes region, Morocco. E3S Web Conf. 2020, 183, 04002. [Google Scholar] [CrossRef]
- Pérez-de-luque, A.; Eizenberg, H.; Grenz, J.H.; Sillero Avila, C.; Sauerborn, J.; Rubiales, D. Broomrape management in faba bean. Field Crops Res. 2010, 115, 319–328. [Google Scholar] [CrossRef]
- Stoddard, F.L.; Nicolas, A.H.; Rubiales, D.; Thomas, J.; Villegas-Fernandez, A.M. Intregrated pest management in faba bean. Field Crops Res. 2010, 115, 308–318. [Google Scholar] [CrossRef]
- Maalouf, F.; Khalil, S.; Ahmed, S.; Akintunde, A.N.; Kharrat, M.; El Shama’a, K.; Hajjar, S.; Malhotra, R.S. Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res. 2011, 124, 288–294. [Google Scholar] [CrossRef]
- Rachef, S.A.; Ouamer, F.; Ouffroukh, A. Inventaire des ravageurs de la fève en Algérie (Identification et caractérisation). Rech. Agron. 2005, 9, 36–43. [Google Scholar]
- Laamari, M.; Hebbel, S. Les principaux insects ravageurs de la fève dans la region de Biskra. Rech. Agron. 2006, 10, 72–78. [Google Scholar]
- Laamari, M. Etude Écobiologique des Pucerons des Cultures dans Quelques Localités de l’Est Algérien. Ph.D. Thesis, Ecole Nationale des Sciences Agronomiques (ENSA), Alger, Algeria, 2004. [Google Scholar]
- Meradsi, F.; Laamari, M. Population dynamics and biological parameters of Aphis fabae Scopoli on five broad bean cultivars. Int. J. Biosci. 2016, 9, 58–68. [Google Scholar] [CrossRef]
- Nikolova, I. Stability of Vicia faba L. cultivars and responsible traits for Aphis fabae Scopoli, 1763 preference. Acta Agric. Slov. 2023, 119, 1–8. [Google Scholar] [CrossRef]
- Nikolova, I. Sensitivity of faba bean (Vicia faba L.) cultivars to Aphis fabae Scopoli infestation and plant parameters responsible for low susceptibility to the pest. Agric. Biol. 2023, 58, 142–157. [Google Scholar] [CrossRef]
- Saleh, H.A.; Khorchid, A.M.; Ammar, M.I. Population Fluctuations of Two Aphids and Their Main Predators in Broad Bean plants in Qalyubiya Governorate. Egypt. Acad. J. Biolog. Sci. 2021, 14, 29–36. [Google Scholar]
- Mezani, S. Bioécologie de la Bruche de la fève Bruchus rufimanus Both. (Coleoptera: Bruchidae) dans des Parcelles de Variétés de fèves Différentes et de Féverole dans la Région de Tizi-Rached (Tizi-Ouzou). Master’s Thesis, Université Mouloud Maameri, Tizi-Ouzou, Algeria, 2011. [Google Scholar]
- Nielson, B.S. Yield responses of Vicia faba in relation to infestation levels of Sitona lineatus L. (Col., Curculionidae). J. Appl. Entomol. 2009, 110, 398–407. [Google Scholar] [CrossRef]
- Almogdad, M.; Tamošiūnas, K.; Semaškienė, R. Changes in Sitona lineatus abundance in faba beans as influenced by the air temperature and rainfall in the three decades. Zemdirbyste 2020, 107, 139–146. [Google Scholar] [CrossRef]
- Wijerathna, A.; Evenden, M.; Reid, P.; Tidemann, B.; Carcamo, H. Management of Pea Leaf Weevil (Coleoptera: Curculionidae) and Development of a Nominal Threshold in Faba Beans. J. Econ. Entomol. 2021, 114, 1597–1606. [Google Scholar] [CrossRef]
- Dedryver, C.A.; Le Ralec, A.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef]
- Bennour, C.; Ben Belgacem, A.; Ben Nasr, H. A review of the management of Aphis fabae Scopoli (Hemiptera: Aphididae). J. Oasis Agric. Sustain. Dev. 2021, 3, 32–44. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Taxonomic issues. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: London, UK, 2007; pp. 1–29. [Google Scholar]
- Straub, C.S.; Faselt, J.A.; Keyser, E.S.; Traugott, M. Host plant resistance promotes a secondary pest population. Ecosphere 2020, 11, e03073. [Google Scholar] [CrossRef]
- Bueno, A.D.F.; Carvalho, G.A.; Santos, A.C.D.; Sosa-Gómez, D.R.; Silva, D.M.D. Pesticide selectivity to natural enemies: Challenges and constraints. Ciênc. Rural. 2017, 47, e20160829. [Google Scholar] [CrossRef]
- Gomes, H.D.O.; Menezes, J.M.C.; da Costa, J.G.M.; Coutinho, H.D.M.; Teixeira, R.N.P.; do Nascimento, R.F. A socio-environmental perspective on pesticideuse and food production. Ecotoxicol. Environ. Saf. 2020, 197, 110627. [Google Scholar] [CrossRef] [PubMed]
- El-Defrawi, G.; El-Gantiry, A.M.; Weigand, S.; Khalil, S.A. Screening of faba bean (Vicia faba L.) for resistance to Aphis craccivora Koch. Arab. J. Plant Prot. 1991, 9, 138–141. [Google Scholar]
- Smith, C.M. Plant Resistance to Arthropods: Molecular and Conventional Approaches; Springer: Dordrecht, The Netherlands, 2005; p. 423. [Google Scholar]
- Tolmay, V.L.; van der Westhuizen, M.C.; van Deventer, C.S. A six-week screening method for mechanisms of host plant resistance to Diuraphis noxia in wheat accessions. Euphytica 1999, 107, 79–89. [Google Scholar] [CrossRef]
- Bosland, P.W.; Ellington, J.J. Comparaison of Capsicum annum and C. pubescens for antixenosis as a means of aphid resistance. Hort. Sci. 1996, 31, 1017–1018. [Google Scholar]
- Barzman, M.; Bàrberi, P.; Nicholas, A.; Birch, E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1255. [Google Scholar] [CrossRef]
- Shannag, H.K.; Obeidat, W.M. Interaction between plant resistance and predation of Aphis fabae (Homoptera: Aphididae) by Coccinella septempunctata (Coleoptera: Coccinellidae). Ann. Appl. Biol. 2008, 152, 331–337. [Google Scholar] [CrossRef]
- Khaliq, S.A.; ALhamawndy, Z.; Al-Ghadban, A.M.; Al-Asadi, M.A.A. Predatory Efficiency of the Eleven-Point Ladybird Coccinella undecimpunctata against Aphis fabae and A. gossypii. Indian J. Ecol. 2021, 17, 357–360. [Google Scholar]
- Nordey, T.; Boni, S.B.; Agbodzavu, M.K.; Mwashimaha, R.; Mlowe, N.; Ramasamy, S.; Deletre, E. Comparison of biological methods to control Aphis fabae Scopoli (Hemiptera: Aphididae) on kalanchoe crops in East Africa. Crop Prot. 2021, 142, 105520. [Google Scholar] [CrossRef]
- Gc, G.; Arjyal, C. Field Evaluation of Native B. thuringiensis Isolates Against Aphids (Aphis fabae). Tribhuvan Univ. J. Microbiol. 2020, 7, 115–122. [Google Scholar] [CrossRef]
- Hama, J.R.; Al Mamun, M.; Fomsgaard, I.S.; Vestergård, M. Root uptake of umbelliferone enhances pea’s resistance against root-knot nematodes. Appl. Soil Ecol. 2024, 199, 105418. [Google Scholar] [CrossRef]
- Acheuk, F.; Lakhdari, W.; Abdellaoui, K.; Belaid, M.; Allouane, R.; Halouane, F. Phytochemical study and bioinsecticidal effect of the crude ethonolic extract of the Algerian plant Artemisia judaica L. (Asteraceae) against the black bean aphid, Aphis fabae Scop. Agric. For. 2017, 63, 95–104. [Google Scholar] [CrossRef]
- Cahon, T.; Caillon, R.; Pincebourde, S. Do Aphids alter leaf surface temperature patterns during early infestation? Insects 2018, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Du, J.-L.; Wu, D.G.; Li, J.Q.; Zhan, Q.W.; Huang, S.C.; Huang, B.H.; Wang, X. Effects of aphid disoperation on photosynthetic performance and agronomic traits of different sorghum varieties. Pak. J. Bot. 2021, 53, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Tongson, E.; Unnithan, R.R.; Gonzalez, V.C. Early detection of aphid infestation and insect-plant interaction assessment in wheat using a low-cost electronic nose (E-nose), near-infrared spectroscopy and machine learning modeling. Sensors 2021, 21, 5948. [Google Scholar] [CrossRef] [PubMed]
- Semillas Fito. Available online: https://www.semillasfito.fr/productos/hort%C3%ADcolas/leguminosas/habas/histal/ (accessed on 24 June 2025).
- Castro, A.M.; Ramos, S.; Vasicek, A.; Worland, A.; Giménez, D.; Clúa, A.A.; Suárez, E. Identification of wheat chromosomes involved with different types of resistance against greenbug (Schizaphis graminum, Rond.) and the Russian wheat aphid (Diuraphis noxia, Mordvilko). Euphytica 2001, 118, 321–330. [Google Scholar] [CrossRef]
- Castro, A.M.; Vasicek, A.; Manifiesto, M.; Giménez, D.O.; Tacaliti, M.S.; Dobrovolskaya, O.; Röder, M.S.; Snape, J.W.; Börner, A. Mapping antixenosis genes on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat aphid. Plant Breed. 2005, 124, 229–233. [Google Scholar] [CrossRef]
- Laamari, M.; Khelfa, L.; Coeur d’Acier, A. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. Afr. J. biotechnol. 2008, 7, 2486–2490. [Google Scholar]
- Hesler, L.S.; Tharp, C.I. 2005. Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions. Euphytica 2005, 143, 153–160. [Google Scholar] [CrossRef]
- Storer, J.R.; van Emden, H.E. Antibiosis and antixenosis of chrysanthemum cultivars to the aphid Aphis gossypii. Entomol. Exp. Appl. 1995, 77, 307–314. [Google Scholar] [CrossRef]
- Castro, A.M.; Vasicek, A.; Ramos, S.; Worland, A.; Suárez, E.; Muňoz, M.; Giménez, D.; Clúa, A.A. Different types of resistance against greenbug, Schizaphis graminum Rond, and the Russian wheat aphid, Diuraphis noxia Mordvilko, in wheat. Plant Breed. 1999, 118, 131–137. [Google Scholar] [CrossRef]
- Budak, S.; Quisenberry, S.S.; Ni, X. Comparison of Diuraphis noxia resistance in wheat isolines and plant introduction lines. Entomol. Exp. Appl. 1999, 92, 157–164. [Google Scholar] [CrossRef]
- Meradsi, F. Evaluation de la Résistance Naturelle chez Quelques Cultivars Locaux de fève au Puceron Noir de la fève Aphis fabae Scopoli, 1763 (Homoptera, Aphididae). Ph.D. Thesis, Université Batna 1, Batna, Algeria, 2017. [Google Scholar]
- Taylor, L.R. Longevity, fecundity and size; control of reproductive potential in a polymorphic migrant, Aphis fabae Scop. J. Anim. Ecol. 1975, 44, 135–163. [Google Scholar] [CrossRef]
- Leather, S.R.; Wellings, P.W. Ovariole number and fecundity in aphids. Entomol. Exp. Appl. 1981, 30, 128–133. [Google Scholar] [CrossRef]
- Llewellyn, M.; Brown, V.K. A general relationship between adult weight and the reproductive potential of aphids. J. Anim. Ecol. 1985, 54, 663–673. [Google Scholar] [CrossRef]
- SPSS IBM Statistics. SPSS for Windows, Version 26.0.0.0; SPSS Inc.: Chicago, IL, USA, 2019. [Google Scholar]
- Lage, J.; Skovmand, B.; Andersen, S.B. Resistance categories of synthetic hexaploid wheats resistant to the Russian wheat aphid (Diuraphis noxia). Euphytica 2004, 136, 291–296. [Google Scholar] [CrossRef]
- Hesler, L.S.; Dashiell, K.E.; Lundgren, J.G. Characterization of resistance to Aphis glycines in soybean accessions. Euphytica 2007, 154, 91–99. [Google Scholar] [CrossRef]
- Renard, S.; Calatayud, P.A.; Pierre, J.S.; Le Ru, B. Recognition behavior of the cassava mealybug Phenacoccus manihoti Matile-Ferrero (Homoptera: Pseudococcidae) at the leaf surface of different host plants. J. Insect Behav. 1998, 11, 429–450. [Google Scholar] [CrossRef]
- Bengtsson, M.; Jaastad, G.; Knudsen, G.; Kobro, S.; Bäckman, A.C.; Pettersson, E.; Witzgall, P. Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella. Entomol. Exp. Appl. 2006, 118, 77–85. [Google Scholar] [CrossRef]
- Ameline, A.; Couty, A.; Dugravot, S.; Campan, E.; Dubois, F.; Giordanengo, P. Plant-selection behaviour after biotic and abiotic damage inflicted to potato plants. Entomol. Exp. Appl. 2007, 123, 129–137. [Google Scholar] [CrossRef]
- Döring, T.F. How aphids find their host plants, and how they don’t. Ann. Appl. Biol. 2014, 165, 3–26. [Google Scholar] [CrossRef]
- Lundgren, J.; Fergen, J.; Riedell, W. The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim. Behav. 2008, 75, 1495–1502. [Google Scholar] [CrossRef]
- Bernays, E.A.; Chapman, R.F. Host-Plant Selection by Phytophagous Insects; Chapman & Hall: New York, NY, USA, 1994; p. 312. [Google Scholar]
- Powell, G.; Maniar, S.P.; Pickett, J.A.; Hardie, J. Aphid responses to non-host epicuticular lipids. Entomol. Exp. Appl. 1999, 91, 115–123. [Google Scholar] [CrossRef]
- Cai, Q.N.; Zhang, Q.W.; Cheo, M. Contribution of indole alkaloids to Sitobion avenae (F.) resistance in wheat. J. Entomol. Nematol. 2004, 128, 517–521. [Google Scholar] [CrossRef]
- Traicevski, V.; Ward, S.A. The effect of paste and current hosts on reproductive investment by the adult cowpea aphid Aphis craccivora. Ecol. Entomol. 2002, 27, 601–607. [Google Scholar] [CrossRef]
- Brough, C.N.; Dixon, A.F.G. Reproductive investment and the inter-ovariole differences in embryo development and size in virginoparae of the vetch aphid, Megoura viciae. Entomol. Exp. Appl. 1989, 52, 215–220. [Google Scholar] [CrossRef]
- Annan, I.B.; Schaefers, G.A.; Tingey, W.M.; Tjallingii, W.F. Effects of treatments for electrical penetration graph recordings on behaviour and biology of Aphis craccivora (Aphididae). Physiol. Entomol. 1997, 22, 95–101. [Google Scholar] [CrossRef]
- Sauge, M.H.; Kervella, J.; Pascal, T. Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol. Exp. Appl. 1998, 89, 233–242. [Google Scholar] [CrossRef]
- Lebbal, S. Contribution à l’étude de la Résistance Naturelle de la fève au puceron noir de la luzerne Aphis craccivora (Homoptera: Aphididae). Master’s Thesis, Université Batna 1, Batna, Algeria, 2010. [Google Scholar]
- Huggett, D.A.J.; Leather, S.R.; Walters, K.F.A. Suitability of the biomass crop Miscanthus sinensis as a host for the aphids Rhopalosiphum padi (L.) and Rhopalosiphum maidis (F.), and its susceptibility to the plant luteovirus Barley Yellow Dwarf Virus. Agric. For. Entomol. 1999, 1, 143–149. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, Y.; Schwab, F.; Monikh, F.A.; Grillo, R.; White, J.C.; Guo, Z.; Lynch, I. Strategies for Enhancing Plant Immunity and Resilience Using Nanomaterials for Sustainable Agriculture Environ. Sci. Technol. 2024, 58, 9051–9060. [Google Scholar] [CrossRef]
- Hayot, C. Effet du fonds Génétique sur l’expression d’un Gène Majeur de Résistance au puceron vert chez le Pêcher dans la Descendance F2 Pamirskij X Rubira. Master’s Thesis, ENITA de Clermont-Ferrand, Clermont-Ferrand, France, 2006. [Google Scholar]
- Painter, R.H. Resistance of plants to insects. Ann. Rev. Entomol. 1958, 3, 267–290. [Google Scholar] [CrossRef]
- Strebler, G. Les Médiateurs Chimiques, Leur Incidence sur la Bioéologie des Animaux; Technique et documentation-Lavoisier: Paris, France, 1989; p. 246. [Google Scholar]
Phenological Stages | 2 h | 24 h | 48 h |
---|---|---|---|
First unfolded leaf | 0.60 ± 0.6 a | 0.40 ± 0.24 a | 0.80 ± 0.37 a |
Two unfolded leaves | 3.00 ± 0.89 a | 2.80 ± 0.73 a | 2.20 ± 0.73 a |
Three unfolded leaves | 3.80 ± 0.66 a | 3.80 ± 1.15 a | 3.00 ± 0.89 a |
Four unfolded leaves | 3.40 ± 1.2 a | 3.40 ± 1.2 a | 3.20 ± 1.24 a |
p | 0.080 ns | 0.078 ns | 0.235 ns |
F | 2.702 | 2.729 | 1.572 |
Df | 3/12 | 3/12 | 3/12 |
Phenological Stages | 2 h | 24 h | 48 h |
---|---|---|---|
First unfolded leaf | 3.25 ± 1.65 a | 2.50 ± 1.19 a | 3.00 ± 1.22 a |
Two unfolded leaves | 2.75 ± 1.03 a | 2.75 ± 1.37 a | 3.00 ± 1.22 a |
Three unfolded leaves | 2.75 ± 0.85 a | 3.00 ± 1.22 a | 4.25 ± 1.65 a |
Four unfolded leaves | 3.75 ± 0.75 a | 4.75 ± 1.31 a | 3.50 ± 1.19 a |
p | 0.908 ns | 0.605 ns | 0.898 ns |
F | 0.180 | 0.637 | 0.195 |
Df | 3 | 3 | 3 |
Phenological Stages | Total Embryos | Developed Embryos |
---|---|---|
First unfolded leaf | 23.10 ± 1.47 a | 10.50 ± 0.68 a |
Two unfolded leaves | 19.30 ± 1.37 a | 8.70 ± 0.68 a |
Three unfolded leaves | 18.91 ± 1.46 a | 9.18 ± 0.60 a |
Four unfolded leaves | 21.50 ± 2.83 a | 11.50 ± 1.05 a |
p | 0.230 ns | 0.062 ns |
F | 1.51 | 2.687 |
df | 3 | 3 |
Phenological Stages | Body Size (mm2) |
---|---|
First unfolded leaf | 0.83 ± 0.04 a |
Two unfolded leaves | 0.81 ± 0.05 a |
Three unfolded leaves | 0.67 ± 0.04 b |
Four unfolded leaves | 0.70 ± 0.03 ab |
p | 0.03 * |
F | 2.997 |
Df | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meradsi, F.; Lekbir, A.; Bensaci, O.A.; Tifferent, A.; Abbasi, A.; Djemoui, A.; Rebouh, N.Y.; Hashem, A.; Avila-Quezada, G.D.; Almutairi, K.F.; et al. Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids. Insects 2025, 16, 817. https://doi.org/10.3390/insects16080817
Meradsi F, Lekbir A, Bensaci OA, Tifferent A, Abbasi A, Djemoui A, Rebouh NY, Hashem A, Avila-Quezada GD, Almutairi KF, et al. Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids. Insects. 2025; 16(8):817. https://doi.org/10.3390/insects16080817
Chicago/Turabian StyleMeradsi, Fouad, Adel Lekbir, Oussama A. Bensaci, Abdelkader Tifferent, Asim Abbasi, Assia Djemoui, Nazih Y. Rebouh, Abeer Hashem, Graciela Dolores Avila-Quezada, Khalid F. Almutairi, and et al. 2025. "Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids" Insects 16, no. 8: 817. https://doi.org/10.3390/insects16080817
APA StyleMeradsi, F., Lekbir, A., Bensaci, O. A., Tifferent, A., Abbasi, A., Djemoui, A., Rebouh, N. Y., Hashem, A., Avila-Quezada, G. D., Almutairi, K. F., & Abd_Allah, E. F. (2025). Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids. Insects, 16(8), 817. https://doi.org/10.3390/insects16080817