Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,858)

Search Parameters:
Keywords = layered soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9108 KB  
Article
Research on Application of High-Pressure Cyclic Grouting Technology in Soft Soil Layers
by Xiaolong Pei, Liwei Huang, Ping Fu and Zhanqing Xing
Coatings 2026, 16(2), 194; https://doi.org/10.3390/coatings16020194 - 4 Feb 2026
Abstract
Aiming at technical challenges such as the insufficient bearing capacity of orifice formation leading to slurry overflow and non-uniform formation reinforcement in soft soil layer grouting engineering, an external cyclic grouting process through the grouting pipe is innovatively proposed. Distinguished from traditional in-hole [...] Read more.
Aiming at technical challenges such as the insufficient bearing capacity of orifice formation leading to slurry overflow and non-uniform formation reinforcement in soft soil layer grouting engineering, an external cyclic grouting process through the grouting pipe is innovatively proposed. Distinguished from traditional in-hole circulation methods, this process achieves bottom-up cyclic grouting through a slurry return channel outside the grouting hole, which effectively reduces the risk of orifice fracturing and improves grouting uniformity. A grouting pressure loss equation is established to quantitatively analyze the relationships between the allowable grouting pressure and the side wall opening of the grouting pipe, slurry rheological parameters, surface consolidation depth, and surface consolidation strength. It is revealed that slurry with high viscosity and low yield stress is suitable for deep grouting, and a design criterion innovatively proposes that the side wall opening of the grouting hole should dynamically increase with the grouting depth. Based on the strain–pressure curve, a prediction model for the reinforcement radius of compaction grouting is established. Slurry rheological parameters and formation mechanical parameters are obtained through laboratory tests, and field grouting tests are conducted. The reinforcement effect is verified by means of ground-penetrating radar and standard penetration tests. The results show that, compared with traditional grouting processes, this process significantly improves the bearing capacity of the orifice and enhances the uniformity and compactness of formation reinforcement and that the theoretical prediction error of the reinforcement radius is less than 15%. The research results provide the theoretical basis and technical support for soft soil grouting engineering and have important engineering application value. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

19 pages, 3601 KB  
Article
Technosols from Household Solid Waste to Restore Urban Residential Soils: A Case Study in Sabanalarga, Colombia
by Lina Henriquez Sarmiento, Hugo Hernández, Anderson Nieto Granados, Jorge Rodas, Andrea Liliana Moreno-Ríos, Andreas Hasse, Diana Pinto and Claudete Gindri Ramos
Sustainability 2026, 18(3), 1565; https://doi.org/10.3390/su18031565 - 4 Feb 2026
Abstract
Technosols are artificial soils produced from organic and inorganic solid waste to improve soil fertility and functionality. This study evaluated the potential of Technosols produced from household waste from the Altos de Guadalupe residential complex in Colombia to fertilize green areas and promote [...] Read more.
Technosols are artificial soils produced from organic and inorganic solid waste to improve soil fertility and functionality. This study evaluated the potential of Technosols produced from household waste from the Altos de Guadalupe residential complex in Colombia to fertilize green areas and promote the growth of Duranta erecta. A physical characterization of waste from 46 houses was performed to estimate per capita production (PPC) and waste composition. Technosols were produced in 20, 50, and 200 L bioreactors using recyclable organic and inorganic waste arranged in 10 layers and composted for three months. A field trial was established with two treatments, soil without Technosols (T1) and soil with Technosols (T2), with three replicates and ten plants per plot (60 plants total). Soil fertility parameters and plant growth variables were evaluated over 300 days. The PPC reached 0.56 kg·capita−1·day−1, and 56.4% of the residues were suitable for Technosol production. Technosol exhibited a pH of approximately 7.1, an organic matter content of 11.1%, and phosphorus and potassium concentrations of 50.3 mg·kg−1 and 2573 mg·kg−1, respectively. Technosol increased soil organic matter by 5.4 percentage points and improved nutrient availability. After 300 days, plant height and root dry matter in T2 were 30% and 41% higher, respectively, than in T1 (p < 0.05). These results show that the use of Technosols on a residential scale can improve urban soil fertility and plant productivity, contributing to the principles of the circular economy and Sustainable Development Goals 11 and 12. Full article
Show Figures

Figure 1

22 pages, 3280 KB  
Systematic Review
From IoT to AIoT: Evolving Agricultural Systems Through Intelligent Connectivity in Low-Income Countries
by Selain K. Kasereka, Alidor M. Mbayandjambe, Ibsen G. Bazie, Heriol F. Zeufack, Okurwoth V. Ocama, Esteve Hassan, Kyandoghere Kyamakya and Tasho Tashev
Future Internet 2026, 18(2), 82; https://doi.org/10.3390/fi18020082 - 3 Feb 2026
Abstract
The convergence of Artificial Intelligence and the Internet of Things has given rise to the Artificial Intelligence of Things (AIoT), which enables connected systems to operate with greater autonomy, adaptability, and contextual awareness. In agriculture, this evolution supports precision farming, improves resource allocation, [...] Read more.
The convergence of Artificial Intelligence and the Internet of Things has given rise to the Artificial Intelligence of Things (AIoT), which enables connected systems to operate with greater autonomy, adaptability, and contextual awareness. In agriculture, this evolution supports precision farming, improves resource allocation, and strengthens climate resilience by enhancing the capacity of farming systems to anticipate, absorb, and recover from environmental shocks. This review provides a structured synthesis of the transition from IoT-based monitoring to AIoT-driven intelligent agriculture and examines key applications such as smart irrigation, pest and disease detection, soil and crop health assessment, yield prediction, and livestock management. To ensure methodological rigor and transparency, this study follows the PRISMA 2020 guidelines for systematic literature reviews. A comprehensive search and multi-stage screening procedure was conducted across major scholarly repositories, resulting in a curated selection of studies published between 2018 and 2025. These sources were analyzed thematically to identify technological enablers, implementation barriers, and contextual factors affecting adoption particularly within low-income countries where infrastructural constraints, limited digital capacity, and economic disparities shape AIoT deployment. Building on these insights, the article proposes an AIoT architecture tailored to resource-constrained agricultural environments. The architecture integrates sensing technologies, connectivity layers, edge intelligence, data processing pipelines, and decision-support mechanisms, and is supported by governance, data stewardship, and capacity-building frameworks. By combining systematic evidence with conceptual analysis, this review offers a comprehensive perspective on the transformative potential of AIoT in advancing sustainable, inclusive, and intelligent food production systems. Full article
(This article belongs to the Special Issue Machine Learning and Internet of Things in Industry 4.0)
Show Figures

Figure 1

35 pages, 7550 KB  
Article
Stability Analysis of Tunnel Face in Nonhomogeneous Soil with Upper Hard and Lower Soft Strata Under Unsaturated Transient Seepage
by Wenjun Shao, De Zhou, Long Xia, Guihua Long and Jian Wang
Mathematics 2026, 14(3), 537; https://doi.org/10.3390/math14030537 - 2 Feb 2026
Abstract
To enhance the assessment accuracy of tunnel face instability risks of active collapse during shield tunneling, this study establishes a novel unified analytical framework that couples the effects of unsaturated transient seepage induced by excavation drainage with soil stratification and heterogeneity. Grounded in [...] Read more.
To enhance the assessment accuracy of tunnel face instability risks of active collapse during shield tunneling, this study establishes a novel unified analytical framework that couples the effects of unsaturated transient seepage induced by excavation drainage with soil stratification and heterogeneity. Grounded in unsaturated effective stress theory, the framework explicitly incorporates matric suction into the Mohr–Coulomb failure criterion via suction stress and apparent cohesion. By employing a horizontal two-layer nonhomogeneous soil model and solving the one-dimensional vertical Richards’ equation, an analytical solution for the face drainage boundary is derived to quantify the spatiotemporal evolution of suction stress and apparent cohesion. Subsequently, the critical support pressure is evaluated using the upper bound theorem of limit analysis, incorporating a horizontal layer-discretized rotational failure mechanism and the power balance equation. The validity of the proposed framework is confirmed through comparative analyses. Parametric studies reveal that in the upper hard and lower soft strata, the critical support pressure decreases and converges over time, indicating that unsaturated transient seepage exerts a significant influence in the short term that stabilizes over the long term. Additionally, sand–silt stratum exhibits lower overall stability and higher sensitivity to groundwater levels and temporal factors compared to silt–clay stratum. Conversely, silt–clay stratum displays a non-monotonic evolution with increasing cover-to-diameter ratios (C/D), reaching a minimum critical support pressure at approximately C/D = 1.1. Regarding heterogeneity, the internal friction angle of the lower layer exerts dominant control over the critical support pressure compared to seepage velocity, while the influence of other strength parameters remains secondary. These findings provide a theoretical basis for the time-dependent design of tunnel face support pressure under excavation drainage conditions. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
35 pages, 51007 KB  
Article
Microclimates, Geometry, and Constructive Sustainability of the Inca Agricultural Terraces of Moray, Cusco, Peru
by Doris Esenarro, Celeste Hidalgo, Jesica Vilchez Cairo, Guisela Yabar, Tito Vilchez, Percy Zapata, Daniel Bermudez and Ana Camayo
Heritage 2026, 9(2), 56; https://doi.org/10.3390/heritage9020056 - 2 Feb 2026
Viewed by 24
Abstract
Moray (Cusco, Peru) represents one of the most sophisticated examples of Inca agricultural engineering, where architecture, environmental management, and constructive systems converge to generate controlled microclimates for agricultural experimentation. Recognized as an important archaeological heritage site, Moray provides valuable insight into ancestral Andean [...] Read more.
Moray (Cusco, Peru) represents one of the most sophisticated examples of Inca agricultural engineering, where architecture, environmental management, and constructive systems converge to generate controlled microclimates for agricultural experimentation. Recognized as an important archaeological heritage site, Moray provides valuable insight into ancestral Andean strategies for adapting agriculture to complex high-altitude environments. However, the site is increasingly exposed to environmental pressures associated with climatic variability, soil erosion, structural collapses, and tourism intensity. This study aims to analyze the relationship between microclimates, geometric design, and constructive sustainability of the Moray archaeological complex through integrated spatial, functional, and constructive analyses, supported by digital tools such as Google Earth Pro, AutoCAD 2023, SketchUp 2023, and environmental simulations developed by Andrew Marsh. The research examines the geometric configuration of the circular terraces, which present radii between 45 and 65 m, heights ranging from 3 to 5 m, and slope variations between 14% and 48%, generating temperature gradients of 12–15 °C between upper and lower levels. These conditions enabled the Incas to experiment with and adapt diverse ecological species across different thermal zones. The study also evaluates the irrigation and infiltration systems composed of gravel, sand, and stone layers that ensured soil stability and moisture regulation. Climate data from SENAMHI (2019–2024) indicate that Moray is located in a semi-arid meso-Andean environment, reinforcing its interpretation as an ancestral environmental laboratory. The results demonstrate Inca mastery in integrating environmental design, hydrological engineering, and agricultural experimentation while also identifying current conservation challenges related to erosion processes, structural deterioration, and tourism pressure. This research contributes to understanding Moray as a climate-sensitive heritage system, offering insights relevant to contemporary strategies for sustainable agriculture, climate adaptation, and heritage conservation in Andean regions. Full article
19 pages, 4026 KB  
Article
Field Experimental Study on the Influence of Different Grouting Methods on the Bearing Performance of Bored Piles in Soft Soil Areas
by Yunfeng Hu, Chunlin He, Lvshan Huang, Liehui Mao and Guoliang Dai
Buildings 2026, 16(3), 602; https://doi.org/10.3390/buildings16030602 - 2 Feb 2026
Viewed by 29
Abstract
Post-grouting is an active reinforcement technique that can significantly enhance the bearing performance of bored piles. This study conducted field tests on three in situ test piles using tip grouting, side grouting, and combined tip-side grouting. Based on the analysis of static load [...] Read more.
Post-grouting is an active reinforcement technique that can significantly enhance the bearing performance of bored piles. This study conducted field tests on three in situ test piles using tip grouting, side grouting, and combined tip-side grouting. Based on the analysis of static load test data, the improvement effects of different grouting methods on the vertical bearing behavior of the piles were quantified. In situ tests were then performed to elucidate the reinforcement mechanisms of various post-grouting techniques on the pile foundations. Based on the validated finite element model, the study explored the influence of key grouting parameters on the bearing performance of grouted piles. Analysis of the test data shows that all grouting methods improved the vertical bearing capacity of bored piles. The positive effect of tip grouting was more pronounced than that of side grouting. Furthermore, in the clay layer of the soft soil region, side grouting primarily manifested as splitting grouting, while tip grouting formed a hardened grout bulb at the pile tip through cementation and solidification, thereby significantly enhancing the mobilization of the pile tip bearing capacity. Finite element model analysis shows that, in terms of enhancing the bearing capacity of the pile, expanding the grout diffusion range is more effective than increasing the grout material strength. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 4775 KB  
Article
Combined Experimental, DFT, and MD Investigation Toward the Rational Design of Desert Planting Substrates
by Shuangnan Li, Linjie Wang, Yinghui Li, Zhenyu Zhang, Jidun Fang and Shiling Yuan
Molecules 2026, 31(3), 508; https://doi.org/10.3390/molecules31030508 - 2 Feb 2026
Viewed by 41
Abstract
Soil moisture regulation is critical for vegetation restoration in arid ecosystems. Polymeric hydrogels, notably polyacrylic acid (PAA) and polyacrylamide (PAM), are widely employed as water-retaining agents to enhance soil water availability. However, the coupling between their distinct chemical structures and key performance metrics, [...] Read more.
Soil moisture regulation is critical for vegetation restoration in arid ecosystems. Polymeric hydrogels, notably polyacrylic acid (PAA) and polyacrylamide (PAM), are widely employed as water-retaining agents to enhance soil water availability. However, the coupling between their distinct chemical structures and key performance metrics, particularly cycling stability and water retention kinetics in desert substrates, remains unclear. In this work, we present an integrated experimental–computational study to establish a “molecular structure–interfacial behavior–macroscopic property” framework for PAA and PAM. The results show that PAA exhibits a higher equilibrium water absorption (WAC ~242 g/g) and more stable water uptake capacity under cycling, whereas PAM displays much higher zero-shear viscosity and pronounced shear thinning with a yield plateau (~30 Pa). DFT and MD simulations trace these macroscopic disparities to their distinct electronic structures and hydration dynamics. Specifically, PAA’s strong electrostatic interactions and extended chain conformations promote a more rigid and ordered hydration shell, whereas PAM adopts a compact structure with greater chain mobility, resulting in a less ordered hydration layer. Collectively, these findings provide a structure-property framework for the scientifically grounded selection of water-retaining agents. The integrated experimental–computational methodology presented herein establishes a predictive framework for the rational design of functional materials in arid land restoration. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry, 3rd Edition)
Show Figures

Graphical abstract

24 pages, 9749 KB  
Article
Subsoiling Orchestrates Evapotranspiration Partitioning to Enhance Water Use Efficiency of Arid Oasis Cotton Fields in Northwest China
by Liang Wang, Ziqiang Liu, Rensong Guo, Tao Lin, Gulinigar Tu’erhong, Qiuxiang Tang, Na Zhang, Zipiao Zheng, Liwen Tian and Jianping Cui
Agronomy 2026, 16(3), 359; https://doi.org/10.3390/agronomy16030359 - 2 Feb 2026
Viewed by 162
Abstract
Long-term continuous cropping in cotton fields of Southern Xinjiang has limited crop productivity. To investigate how subsoiling depth regulates ecosystem-level water partitioning and thereby enhances water productivity mechanisms, a two-year field experiment was conducted in a mulched drip irrigation cotton field in Southern [...] Read more.
Long-term continuous cropping in cotton fields of Southern Xinjiang has limited crop productivity. To investigate how subsoiling depth regulates ecosystem-level water partitioning and thereby enhances water productivity mechanisms, a two-year field experiment was conducted in a mulched drip irrigation cotton field in Southern Xinjiang. Using a non-subsoiled field in the current season (CT) as the control, three subsoiling depths were established: subsoiling at 30 cm (ST1), 40 cm (ST2), and 50 cm (ST3). Changes in evapotranspiration partitioning and water use efficiency were analyzed. The results showed that subsoiling enhanced the utilization of deep soil water. Compared with CT, the ST2 and ST3 treatments significantly reduced soil water storage in the 0–60 cm layer during the flower opening to boll-setting stages, while soil water consumption increased by 26.4 mm and 28.8 mm, respectively. We demonstrate that subsoiling depth exerts a predominant control on the partitioning of evapotranspiration. Increasing subsoiling depth systematically shifted water loss from non-productive soil evaporation to productive plant transpiration, with the ST2 and ST3 treatments decreasing seasonal soil evaporation by 24.1% and 25.1%, respectively, and increasing plant transpiration by 21.9% and 22.8%, and lowering the Es/ET (where Es is soil evaporation and ET is evapotranspiration) ratio by 22.1% and 27.1%. However, this maximal physiological water-saving did not yield the optimal agronomic return. We established a non-linear relationship in which the ST2 treatment uniquely achieved the maximum seed cotton yield, WUE (water use efficiency), and IWUE (irrigation water use efficiency) (increasing by up to 34.4%, 17.2%, and 23.4%, respectively). This optimal depth better balances water resource allocation and reproductive growth. We conclude that under sandy loam soil conditions in typical mulched drip-irrigated cotton areas of Southern Xinjiang, implementing an optimal subsoiling depth (40 cm) can engineer a more resilient soil–plant–water continuum, providing a feasible pathway toward enhancing water and crop production sustainability. Full article
Show Figures

Figure 1

15 pages, 329 KB  
Article
Impact of Seeding Depth on Emergence and Seedling Establishment of Different Rice Cultivars
by Ahmad Jawad, Shahbaz Hussain, Muhammad Zubair Akram, Asif Ameen, Atif Naeem, Madad Ali and Samreen Nazeer
Seeds 2026, 5(1), 10; https://doi.org/10.3390/seeds5010010 - 2 Feb 2026
Viewed by 39
Abstract
Direct seeded rice, being less water- and labor-intensive, can be an alternative approach to conventional rice planting methods. However, uneven and poor stand establishment caused by deep sowing in the field is one of the major hurdles in the adoption of direct seeding [...] Read more.
Direct seeded rice, being less water- and labor-intensive, can be an alternative approach to conventional rice planting methods. However, uneven and poor stand establishment caused by deep sowing in the field is one of the major hurdles in the adoption of direct seeding technology. Varieties with the potential to emerge from deeper layers of soil may have a positive impact on crop establishment. To evaluate the behavior of ten rice cultivars against their potential to emerge from different soil depths (0, 2.5, and 5.0 cm), a pot experiment was conducted under semi-controlled conditions at the PARC Rice Programme, Kala Shah Kaku, Lahore. Data on different seedling parameters were collected. The results showed that the highest mean seedling emergence percentage (95%) was achieved by the tested genotypes at a 2.5 cm seeding depth, while surface sowing and placement of seeds at a 5 cm depth demonstrated a similar mean emergence percentage (89%). Seeding depth, genotypes, and their interactions significantly affected mean emergence time, mesocotyl and coleoptile lengths, and root and shoot lengths. Sowing seeds at a 5 cm depth increased mean emergence time by 28%. However, increasing sowing depth increased the coleoptile length, mesocotyl length, first leaf sheath length, and shoot length of rice seedlings. Mesocotyls and coleoptile lengths showed a linear relationship with mean emergence time. Mesocotyl and coleoptile are key structures of the apical–basal axis in grasses that elongate to facilitate the emergence of germinating seeds under deep sowing. The longest coleoptiles (1.47 cm) and mesocotyls (3.27 cm) were measured from seedlings sown at a depth of 5 cm. Among genotypes, PK-1121 exhibited maximum coleoptile elongation (2.10 cm) under deep sowing (5 cm), while the longest mesocotyls were recorded from deep-sown (5 cm) seedlings of Chenab Basmati. Root length was found to be inversely proportional to sowing depth. PK-1121 aromatic, Kisan Basmati, Punjab Basmati, and Chenab Basmati produced longer shoots (22.61, 23.37, 23.32, and 21.05 cm, respectively) and took a relatively short time for emergence when sown deep. These varieties may have better potential to emerge from deeper soil layers, which may have a positive impact on even germination and better crop stand establishment. Full article
Show Figures

Figure 1

18 pages, 2603 KB  
Article
Effects of Brackish Water Irrigation on Salt Transport in Saline-Alkali Peat–Perlite Substrates and Lettuce (Lactuca sativa L.) Growth
by Wendong Zhang, Caiyu Wang, Yiman Li and Qinghai He
Water 2026, 18(3), 376; https://doi.org/10.3390/w18030376 - 1 Feb 2026
Viewed by 201
Abstract
Amid global freshwater scarcity and soil salinization, brackish irrigation is a potential alternative, yet its effects under low-leaching soilless systems remain unclear. We tested brackish irrigation (30 mmol L−1 NaCl; EC ≈ 4.8 dS m−1, including fertilizer) on lettuce ( [...] Read more.
Amid global freshwater scarcity and soil salinization, brackish irrigation is a potential alternative, yet its effects under low-leaching soilless systems remain unclear. We tested brackish irrigation (30 mmol L−1 NaCl; EC ≈ 4.8 dS m−1, including fertilizer) on lettuce (Lactuca sativa L.) grown in peat–perlite substrates with non-saline (CK), mildly saline (M), and moderately–severely saline (S) initial salinity. Substrate moisture and bulk electrical conductivity (ECb) were monitored at upper, middle, and deep layers with multi-depth sensors; lettuce physiological and growth traits were measured. Under negligible drainage, salt moved downward promptly after irrigation in CK, accumulated at the surface in M, and remained high with spatiotemporal variability in S. Brackish irrigation had minimal effects on biomass and water use efficiency in CK and M, but significantly reduced both in S. These findings support tailoring brackish irrigation to initial salinity severity and motivate future work to measure drainage and calibrate EC indices to establish operational thresholds. Full article
(This article belongs to the Special Issue Advanced Technologies in Agricultural Water-Saving Irrigation)
Show Figures

Figure 1

25 pages, 6105 KB  
Article
Three-Dimensional Characterization and Management of Heavy Metal Contamination in Site Soils
by Xiangyuan Wu, Feng Li, Sensen Wang, Zhuoli Zhang and Yan Li
Land 2026, 15(2), 248; https://doi.org/10.3390/land15020248 - 31 Jan 2026
Viewed by 89
Abstract
As former chemical sites, especially retired pesticide plants, the redevelopment of “brownfield” land imposes urgent demands for detailed environmental investigation and remediation. Addressing the current limitations in pollution characterization, which often remain confined to two-dimensional representations and lack research on the vertical migration [...] Read more.
As former chemical sites, especially retired pesticide plants, the redevelopment of “brownfield” land imposes urgent demands for detailed environmental investigation and remediation. Addressing the current limitations in pollution characterization, which often remain confined to two-dimensional representations and lack research on the vertical migration mechanisms of heavy metals and their integration with three-dimensional remediation and management strategies, this study focuses on a typical retired pesticide plant site in Southeastern Zhejiang, China. Through systematic analysis of 916 soil borehole samples collected from 92 sampling points, the study integrates three-dimensional visualization technology and three-dimensional ordinary kriging interpolation to establish a high-precision three-dimensional characterization system covering stratigraphy, pollution plumes, and composite risks. The findings reveal that the As and Ni pollution plumes have volumes of 5.35 × 104 m3 and 2.78 × 105 m3, respectively. Furthermore, As and Ni exhibit significant vertical migration capabilities within sandy and silty soil layers, while elements such as Hg, Cd, and Pb are primarily concentrated in the surface fill layer. By combining three-dimensional risk modeling based on the single-factor pollution index, Nemerow comprehensive index, and potential ecological risk index, the study precisely classifies the site into four graded zones: safe use zone, basically safe use zone, low-risk control zone, and high-risk control zone. This approach enables the visualization and quantification of pollution levels. The research constructs a comprehensive methodological framework that extends from three-dimensional pollution characterization to zonal management decision-making, providing scientific evidence and technical support for the precise remediation and sustainable redevelopment of similar retired industrial sites. Full article
Show Figures

Figure 1

16 pages, 2349 KB  
Article
Fungal Community Composition and Diversity Across Soil Depths Under Different Cover Crop Treatments
by Ephantus J. Muturi, Christopher A. Dunlap, Jose L. Ramirez, William L. Perry, Nicholas Heller and Robert L. Rhykerd
J. Fungi 2026, 12(2), 100; https://doi.org/10.3390/jof12020100 - 31 Jan 2026
Viewed by 88
Abstract
Fungi are a critical component of microbial biomass in agricultural soils, but their distribution across soil depths under different cover crops remains poorly understood. We used high-throughput sequencing of fungal ITS1 amplicons to characterize fungal communities across four soils depths (0–2, 2–4, 4–10, [...] Read more.
Fungi are a critical component of microbial biomass in agricultural soils, but their distribution across soil depths under different cover crops remains poorly understood. We used high-throughput sequencing of fungal ITS1 amplicons to characterize fungal communities across four soils depths (0–2, 2–4, 4–10, and 10–20 cm) in experimental field plots under four cover crop treatments: winter fallow reference (REF), cereal rye (CRYE), wild pennycress (WPEN), and a mixture of pea, crimson clover, radish, and oat (PCRO). There was no significant interaction between soil depth and cover crop treatment on both alpha diversity and beta diversity. CRYE and PCRO cover crops had low abundance of Fusarium, a genus including many important plant pathogens, and different fungal community composition relative to REF. Fungal diversity was significantly higher at 4–10 cm compared to 0–2 cm depth, but fungal richness was not affected by soil depth. Fungal community composition differed significantly between 0–4 and 10–20 cm soil depths. The relative abundance of Mortierella and unclassified Basidiomycota increased with increasing soil depth while that of Calvatia, Cryptococcus, Fusarium, and Idriella decreased with increasing soil depth. Most fungal taxa were assigned to more than one guild, but the few taxa that were classified as strict saprophytes decreased with increasing soil depth while those classified as strict symbionts increased with increasing soil depth. These differences were associated with low pH and high content of OM, K, S, P, and Zn in the topsoil layer compared to the deeper soil layer. The findings may inform the development of targeted soil management practices to promote beneficial fungi, but additional studies covering multiple study sites and sampling dates are needed for clarity. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

18 pages, 3461 KB  
Article
Microbial Responses to an Urban–Suburban–Exurban Gradient in Forest Soils: Shifts in Community Structure and Membrane Lipid Composition
by Jinhong He, Jiaohua Tang, Guocai Chen, Yu Qiao, Yanlin Chen, Yongjun Pan and Zhiqi Li
Land 2026, 15(2), 242; https://doi.org/10.3390/land15020242 - 30 Jan 2026
Viewed by 173
Abstract
Rapid urbanization threatens soil biodiversity and ecosystem functions, but the structural and physiological adaptations of soil microorganisms to urbanization remain unclear. We examined variations in soil microbial biomass, community structure and membrane lipid composition along an urban–suburban–exurban gradient in Guangzhou, China, using phospholipid [...] Read more.
Rapid urbanization threatens soil biodiversity and ecosystem functions, but the structural and physiological adaptations of soil microorganisms to urbanization remain unclear. We examined variations in soil microbial biomass, community structure and membrane lipid composition along an urban–suburban–exurban gradient in Guangzhou, China, using phospholipid fatty acid analysis. Samples were collected from four to five quadrats per site at three depths during dry and wet seasons. PERMANOVA revealed that both the urbanization gradient and the soil depth significantly shaped microbial communities. Depth was the strongest driver, explaining 45.5% of the variance in total microbial biomass, while site explained 27.2%. Microbial biomass decreased from exurban to urban sites and from surface to deep soils. Concurrently, the ratios of fungi/bacteria and Gram-positive/Gram-negative bacteria increased in urban areas and deeper soils. Physiologically, the membrane lipids shifted toward more saturated fatty acids in urban and surface soils, while unsaturated fatty acids predominated in exurban and deeper layers. These shifts in microbial community structure and membrane lipid composition were strongly correlated with key soil properties, including soil organic carbon, total nitrogen, and bulk density. The findings demonstrate urbanization diminishes microbial biomass and triggers adaptive microbial responses, providing a scientific basis for the sustainable management of urban forests. Full article
Show Figures

Figure 1

13 pages, 2458 KB  
Article
Effects of Long-Term Fertilization on Soil Physical and Chemical Properties of “Dangshansuli” Pear Orchard
by Luoluo Xie, Qingchen Zhao, Huihui Zhang, Wei Song, Guoling Guo, Youyu Wang, Bing Jia and Xiaomei Tang
Horticulturae 2026, 12(2), 162; https://doi.org/10.3390/horticulturae12020162 - 30 Jan 2026
Viewed by 156
Abstract
Inefficient fertilization practices frequently take place in orchards in Dangshan County, leading to substantial changes in soil properties and pear tree growth. To comprehensively evaluate the long-term impact and identify limiting factors, this study assessed the effects of 30-year fertilization across different soil [...] Read more.
Inefficient fertilization practices frequently take place in orchards in Dangshan County, leading to substantial changes in soil properties and pear tree growth. To comprehensively evaluate the long-term impact and identify limiting factors, this study assessed the effects of 30-year fertilization across different soil layers in “Dangshansuli” pear orchards. In May 2020, 30 soil samples were collected from a long-term fertilized plot and an unfertilized sandy control. The analyses focused on the physicochemical properties, mineral elements, heavy metals, chemical compound diversity, and allelopathic effects. The results showed that long-term fertilization significantly reduced soil pH (e.g., from 8.1 to 7.3 in the topsoil) and increased the content of soil organic matter by about 3.7-fold in the 0–20 cm layer. The contents of available potassium, exchangeable calcium, and magnesium in fertilized soil were optimal for pear growth, whereas available iron was deficient. Although fertilization led to the accumulation of heavy metals (Cu, Hg, Ni, Cr, As, Mn), their concentrations remained within national safety limits. The number of chemical compounds detected in fertilized soil was over 40% higher than in the control. Allelopathy tests indicated that 0.18 mmol·L−1 of octadecane strongly inhibited the root growth of “Shanli” (Pyrus ussuriensis Maxim.) tissue-cultured seedlings by more than 50%. These findings provide a scientific basis for optimizing fertilization strategies in “Dangshansuli” pear orchards. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

21 pages, 2755 KB  
Article
Tillage Performance and Whole-Body Vibration Analysis of a Subsoiler Equipped with an Oscillating Working Tool
by Roberto Fanigliulo, Daniele Pochi, Renato Grilli, Gennaro Vassalini, Mauro Pagano, Roberto Tomasone, Carla Cedrola and Laura Fornaciari
Agriculture 2026, 16(3), 339; https://doi.org/10.3390/agriculture16030339 - 30 Jan 2026
Viewed by 180
Abstract
Subsoiling is a highly effective deep tillage method used to mitigate soil compaction in orchard rows, a condition frequently resulting from repeated passes of agricultural machinery. This compaction can reduce water infiltration into deeper soil layers, leading to excessive surface water stagnation and [...] Read more.
Subsoiling is a highly effective deep tillage method used to mitigate soil compaction in orchard rows, a condition frequently resulting from repeated passes of agricultural machinery. This compaction can reduce water infiltration into deeper soil layers, leading to excessive surface water stagnation and a subsequent reduction in soil fertility. Subsoiling restores the structure of compacted soil by creating a vertical cut and lifting the ground without inverting the soil layers. This action promotes stable soil porosity and enhanced drainage, effectively eliminating the plough sole, and consequently improving root growth and nutrient absorption. Despite its benefits, subsoiling is an energy-intensive practice. Vibrating subsoilers can significantly reduce the high traction force required by conventional subsoilers, thereby enabling the use of smaller, less powerful tractors. This study investigated the performance of a single-shank subsoiler equipped with an innovative oscillating working tool, focusing on its dynamic-energy requirements, tillage quality, and the whole-body vibrations (WBV) transmitted to the tractor driver. Comparative tests were conducted in a compacted poplar grove using two 4WD tractors of different power and mass, with the subsoiler’s oscillating tool alternately activated and deactivated. The results demonstrated that the oscillating tool reduced draft force, traction power requirement, fuel consumption, and tractor slip, while maintaining tillage efficiency, displacing a greater mass of soil. However, a comparison of the measured vibrations indicated that their level reached a hazardous condition for the driver of the lower-power, lower-mass tractor when the oscillating tool was active. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop