Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = launch vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6226 KB  
Article
Design and Analysis of Optical–Mechanical–Thermal Systems for a High-Resolution Space Camera
by Xiaohan Liu, Jian Jiao, Kaihui Gu, Hong Li, Wenying Zhang, Siqi Zhang, Wei Zhao, Zhaohui Pei, Bo Zhang, Zhifeng Cheng and Feng Yang
Sensors 2025, 25(24), 7617; https://doi.org/10.3390/s25247617 - 16 Dec 2025
Viewed by 449
Abstract
To meet the requirements of high resolution, compact size, and ultra-lightweight for micro–nano satellite optoelectronic payloads while ensuring high structural stability during launch and in-orbit operation, mirrors were designed with high surface accuracy. The opto-thermo-mechanical system of the space camera was designed and [...] Read more.
To meet the requirements of high resolution, compact size, and ultra-lightweight for micro–nano satellite optoelectronic payloads while ensuring high structural stability during launch and in-orbit operation, mirrors were designed with high surface accuracy. The opto-thermo-mechanical system of the space camera was designed and analyzed accordingly. First, an optical system was designed to achieve high resolution and a compact form factor. A coaxial triple-reflector configuration with multiple refractive paths was adopted, which significantly shortened the optical path and laid the foundation for a lightweight, compact structure. This design also defined the accuracy and tolerance requirements for the primary and secondary mirrors. Subsequently, mathematical models for topology optimization and dimensional optimization were established to optimize the design of the main support structure, primary mirror, and secondary mirror. Two design schemes for the main support structure and primary mirror were compared. Steady-state thermal analysis and thermal control design were carried out for both mirrors. Simulations were then performed on the main system (including the primary/secondary mirror assemblies and the main support structure). Under the combined effects of gravity, a 4 °C temperature increase, and an assembly flatness deviation of 0.01 mm, the surface accuracy of both mirrors, the displacement of the secondary mirror relative to the primary mirror reference, and the tilt angle all met the overall specification requirements. The system’s first-order natural frequency was 156.731 Hz. After precision machining, fabrication, and assembly, wavefront aberration testing was conducted on the main system with the optical axis horizontal. Under gravity, the root mean square (RMS) wavefront error at the center of the field of view was 0.073λ, satisfying the specification of ≤1/14λ. The fundamental frequency measured during vibration testing was 153.09 Hz, which aligned closely with the simulated value and well exceeded the requirement of 100 Hz. Additionally, in-orbit imaging verification was conducted. All results satisfied the technical specifications of the satellite’s overall requirements. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 4884 KB  
Article
Research on a Passive-Tuned Magnetorheological Damper for Whole-Spacecraft Vibration Isolation
by Lifan Wu, Xiaomin Dong, Kaixiang Wang, Jialong Wang, Xiangcheng Fang and Huan Zhou
Actuators 2025, 14(12), 600; https://doi.org/10.3390/act14120600 - 8 Dec 2025
Viewed by 329
Abstract
During the launch phase of a carrier rocket, the spacecraft carried by the rocket will be subjected to strong vibrations from the rocket body. Therefore, based on the special working conditions during the rocket launch phase, a passive-tuned magnetorheological (PT-MR) damper using the [...] Read more.
During the launch phase of a carrier rocket, the spacecraft carried by the rocket will be subjected to strong vibrations from the rocket body. Therefore, based on the special working conditions during the rocket launch phase, a passive-tuned magnetorheological (PT-MR) damper using the magnetorheological (MR) composite was proposed, which achieves stable and efficient operational performance using permanent magnets (PMs). Firstly, the influence of squeeze mode on the performances of the MR composite was analyzed for different vibration conditions. Then, by analyzing the squeeze strengthening effect of the MR composite and the influence of non-uniform radial gap size on the damping force, the mechanical model of the proposed damper was derived. Furthermore, the damper prototype was fabricated and its mechanical properties were tested, and the test results showed that the proposed damper can generate a damping force exceeding 800 N. Finally, the vibration isolation effectiveness of the proposed damper was verified from a system perspective by building the simulation model of whole-spacecraft vibration isolation. Full article
Show Figures

Figure 1

26 pages, 5161 KB  
Article
Active Heave Compensation for Ship–Cable–Body Systems via Real-Time PID-OrcFxAPI Framework and Multi-Maneuver Performance Analysis
by Lei Tan, Mengjie Jiang and Chaohe Chen
J. Mar. Sci. Eng. 2025, 13(12), 2287; https://doi.org/10.3390/jmse13122287 - 1 Dec 2025
Viewed by 345
Abstract
In harsh marine environments, during the operation of the Ship–Cable–Body coupled system, the towed cable may become slack or taut, and tension oscillations may occur, leading to cable breakage or launch and recovery system (LARS) damage, underscoring the need for effective compensation control. [...] Read more.
In harsh marine environments, during the operation of the Ship–Cable–Body coupled system, the towed cable may become slack or taut, and tension oscillations may occur, leading to cable breakage or launch and recovery system (LARS) damage, underscoring the need for effective compensation control. Traditional offline and static simulation methods fail to capture the system’s dynamics, leading to inaccurate validation of control strategies. To address this, we propose a real-time dynamic modeling framework using the OrcFxAPI, enabling millisecond-level bidirectional interaction between the towed body’s motion and LARS commands. By integrating a Python 3.10-based PID controller with OrcFxAPI, the framework achieves real-time active heave compensation (AHC) in deep-sea towing, dynamically adjusting cable length and payout speed based on feedback to suppress vibrations. Unlike prior studies focused on launch and recovery, this work systematically evaluates AHC performance during typical operations (hovering, linear and turning motion), and compares system responses with and without compensation. Results show the AHC framework significantly improves towed body stability, reduces tension fluctuations, and keeps tension within safe working limits (SWLs), while identifying critical cable payout speed thresholds for practical operation. The approach validates the use of OrcFxAPI for high-fidelity real-time coupling analysis and provides a reliable tool for optimizing control and design of deep-sea towing systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 4468 KB  
Article
Binary-Tree Structure for Extended Range-Distributed Acoustic Sensing
by Xiangge He, Zhi Cao, Min Zhang and Hailong Lu
Appl. Sci. 2025, 15(21), 11748; https://doi.org/10.3390/app152111748 - 4 Nov 2025
Cited by 1 | Viewed by 406
Abstract
The dual-pulse heterodyne demodulation distributed acoustic sensing (HD-DAS) system has superior performance but is fundamentally limited by the short sensing range, which poses a significant obstacle to its application in long-distance monitoring. This paper proposes and experimentally demonstrates a novel binary-tree structure DAS [...] Read more.
The dual-pulse heterodyne demodulation distributed acoustic sensing (HD-DAS) system has superior performance but is fundamentally limited by the short sensing range, which poses a significant obstacle to its application in long-distance monitoring. This paper proposes and experimentally demonstrates a novel binary-tree structure DAS (BTS-DAS) aimed at overcoming this critical limitation. By physically decoupling the long-distance transmission fiber from the final sensing part, this structure effectively expands the system’s remote sensing capability without compromising the high pulse repetition rate for high-performance measurement. We identified modulation instability (MI), rather than stimulated Brillouin scattering (SBS), as the dominant nonlinear noise source in the extended fiber chain. Through careful power management, we established an optimal launch power window. The practical feasibility of the system was verified during on-site testing, where vibrations were successfully detected over a 10 km transmission link with sensing occurring in the 250 m sensing fiber segment, achieving a low background noise of −59.79 dB ref rad/Hz. This work presents a robust and scalable solution for long-range, high-performance acoustic sensing. Full article
(This article belongs to the Special Issue Advanced Optical Fiber Sensors: Applications and Technology)
Show Figures

Figure 1

17 pages, 4978 KB  
Article
Nonlinear Influence of Chamber Pressure on the Asymmetric Dynamic Response of a Rifle Muzzle Under Continuous Firing Conditions
by Li Chen, Jiayi Xu, Jie Song and Zhilin Wu
Symmetry 2025, 17(11), 1853; https://doi.org/10.3390/sym17111853 - 3 Nov 2025
Viewed by 343
Abstract
The symmetry-breaking vibrational response of a gun muzzle, induced by the thermo–mechanical coupling effect under continuous firing, is a critical factor degrading shooting accuracy. This study investigates the nonlinear influence of chamber pressure variation on this asymmetric dynamic response. A thermo–mechanically coupled interaction [...] Read more.
The symmetry-breaking vibrational response of a gun muzzle, induced by the thermo–mechanical coupling effect under continuous firing, is a critical factor degrading shooting accuracy. This study investigates the nonlinear influence of chamber pressure variation on this asymmetric dynamic response. A thermo–mechanically coupled interaction model between a 5.8 mm bullet and its barrel is established using nonlinear finite element methods, incorporating experimentally measured pressure data. The kinematic state of the muzzle under a heated barrel condition (after 90 rounds) is systematically analyzed across five chamber pressure levels (90% to 110% of standard). The results reveal a highly nonlinear relationship between chamber pressure and muzzle vibration. Surprisingly, the maximum values for comprehensive radial displacement (10.601 × 10−3 mm), velocity (0.327 m/s), acceleration (11.083 m/s2), swing angle (0.192 mrad), and swing angular velocity (9.166 rad/s) occurred at the 100% standard pressure, not the highest pressure. Reducing the pressure to 90% of the standard effectively suppressed these asymmetric vibrations, with magnitudes declining by 84.28% to 95.49%. This indicates that the symmetry of the muzzle’s dynamic state is disrupted under thermal effects, and strategically lowering chamber pressure can restore a more symmetric and stable launch attitude, thereby enhancing accuracy. This study elucidates the nonlinear correlation mechanism between pressure and thermally induced asymmetric vibration, providing a novel perspective for optimizing the accuracy of rapid-fire weapons based on symmetry principles. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

27 pages, 6278 KB  
Article
Evaluation of the Mechanical Stability of Optical Payloads for Remote Sensing Satellites Based on Analysis and Testing Results
by Dulat Akzhigitov, Berik Zhumazhanov, Aigul Kulakayeva, Beksultan Zhumazhanov and Alikhan Kapar
Sensors 2025, 25(21), 6546; https://doi.org/10.3390/s25216546 - 24 Oct 2025
Cited by 1 | Viewed by 795
Abstract
This paper presents the results of numerical modeling and vibration testing of a nanosatellite’s optical payload, aimed at assessing its mechanical stability under the mechanical impacts of launch. The purpose of the study is to compare finite element modeling (FEM) data with experimental [...] Read more.
This paper presents the results of numerical modeling and vibration testing of a nanosatellite’s optical payload, aimed at assessing its mechanical stability under the mechanical impacts of launch. The purpose of the study is to compare finite element modeling (FEM) data with experimental testing to refine the computational model and improve the reliability of mechanical stability predictions. The methodology included an FEM analysis with an average damping coefficient, an adapter blank test, a resonance study with a low-level sinusoidal run, random vibration tests, and a sinusoidal pulse test. The FEM results showed an average yield margin of safety MoS = 2.5 with a minimum MoS = 1.8 in the primary mirror mount area. The adapter blank test confirmed the absence of natural resonances in the operating range. The resonance study revealed modes in the 300–1340 Hz range, with the most pronounced peaks in the secondary mirror bracket (520–600 Hz) and the electronics unit (1030–1100 Hz). A comparison of the root mean square (RMS) acceleration values between calculations and tests revealed discrepancies due to the heterogeneous nature of the damping. The values of ζ determined by the half-power method varied from 0.9% to 4.8%, which confirms the dependence of the damping properties on the frequency and localization of the modes. The obtained results confirmed the structural integrity of the payload, allowed for the localization of structural elements, and substantiated the need to consider actual damping coefficients in FEM models. The presented data can be used to optimize the design and improve mechanical stability during payload integration into the satellite platform. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 3326 KB  
Article
Micro-Vibrations Analysis in LEO CubeSats Using MEMS Accelerometers
by Sándor Gyányi, Róbert Szabolcsi, Péter János Varga, Gyula Horváth, Péter Horváth and Tibor Wührl
Sensors 2025, 25(18), 5917; https://doi.org/10.3390/s25185917 - 22 Sep 2025
Viewed by 935
Abstract
Small satellites or CubeSats orbiting in low Earth orbit (LEO) have become increasingly popular in Earth Observation missions, where high-resolution imaging is essential. Due to the lower mass of these spacecrafts, they are more sensitive to vibrations, and image quality can be particularly [...] Read more.
Small satellites or CubeSats orbiting in low Earth orbit (LEO) have become increasingly popular in Earth Observation missions, where high-resolution imaging is essential. Due to the lower mass of these spacecrafts, they are more sensitive to vibrations, and image quality can be particularly negatively affected by micro-vibrations. These vibrations originate from on-board subsystems, such as the Attitude Determination and Control System (ADCS), which uses reaction wheels to change the orientation of the satellite. The main goal of our research was to analyze these micro-vibrations so that the acquired data could be used for post-correction of camera images. Obuda University, as a participant in a research project, was tasked with designing and building a micro-vibration measuring device for the LEO CubeSat called WREN-1. In the first phase of the project, the satellite was launched into orbit, and test data were collected and analyzed. The results are presented in this article. Based on the data obtained in this way, the next step will be to analyze the images taken at the same time as the vibration measurements and to search for a correlation between the image quality and the vibrations. Based on the results of the entire project, it could be possible to improve the image quality of the onboard cameras of microsatellites. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

21 pages, 4723 KB  
Article
On-Orbit Calibration Method for Rotation Axis Misalignment in Rotating Mirror-Based Wide-Field Space Cameras
by Guoxiu Zhang, Yishi Qiao, Zhenyuan Guo, Chen Wang, Yingming Zhao, Yuxin Zhang, Chunyu Liu and Xianren Kong
Remote Sens. 2025, 17(15), 2740; https://doi.org/10.3390/rs17152740 - 7 Aug 2025
Viewed by 1057
Abstract
Rotating mirror-based space cameras are susceptible to mirror misalignment due to the severe vibrations experienced during rocket launch and the harsh, variable conditions of the space environment, which can result in deviations of the camera’s line of sight. To mitigate this risk, this [...] Read more.
Rotating mirror-based space cameras are susceptible to mirror misalignment due to the severe vibrations experienced during rocket launch and the harsh, variable conditions of the space environment, which can result in deviations of the camera’s line of sight. To mitigate this risk, this study proposes a simulation-based on-orbit calibration method for quantifying rotating mirror misalignment using a system of pointing vector equations. The method employs star coordinates as a reference to establish the reference pointing vector for stars, while simultaneously developing a model of the rotating mirror imaging system. By incorporating a misalignment matrix, the actual pointing vector of star points is derived. Subsequently, the reference star pointing vector and the actual star point pointing vector are combined to formulate a system of pointing vector equations. Solving these equations enables precise measurement of the rotating mirror’s rotational misalignment without requiring additional spaceborne equipment. Through simulations, the three-axis misalignment of the rotating mirror is deduced from imaging pixel coordinates, given the known right ascension and declination of reference star points. The influence and patterns of three-axis misalignment on pointing accuracy are analyzed separately. Although validation based on real measurement data remains to be carried out in future work, this simulation-based method provides a theoretical foundation for the calibration of internal orientation elements of space cameras equipped with moving components. Full article
Show Figures

Figure 1

30 pages, 4492 KB  
Article
Hard Preloaded Duplex Ball Bearing Dynamic Model for Space Applications
by Pablo Riera, Luis Maria Macareno, Igor Fernandez de Bustos and Josu Aguirrebeitia
Machines 2025, 13(7), 581; https://doi.org/10.3390/machines13070581 - 4 Jul 2025
Cited by 1 | Viewed by 863
Abstract
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic [...] Read more.
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic behaviour under vibration, simulations and experimental tests are performed. However, published models for space applications fail to capture the variations observed in test responses. This study presents a multi-degree-of-freedom nonlinear multibody model of a hard-preloaded duplex space ball bearing, particularized for this work to the case in which the outer ring is attached to a shaker and the inner ring to a test dummy mass. The model incorporates the Hunt and Crossley contact damping formulation and employs quaternions to accurately represent rotational dynamics. The simulated model response is validated against previously published axial test data, and its response under step, sine, and random excitations is analysed both in the case of radial and axial excitation. The results reveal key insights into frequency evolution, stress distribution, gapping phenomena, and response amplification, providing a deeper understanding of the dynamic performance of space-grade ball bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 3772 KB  
Article
Characteristics of Force Transmissibility in PLOVIS-II Cooler Micro-Vibration Isolation System
by Yeon-Hyeok Park, Mun-Shin Jo, Hoon-Young Kim and Hyun-Ung Oh
Aerospace 2025, 12(6), 511; https://doi.org/10.3390/aerospace12060511 - 6 Jun 2025
Cited by 1 | Viewed by 933
Abstract
This study investigates the basic characteristics of force transmissibility for a passive launch and on-orbit vibration isolation system (PLOVIS-II), which was developed to examine the microvibration attenuation of a spaceborne cryogenic cooler. The design, based on a coil spring-type passive vibration isolation system [...] Read more.
This study investigates the basic characteristics of force transmissibility for a passive launch and on-orbit vibration isolation system (PLOVIS-II), which was developed to examine the microvibration attenuation of a spaceborne cryogenic cooler. The design, based on a coil spring-type passive vibration isolation system without an additional launch-lock device, demonstrated an effective vibration attenuation performance in both launch and on-orbit vibration isolation. In this study, a test setup and method were developed to measure the force transmissibility of an isolator along each axis using a voice-coil-type non-contact vibration excitation instrument. In addition, the test results included the position sensitivity of PLOVIS-II, considering the worst misalignment of the isolation system, and its performance was compared with that of PLOVIS-I proposed in a previous study. Full article
(This article belongs to the Special Issue Space System Design)
Show Figures

Figure 1

14 pages, 3594 KB  
Article
Rapid Detection of Deployment Errors for Segmented Space Telescopes Based on Long-Range, High-Precision Edge Sensors
by Jisong Jiang, Xinlong Fan, Chenxu Li, Yuanyuan Tang, Shengqian Wang, Hao Xian and Mo Chen
Sensors 2025, 25(11), 3391; https://doi.org/10.3390/s25113391 - 28 May 2025
Viewed by 687
Abstract
The structural deformations induced by rocket launch vibrations, on-orbit thermal gradients, and gravitation fluctuations can lead to significant deployment errors for large-aperture, segmented space telescopes. As the size and number of segments increase in future telescopes, the optical-based methods for detecting deployment errors [...] Read more.
The structural deformations induced by rocket launch vibrations, on-orbit thermal gradients, and gravitation fluctuations can lead to significant deployment errors for large-aperture, segmented space telescopes. As the size and number of segments increase in future telescopes, the optical-based methods for detecting deployment errors suffer from the range limitations of the millimeter scale and time-consuming processes of the month scale. To address this, we propose a new method for rapid-deployment error detection based on long-range, high-precision capacitive edge sensors. These sensors feature a measurement range of ±13 mm, with a precision better than 7.3 nm, enabling efficient and simultaneous error detection across all segments. This approach significantly reduces the time and steps required compared to traditional optical methods. Through experimental validation, the designed system demonstrated the ability to detect and correct large deployment errors and maintain co-phasing precision, meeting the stringent requirements for future space telescopes. The proposed sensor system enhances deployment efficiency, offering a viable solution for the next generation of segmented space telescopes. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

43 pages, 29509 KB  
Article
Finite Element Modeling of Different Types of Hydrogen Pressure Vessels Under Extreme Conditions for Space Applications
by Reham Reda, Sabbah Ataya and Amir Ashraf
Processes 2025, 13(5), 1429; https://doi.org/10.3390/pr13051429 - 7 May 2025
Cited by 2 | Viewed by 1960
Abstract
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, [...] Read more.
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, PVs must be lightweight while retaining structural integrity in order to increase the efficiency and lower the launch costs. PVs have significant challenges in space conditions, such as extreme vibrations during launch, the complete vacuum of space, and sudden temperature changes based on their location within the satellite and orbit types. Determining the operational temperature limits and endurance of PVs in space applications requires assessing the combined effects of these factors. As the main propellant for satellites and rockets, hydrogen has great promise for use in future space missions. This study aimed to assess the structural integrity and determine the thermal operating limits of different types of hydrogen pressure vessels using finite element analysis (FEA) with Ansys 2019 R3 Workbench. The impact of extreme space conditions on the performances of various kinds of hydrogen pressure vessels was analyzed numerically in this work. This study determined the safe operating temperature ranges for Type 4, Type 3, and Type 1 PVs at an operating hydrogen storage pressure of 35 MPa in an absolute vacuum. Additionally, the dynamic performance was assessed through modal and random vibration analyses. Various aspects of Ansys Workbench were explored, including the influence of the mesh element size, composite modeling methods, and their combined impact on the result accuracy. In terms of the survival temperature limits, the Type 4 PVs, which consisted of a Nylon 6 liner and a carbon fiber-reinforced epoxy (CFRE) prepreg composite shell, offered the optimal balance between the weight (56.2 kg) and a relatively narrow operating temperature range of 10–100 °C. The Type 3 PVs, which featured an Aluminum 6061-T6 liner, provided a broader operational temperature range of 0–145 °C but at a higher weight of 63.7 kg. Meanwhile, the Type 1 PVs demonstrated a superior cryogenic performance, with an operating range of −55–54 °C, though they were nearly twice as heavy as the Type 4 PVs, with a weight of 106 kg. The absolute vacuum environment had a negligible effect on the mechanical performance of all the PVs. Additionally, all the analyzed PV types maintained structural integrity and safety under launch-induced vibration loads. This study provided critical insights for selecting the most suitable pressure vessel type for space applications by considering operational temperature constraints and weight limitations, thereby ensuring an optimal mechanical–thermal performance and structural efficiency. Full article
Show Figures

Figure 1

16 pages, 3753 KB  
Article
Control of Active Suspension Systems Based on Mechanical Wave Concepts
by Hossein Habibi
Actuators 2025, 14(5), 230; https://doi.org/10.3390/act14050230 - 5 May 2025
Cited by 1 | Viewed by 2965
Abstract
Wave-based control (WBC) offers a relatively novel approach to the challenge of controlling flexible mechanisms by treating the interaction between actuator and system as the launch and absorption of mechanical waves. WBC is a robust approach but has been unexplored in active suspension [...] Read more.
Wave-based control (WBC) offers a relatively novel approach to the challenge of controlling flexible mechanisms by treating the interaction between actuator and system as the launch and absorption of mechanical waves. WBC is a robust approach but has been unexplored in active suspension systems to date. This study adapts WBC to a quarter-car suspension model. Having embedded an actuator as the active element of a car suspension, a novel but simple ‘force impedance’ adaptation of WBC is introduced and implemented for effective vibration control. Testing with various input signals (pulse, sinusoidal, and random profile) highlights the active system’s significant ride comfort and rapid vibration suppression with zero steady-state error. Compared to two other models—one employing an ideal skyhook strategy and the other a passive suspension—the active system utilizing WBC outperforms across many criteria. The active controller achieves over 38% superior ride comfort compared to the skyhook model for a pulse road input. This is accomplished while adhering to WBC principles: relying solely on actuator-interface measurements, simplicity, cost-effectiveness, with no need for detailed system models, extensive sensors, or deep system knowledge. Full article
Show Figures

Figure 1

26 pages, 9513 KB  
Article
Dynamic Response of Beams Under Random Loads
by Mario Rosario Chiarelli
Mathematics 2025, 13(8), 1322; https://doi.org/10.3390/math13081322 - 17 Apr 2025
Cited by 1 | Viewed by 1493
Abstract
In engineering, the study of the dynamic response of structures subjected to non-deterministically variable loads is particularly important, especially when considering the damage that such loads can cause due to fatigue phenomena. This is the case, for example, of the vibrations that a [...] Read more.
In engineering, the study of the dynamic response of structures subjected to non-deterministically variable loads is particularly important, especially when considering the damage that such loads can cause due to fatigue phenomena. This is the case, for example, of the vibrations that a satellite must withstand during the launch phase. In the preliminary design phases, it is very useful to have semi-analytical calculation methodologies that are sufficiently reliable but, at the same time, simple. In the technical literature, there are numerous publications that deal with the study of the random dynamic response of beam models. In general, the presented studies are rather complex, and the dynamic solutions are often obtained in the time domain. The case of a linear elastic uniform cantilever beam model is considered here, for which the analytical expressions of the transfer functions for acceleration, displacement, bending moment, and bending stress are calculated, taking as input the acceleration assigned to the root section or an external lateral load. Knowing the spectral density of the input loads, the spectral densities of all the above-mentioned variables are calculated along the beam axis, assuming stationary and ergodic random processes. Using the spectral density of each output variable, the effective value (RMS) is obtained via integration, which allows for a preliminary estimate of the severity of the working conditions of the beam. The spectral density of the responses also allows us to quickly highlight the contribution of each natural vibration mode as the spectrum of the load varies. The results were obtained using simple spreadsheets available to the reader. Full article
(This article belongs to the Special Issue Numerical Analysis and Finite Element Method with Applications)
Show Figures

Figure 1

24 pages, 11495 KB  
Article
A Deployable Conical Log Spiral Antenna for Small Spacecraft: Mechanical Design and Test
by Lewis R. Williams, Natanael Hjermann, Bendik Sagsveen, Arthur Romeijer, Karina Vieira Hoel and Lars Erling Bråten
Aerospace 2025, 12(4), 326; https://doi.org/10.3390/aerospace12040326 - 10 Apr 2025
Viewed by 1774
Abstract
We present the design and manufacturing of a deployable conical log spiral spring antenna for small spacecraft, along with a test campaign to evaluate its suitability for space applications. The conical spring was 45.7 cm in height, with base and apex diameters of [...] Read more.
We present the design and manufacturing of a deployable conical log spiral spring antenna for small spacecraft, along with a test campaign to evaluate its suitability for space applications. The conical spring was 45.7 cm in height, with base and apex diameters of 18.9 and 2.8 cm, respectively. The spring had a mass of 0.138 kg and was constructed from a carbon fiber-infused epoxy matrix with an embedded coaxial cable. We conducted dynamic and thermal mechanical analysis to determine the coefficient of thermal expansion and glass transition temperature. The initial 10 compressions of the spring shortened the structure’s overall height, but the change had a negligible effect on the antenna’s radio frequency (RF) performance. Thermal cycling between −70 °C and 80 °C did not cause any damage or deformation to the spring structure. Outgassing tests were conducted in a thermal vacuum chamber, and the total mass loss was 0.03%. We conducted vibration tests representative for a typical launch vehicle, and all natural frequencies remained stable above 250 Hz, while the antenna was stowed, satisfying launch vehicle requirements. Post-test functional checks confirmed that there was no change in antenna functionality. The environmental test results provide confidence that the antenna is suitable for spacecraft applications. Full article
(This article belongs to the Special Issue Small Satellite Missions)
Show Figures

Figure 1

Back to TopTop