Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,081)

Search Parameters:
Keywords = land of fires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2104 KiB  
Article
Landscape Heterogeneity and Transition Drive Wildfire Frequency in the Central Zone of Chile
by Mariam Valladares-Castellanos, Guofan Shao and Douglass F. Jacobs
Remote Sens. 2025, 17(15), 2721; https://doi.org/10.3390/rs17152721 - 6 Aug 2025
Abstract
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, [...] Read more.
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, the specific role of the speed, extent, and spatial configuration of these transitions in shaping fire dynamics requires further investigation. To address this gap, we examined how landscape transitions influence fire frequency in central Chile, a region experiencing rapid land use change and heightened fire activity. Using multi-temporal remote sensing data, we quantified land use transitions, calculated landscape metrics to describe their spatial characteristics, and applied intensity analysis to assess their relationship with fire frequency changes. Our results show that accelerated landscape transitions significantly increased fire frequency, particularly in areas affected by forest plantation rotations, new forest establishment, and urban expansion, with changes exceeding uniform intensity expectations. Regional variations were evident: In the more densely populated northern areas, increased fire frequency was primarily linked to urban development and deforestation, while in the more rural southern regions, forest plantation cycles played a dominant role. Areas with a high number of large forest patches were especially prone to fire frequency increases. These findings demonstrate that both the speed and spatial configuration of landscape transitions are critical drivers of wildfire activity. By identifying the specific land use changes and landscape characteristics that amplify fire risks, this study provides valuable knowledge to inform fire risk reduction, landscape management, and urban planning in Chile and other fire-prone regions undergoing rapid transformation. Full article
Show Figures

Figure 1

30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

15 pages, 1685 KiB  
Article
Wildfires and Palm Species Response in a Terra Firme Amazonian Social Forest
by Tinayra T. A. Costa, Vynicius B. Oliveira, Maria Fabíola Barros, Fernando W. C. Andrade, Marcelo Tabarelli and Ima C. G. Vieira
Forests 2025, 16(8), 1271; https://doi.org/10.3390/f16081271 - 3 Aug 2025
Viewed by 186
Abstract
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during [...] Read more.
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during wildfires. Palms (≥50 cm height) were recorded once in 2023–2024, across four habitat classes: terra firme old-growth stands, regenerating forest stands associated with slash-and-burn agriculture, old-growth stands burned once and twice, and active cassava fields, in the Tapajós-Arapiuns Extractive Reserve, in the eastern Brazilian Amazon. The flammability of palm leaf litter and forest litter were also examined to assess the potential connections between palm proliferation and wildfires. A total of 10 palm species were recorded in this social forest (including slash-and-burn agriculture and resulting successional mosaics), with positive, negative, and neutral responses to land use. Species richness did not differ among forest habitats, but absolute palm abundance was greatest in disturbed habitats. Only Attalea spectabilis Mart. (curuá) exhibited increased relative abundance across disturbed habitats, including active cassava field. Attalea spectabilis accounted for almost 43% of all stems in the old-growth forest, 89% in regenerating forests, 90% in burned forests, and 79% in crop fields. Disturbed habitats supported a five-to-ten-fold increment in curuá leaves as a measure of habitat flammability. Although curuá litter exhibited lower flame temperature and height, its lower carbon and higher volatile content is expected to be more sensitive to fire ignition and promote the spread of wildfires. The conversion of old-growth forests into social forests promotes the establishment of palm-dominated forests, increasing the potential for a forest transition further fueled by wildfires, with effects on forest resilience and social reproduction still to be understood. Full article
(This article belongs to the Special Issue Ecosystem-Disturbance Interactions in Forests)
Show Figures

Figure 1

25 pages, 1103 KiB  
Article
The Low-Carbon Development Strategy of Russia Until 2050 and the Role of Forests in Its Implementation
by Evgeny A. Shvarts, Andrey V. Ptichnikov, Anna A. Romanovskaya, Vladimir N. Korotkov and Anastasia S. Baybar
Sustainability 2025, 17(15), 6917; https://doi.org/10.3390/su17156917 - 30 Jul 2025
Viewed by 207
Abstract
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG [...] Read more.
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG inventory data for 2023 and 2024 (with the latter showing 37% higher forest sequestration) is presented and explained. The possible changes in the Long-Term Low-Emission Development Strategy of Russia (LT LEDS) carbon neutrality scenario due to new land use, land use change and forestry (LULUCF) data in National GHG Inventory Document (NID) 2024 are discussed. It is demonstrated that the refined net carbon balance should not impact the mitigation ambition in the Russian forestry sector. An assessment of changes in the drafts of the Operational plan of the LT LEDS is presented and it is concluded that its structure and content have significantly improved; however, a delay in operationalization nullifies efforts. The article highlights the problem of GHG emissions increases in forest fires and compares the gap between official “ground-based” and Remote Sensing approaches in calculations of such emissions. Considering the intention to increase net absorption by implementing forest carbon projects, the latest changes in the regulations of such projects are discussed. The limitations of reforestation carbon projects in Russia are provided. Proposals are presented for the development of the national forest policy towards increasing the net forest carbon absorption, including considering the projected decrease in annual net absorption by Russian forests by 2050. The role of government and private investment in improving the forest management of structural measures to adapt forestry to modern climate change and the place of forest climate projects need to be clearly defined in the LT LEDS. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

16 pages, 2720 KiB  
Communication
Wildland and Forest Fire Emissions on Federally Managed Land in the United States, 2001–2021
by Coeli M. Hoover and James E. Smith
Forests 2025, 16(8), 1205; https://doi.org/10.3390/f16081205 - 22 Jul 2025
Viewed by 269
Abstract
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in [...] Read more.
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in assessing wildland fire impacts, particularly on federally managed land, we developed estimates of area burned and related emissions for a 21-year period. These estimates are based on wildland fires defined by the interagency Monitoring Trends in Burn Severity database; emissions are simulated through the Wildland Fire Emissions Inventory System; and the classification of public land is performed according to the US Geological Survey’s Protected Areas Database of the United States. Wildland fires on federal land contributed 62 percent of all annual CO2 emissions from wildfires in the United States between 2001 and 2021. During this period, emissions from the forest fire subset of wildland fires ranged from 328 Tg CO2 in 2004 to 37 Tg CO2 in 2001. While forest fires averaged 38 percent of burned area, they represent the majority—59 to 89 percent of annual emissions—relative to fires in all ecosystems, including non-forest. Wildland fire emissions on land belonging to the federal government accounted for 44 to 77 percent of total annual fire emissions for the entire United States. Land managed by three federal agencies—the Forest Service, the Bureau of Land Management, and the Fish and Wildlife Service—accounted for 93 percent of fire emissions from federal land over the course of the study period, but year-to-year contributions varied. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

26 pages, 6343 KiB  
Article
Comparing Pre- and Post-Fire Strategies to Mitigate Wildfire-Induced Soil Erosion in Two Mediterranean Watersheds
by Akli Benali, Yacine Benhalima, Bruno Aparício, Sandeep Timilsina, Jacob Keizer and Alan Ager
Forests 2025, 16(8), 1202; https://doi.org/10.3390/f16081202 - 22 Jul 2025
Viewed by 385
Abstract
Wildfires accelerate soil erosion. Preventive fuel management and post-fire control measures are two distinct strategies that can be used to mitigate wildfire-induced soil loss with varying effectiveness and costs. Here, we quantified the impacts and effectiveness of pre- versus post-fire treatment strategies on [...] Read more.
Wildfires accelerate soil erosion. Preventive fuel management and post-fire control measures are two distinct strategies that can be used to mitigate wildfire-induced soil loss with varying effectiveness and costs. Here, we quantified the impacts and effectiveness of pre- versus post-fire treatment strategies on soil loss mitigation. We coupled fire simulations with soil erosion modelling to estimate annual wildfire-induced soil loss for two watersheds in Portugal. We identified optimal treatment locations with the aim of maximizing the reduction in soil loss, and estimated treatment effectiveness using treatment leverage and cost-effectiveness. Both mitigation strategies were predicted to reduce post-fire soil loss, with effects increasing with treatment extent. Treatments had a strong mitigation effect particularly in extreme fire years. Results indicated that there was no single mitigation strategy that fits all watersheds, and the choice was largely influenced by wildfire and treatment frequency. For the most fire-prone watershed, Castelo de Bode, fuel treatments were the most effective strategy, being approximately 2-fold cheaper and more effective than post-fire treatments. Treatments were more effective and exhibited lower variability in years with higher soil loss. Our results show that the most cost-effective combinations of treatment strategies vary with the soil loss reduction objective. Relevant treatment synergies were identified that can help land managers to maximize the attainment of soil loss mitigation goals ensuring the best use of resources. This work contributes to a better understanding of how post-fire soil loss can be mitigated, contributing for better resource allocation while maximizing specific management goals. Full article
(This article belongs to the Special Issue Forest Fire Detection, Prevention and Management)
Show Figures

Figure 1

21 pages, 5333 KiB  
Article
Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America
by Flavio Justino, David H. Bromwich, Jackson Rodrigues, Carlos Gurjão and Sheng-Hung Wang
Fire 2025, 8(7), 282; https://doi.org/10.3390/fire8070282 - 16 Jul 2025
Viewed by 709
Abstract
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall [...] Read more.
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall trend test, and assessments of interannual variability to key variables including soil moisture, fire frequency and risk, evaporation, and lightning. Results indicate a significant increase in dry days (up to 40%) and heatwave events across Central Eurasia and Siberia (up to 50%) and Alaska (25%), when compared to the 1980–2000 baseline. Upward trends have been detected in evaporation across most of North America, consistent with soil moisture trends, while much of Eurasia exhibits declining soil moisture. Fire danger shows a strong positive correlation with evaporation north of 60° N (r ≈ 0.7, p ≤ 0.005), but a negative correlation in regions south of this latitude. These findings suggest that in mid-latitude ecosystems, fire activity is not solely driven by water stress or atmospheric dryness, highlighting the importance of region-specific surface–atmosphere interactions in shaping fire regimes. In North America, most fires occur in temperate grasslands, savannas, and shrublands (47%), whereas in Eurasia, approximately 55% of fires are concentrated in forests/taiga and temperate open biomes. The analysis also highlights that lightning-related fires are more prevalent in Eastern Europe and Southeastern Asia. In contrast, Western North America exhibits high fire incidence in temperate conifer forests despite relatively low lightning activity, indicating a dominant role of anthropogenic ignition. These findings underscore the importance of understanding land–atmosphere interactions in assessing fire risk. Integrating surface conditions, climate extremes, and ignition sources into fire prediction models is crucial for developing more effective wildfire prevention and management strategies. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Graphical abstract

21 pages, 1404 KiB  
Project Report
Implementation Potential of the SILVANUS Project Outcomes for Wildfire Resilience and Sustainable Forest Management in the Slovak Republic
by Andrea Majlingova, Maros Sedliak and Yvonne Brodrechtova
Forests 2025, 16(7), 1153; https://doi.org/10.3390/f16071153 - 12 Jul 2025
Viewed by 229
Abstract
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS [...] Read more.
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS project developed a comprehensive multi-sectoral platform combining technological innovation, stakeholder engagement, and sustainable forest management strategies. This report analyses the Slovak Republic’s participation in SILVANUS, applying a seven-criterion fit–gap framework (governance, legal, interoperability, staff capacity, ecological suitability, financial feasibility, and stakeholder acceptance) to evaluate the platform’s alignment with national conditions. Notable contributions include stakeholder-supported functional requirements for wildfire prevention, climate-sensitive forest models for long-term adaptation planning, IoT- and UAV-based early fire detection technologies, and decision support systems (DSS) for emergency response and forest-restoration activities. The Slovak pilot sites, particularly in the Podpoľanie region, served as important testbeds for the validation of these tools under real-world conditions. All SILVANUS modules scored ≥12/14 in the fit–gap assessment; early deployment reduced high-risk fuel polygons by 23%, increased stand-level structural diversity by 12%, and raised the national Sustainable Forest Management index by four points. Integrating SILVANUS outcomes into national forestry practices would enable better wildfire risk assessment, improved resilience planning, and more effective public engagement in wildfire management. Opportunities for adoption include capacity-building initiatives, technological deployments in fire-prone areas, and the incorporation of DSS outputs into strategic forest planning. Potential challenges, such as technological investment costs, inter-agency coordination, and public acceptance, are also discussed. Overall, the Slovak Republic’s engagement with SILVANUS demonstrates the value of participatory, technology-driven approaches to sustainable wildfire management and offers a replicable model for other European regions facing similar challenges. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

17 pages, 36560 KiB  
Article
Comparative Calculation of Spectral Indices for Post-Fire Changes Using UAV Visible/Thermal Infrared and JL1 Imagery in Jinyun Mountain, Chongqing, China
by Juncheng Zhu, Yijun Liu, Xiaocui Liang and Falin Liu
Forests 2025, 16(7), 1147; https://doi.org/10.3390/f16071147 - 11 Jul 2025
Viewed by 222
Abstract
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire [...] Read more.
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire impacts with M-statistic separability, measuring land-cover distinguishability through Jeffries–Matusita (JM) distance analysis, classifying land-cover types using the random forest (RF) algorithm, and verifying classification accuracy. Cumulative human disturbances—such as land clearing, replanting, and road construction—significantly blocked the natural recovery of burn scars, and during long-term human-assisted recovery periods over one year, the Red Green Blue Index (RGBI), Green Leaf Index (GLI), and Excess Green Index (EXG) showed high classification accuracy for six land-cover types: road, bare soil, deadwood, bamboo, broadleaf, and grass. Key accuracy measures showed producer accuracy (PA) > 0.8, user accuracy (UA) > 0.8, overall accuracy (OA) > 90%, and a kappa coefficient > 0.85. Validation results confirmed that visible-spectrum indices are good at distinguishing photosynthetic vegetation, thermal bands help identify artificial surfaces, and combined thermal-visible indices solve spectral confusion in deadwood recognition. Spectral indices provide high-precision quantitative evidence for monitoring post-fire land-cover changes, especially under human intervention, thus offering important data support for time-based modeling of post-fire forest recovery and improvement of ecological restoration plans. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

24 pages, 3171 KiB  
Article
Hydroclimatic Trends and Land Use Changes in the Continental Part of the Gambia River Basin: Implications for Water Resources
by Matty Kah, Cheikh Faye, Mamadou Lamine Mbaye, Nicaise Yalo and Lischeid Gunnar
Water 2025, 17(14), 2075; https://doi.org/10.3390/w17142075 - 11 Jul 2025
Viewed by 385
Abstract
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes [...] Read more.
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes (1988, 2002, and 2022) within the Continental Reach of the Gambia River Basin (CGRB). Trend analyses of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 12-month and 24-month scales, along with river discharge at the Simenti station, reveal a shift from dry conditions to wetter phases post-2008, marked by significant increases in rainfall and discharge variability. LULC analysis revealed significant transformations in the basin. LULC analysis highlights significant transformations within the basin. Forest and savanna areas decreased by 20.57 and 4.48%, respectively, between 1988 and 2002, largely due to human activities such as agricultural expansion and deforestation for charcoal production. Post-2002, forest cover recovered from 32.36 to 36.27%, coinciding with the wetter conditions after 2008, suggesting that climatic shifts promoted vegetation regrowth. Spatial analysis further highlights an increase in bowe and steppe areas, especially in the north, indicating land degradation linked to human land use practices. Bowe areas, marked by impermeable laterite outcrops, and steppe areas with sparse herbaceous cover result from overgrazing and soil degradation, exacerbated by the region’s drier phases. A notable decrease in burned areas from 2.03 to 0.23% suggests improvements in fire management practices, reducing fire frequency, which is also supported by wetter conditions post-2008. Agricultural land and bare soils expanded by 14%, from 2.77 to 3.07%, primarily in the northern and central regions, likely driven by both population pressures and climatic shifts. Correlations between precipitation and land cover changes indicate that wetter conditions facilitated forest regrowth, while drier conditions exacerbated land degradation, with human activities such as deforestation and agricultural expansion potentially amplifying the impact of climatic shifts. These results demonstrate that while climatic shifts played a role in driving vegetation recovery, human activities were key in shaping land use patterns, impacting both precipitation and stream discharge, particularly due to agricultural practices and land degradation. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

20 pages, 6376 KiB  
Article
Analyses of MODIS Land Cover/Use and Wildfires in Italian Regions Since 2001
by Ebrahim Ghaderpour, Francesca Bozzano, Gabriele Scarascia Mugnozza and Paolo Mazzanti
Land 2025, 14(7), 1443; https://doi.org/10.3390/land14071443 - 10 Jul 2025
Viewed by 355
Abstract
Monitoring land cover/use dynamics and wildfire occurrences is very important for land management planning and risk mitigation practices. In this research, moderate-resolution imaging spectroradiometer (MODIS) annual land cover images for the period 2001–2023 are utilized for the twenty administrative regions of Italy. Monthly [...] Read more.
Monitoring land cover/use dynamics and wildfire occurrences is very important for land management planning and risk mitigation practices. In this research, moderate-resolution imaging spectroradiometer (MODIS) annual land cover images for the period 2001–2023 are utilized for the twenty administrative regions of Italy. Monthly MODIS burned area images are utilized for the period 2001–2020 to study wildfire occurrences across these regions. In addition, monthly Global Precipitation Measurement images for the period 2001–2020 are employed to estimate correlations between precipitation and burned areas annually and seasonally. Boxplots are produced to show the distributions of each land cover/use type within the regions. The non-parametric Mann–Kendall trend test and Sen’s slope are applied to estimate a linear trend, with statistical significance being evaluated for each land cover/use time series of size 23. Pearson’s correlation method is applied for correlation analysis. It is found that grasslands and woodlands have been declining and increasing in most regions, respectively, most significantly in Abruzzo (−0.88%/year for grasslands and 0.71%/year for grassy woodlands). The most significant and frequent wildfires have been observed in southern Italy, particularly in Basilicata, Apulia, and Sicily, mainly in grasslands. The years 2007 and 2017 experienced severe wildfires in the southern regions, mainly during July and August, due to very hot and dry conditions. Negative Pearson’s correlations are estimated between precipitation and burnt areas, with the most significant one being for Basilicata during the fire season (r = −0.43). Most of the burned areas were mainly within the elevation range of 0–500 m and the lowlands of Apulia. In addition, for the 2001–2020 period, a high positive correlation (r > 0.7) is observed between vegetation and land surface temperature, while significant negative correlations between these variables are observed for Apulia (r ≈ −0.59), Sicily (r ≈ −0.69), and Sardinia (r ≈ −0.74), and positive correlations (r > 0.25) are observed between vegetation and precipitation in these three regions. This study’s findings can guide land managers and policymakers in developing or maintaining a sustainable environment. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

16 pages, 1550 KiB  
Article
Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States
by C. Wade Ross, E. Louise Loudermilk, Steven A. Flanagan, Grant Snitker, J. Kevin Hiers and Joseph J. O’Brien
Sustainability 2025, 17(13), 6230; https://doi.org/10.3390/su17136230 - 7 Jul 2025
Viewed by 405
Abstract
With wildfires becoming more frequent and severe in fire-prone regions affected by warmer and drier climate conditions, reducing hazardous fuels is increasingly recognized as a preventative strategy for promoting sustainability and safeguarding valued resources. Prescribed fire is one of the most cost-effective methods [...] Read more.
With wildfires becoming more frequent and severe in fire-prone regions affected by warmer and drier climate conditions, reducing hazardous fuels is increasingly recognized as a preventative strategy for promoting sustainability and safeguarding valued resources. Prescribed fire is one of the most cost-effective methods for reducing hazardous fuels and hence wildfire severity, yet empirical research on its effectiveness at minimizing damage to highly valued resources and assets (HVRAs) remains limited. The overarching objective of this study was to evaluate wildfire severity under differing weather conditions across various HVRAs characterized by diverse land uses, vegetation types, and treatment histories. The findings from this study reveal that wildfire severity was generally lower in areas treated with prescribed fire, although the significance of this effect varied among HVRAs and diminished as post-treatment duration increased. The wildland–urban interface experienced the greatest initial reduction in wildfire severity following prescribed fire, but burn severity increased more rapidly over time relative to other HVRAs. Elevated drought conditions had a significant effect, increasing wildfire severity across all HVRAs. The implications of this study underscore the role of prescribed fire in promoting sustainable land management by reducing wildfire severity and safeguarding both natural and built environments, particularly in the expanding wildland–urban interface. Full article
Show Figures

Figure 1

23 pages, 5328 KiB  
Article
TSSA-NBR: A Burned Area Extraction Method Based on Time-Series Spectral Angle with Full Spectral Shape
by Dongyi Liu, Yonghua Qu, Xuewen Yang and Qi Zhao
Remote Sens. 2025, 17(13), 2283; https://doi.org/10.3390/rs17132283 - 3 Jul 2025
Viewed by 370
Abstract
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific [...] Read more.
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific spectral bands while neglecting full spectral shape information, which encapsulates overall spectral characteristics. This limitation compromises adaptability to diverse vegetation types and environmental conditions, particularly across varying spatial scales. To address these challenges, we propose the time-series spectral-angle-normalized burn index (TSSA-NBR). This unsupervised BA extraction method integrates normalized spectral angle and normalized burn ratio (NBR) to leverage full spectral shape and temporal features derived from Sentinel-2 time-series data. Seven globally distributed study areas with diverse climatic conditions and vegetation types were selected to evaluate the method’s adaptability and scalability. Evaluations compared Sentinel-2-derived BA with moderate-resolution products and high-resolution PlanetScope-derived BA, focusing on spatial scale and methodological performance. TSSA-NBR achieved a Dice Coefficient (DC) of 87.81%, with commission (CE) and omission errors (OE) of 8.52% and 15.58%, respectively, demonstrating robust performance across all regions. Across diverse land cover types, including forests, grasslands, and shrublands, TSSA-NBR exhibited high adaptability, with DC values ranging from 0.53 to 0.97, CE from 0.03 to 0.27, and OE from 0.02 to 0.61. The method effectively captured fire scars and outperformed band-specific and threshold-dependent approaches by integrating spectral shape features with fire indices, establishing a data-driven framework for BA detection. These results underscore its potential for fire monitoring and broader applications in detecting surface anomalies and environmental disturbances, advancing global ecological monitoring and management strategies. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

19 pages, 2012 KiB  
Article
Exploring the Variability in Rill Detachment Capacity as Influenced by Different Fire Intensities in a Semi-Arid Environment
by Masoumeh Izadpanah Nashroodcoli, Mahmoud Shabanpour, Sepideh Abrishamkesh and Misagh Parhizkar
Forests 2025, 16(7), 1097; https://doi.org/10.3390/f16071097 - 2 Jul 2025
Viewed by 212
Abstract
Wildfires, whether natural or human-caused, significantly alter soil properties and increase soil erosion susceptibility, particularly through changes in rill detachment capacity (Dc). This study aimed to evaluate the influence of fire intensity on key soil properties and to recognize their relationships with Dc [...] Read more.
Wildfires, whether natural or human-caused, significantly alter soil properties and increase soil erosion susceptibility, particularly through changes in rill detachment capacity (Dc). This study aimed to evaluate the influence of fire intensity on key soil properties and to recognize their relationships with Dc under controlled laboratory conditions. The research was conducted in the Darestan Forest, Guilan Province, northern Iran, a region characterized by a Mediterranean semi-arid climate. Soil samples were collected from three fire-affected conditions: unburned (NF), low-intensity fire (LF), and high-intensity fire (HF) zones. A total of 225 soil samples were analyzed using flume experiments at five slope gradients and five flow discharges, simulating rill erosion. Soil physical and chemical characteristics were measured, including hydraulic conductivity, organic carbon, sodium content, bulk density, and water repellency. The results showed that HF soils significantly exhibited higher rill detachment capacity (1.43 and 2.26 times the values compared to the LF and NF soils, respectively) and sodium content and lower organic carbon, hydraulic conductivity, and aggregate stability (p < 0.01). Strong correlations were found between Dc and various soil properties, particularly a negative relationship with organic carbon. The multiple linear equation had good accuracy (R2 > 0.78) in predicting rill detachment capacity. The findings of the current study show the significant impact of fire on soil degradation and rill erosion potential. The study advocates an urgent need for effective post-fire land management, erosion control, and the development of sustainable soil restoration strategies. Full article
(This article belongs to the Special Issue Postfire Runoff and Erosion in Forests: Assessment and Management)
Show Figures

Figure 1

21 pages, 1524 KiB  
Article
An Analysis of Implementation Constraints of Spatial Planning Tools for Disaster Risk Reduction in Mopani’s Informal Settlements, South Africa
by Juliet Akola and Mvuyana Bongekile Yvonne Charlotte
Sustainability 2025, 17(13), 6075; https://doi.org/10.3390/su17136075 - 2 Jul 2025
Viewed by 360
Abstract
Urbanization is rapidly transforming cities, especially in the Global South, with Sub-Saharan Africa expected to see the fastest growth in the next 30 years. In South Africa’s Mopani District, this urban expansion has led to the growth of informal settlements, increasing disaster risks [...] Read more.
Urbanization is rapidly transforming cities, especially in the Global South, with Sub-Saharan Africa expected to see the fastest growth in the next 30 years. In South Africa’s Mopani District, this urban expansion has led to the growth of informal settlements, increasing disaster risks related to water, health, and fire. This study focuses on Giyani Local Municipality, examining disaster risks in its informal settlements and the factors influencing the implementation of spatial planning tools. Using a SWOT analysis combined with the Analytical Hierarchy Process (AHP), the study found that while the municipality has strong land use and disaster management policies, poor enforcement, lack of integration, and weak governance limit their effectiveness. Opportunities for improvement include securing grants from the National Government and Disaster Management Centre to support disaster risk reduction (DRR) initiatives. However, challenges such as land shortages and ecological degradation threaten sustainable planning. The findings provide important insights for policymakers, urban planners, and disaster management professionals. The SWOT-AHP approach helps in prioritizing resource allocation, identifying risk trends, and focusing on key areas for mitigation. Overall, the study supports efforts to enhance resilience and promote sustainable urban development in informal settlements through better spatial planning. Full article
Show Figures

Figure 1

Back to TopTop