Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Burn Severity Data
2.3. Burned Area Delineation and Data Pre-Processing
2.4. Highly Valued Resources and Assets
2.5. Evaporative Demand Drought Index
2.6. Data Integration
2.7. Model Development and Evaluation
3. Results
3.1. Burn Severity Across Vegetation and HVRAs
3.2. Predictors Influencing Burn Severity
4. Discussion
Caveats and Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
dNBR | Differenced normalized burn ratio |
EDDI | Evaporative drought demand index |
EVT | Existing vegetation |
GAM | Generalized additive model |
GLM | Generalized linear model |
HVRA | Highly valued resources and assets |
LANDFIRE | Landscape Fire and Resource Management Planning Tools |
MSRX | Months since prescribed fire |
MTBS | Monitoring Trends in Burn Severity |
NBR | Normalized burn ratio |
NDVI | Normalized difference vegetation index |
NIR | Near infrared |
NOAA | National Oceanic and Atmospheric Administration |
NWR | National Wildlife Refuge |
SWIR | Shortwave infrared |
USFWS | US Fish and Wildlife |
WUI | Wildland–Urban interface |
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Scott, J.H.; Thompson, M.P.; Calkin, D.E. A Wildfire Risk Assessment Framework for Land and Resource Management; General Technical Report RMRS-GTR-315; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013; Volume 83, p. 315. [CrossRef]
- Mitchell, R.J.; Liu, Y.; O’Brien, J.J.; Elliott, K.J.; Starr, G.; Miniat, C.F.; Hiers, J.K. Future Climate and Fire Interactions in the Southeastern Region of the United States. For. Ecol. Manag. 2014, 327, 316–326. [Google Scholar] [CrossRef]
- Albano, C.M.; Abatzoglou, J.T.; McEvoy, D.J.; Huntington, J.L.; Morton, C.G.; Dettinger, M.D.; Ott, T.J. A Multidataset As-sessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States. J. Hydrometeorol. 2022, 23, 505–519. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A.; Williams, A.P.; Sadegh, M.; Balch, J.K.; Hall, A. Downslope Wind-Driven Fires in the Western United States. Earth’s Future 2023, 11, e2022EF003471. [Google Scholar] [CrossRef]
- Villaverde Canosa, I.; Ford, J.; Paavola, J.; Burnasheva, D. Community Risk and Resilience to Wildfires: Rethinking the Complex Human–Climate–Fire Relationship in High-Latitude Regions. Sustainability 2024, 16, 957. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid Growth of the US Wildland-Urban Interface Raises Wildfire Risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fulé, P.Z. Reform Forest Fire Management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic Principles of Forest Fuel Reduction Treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Prichard, S.J.; Hessburg, P.F.; Hagmann, R.K.; Povak, N.A.; Dobrowski, S.Z.; Hurteau, M.D.; Kane, V.R.; Keane, R.E.; Kobziar, L.N.; Kolden, C.A.; et al. Adapting Western North American Forests to Climate Change and Wildfires: 10 Common Questions. Ecol. Appl. 2021, 31, e02433. [Google Scholar] [CrossRef]
- North, M.P.; York, R.A.; Collins, B.M.; Hurteau, M.D.; Jones, G.M.; Knapp, E.E.; Kobziar, L.; McCann, H.; Meyer, M.D.; Ste-phens, S.L.; et al. Pyrosilviculture Needed for Landscape Resilience of Dry Western United States Forests. J. For. 2021, 119, 520–544. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Stanton, A.; Scheller, R.M.; Dilts, T.E.; Weisberg, P.J.; Skinner, C.; Yang, J. Effectiveness of Fuel Treatments for Mitigating Wildfire Risk and Sequestering Forest Carbon: A Case Study in the Lake Tahoe Basin. For. Ecol. Manag. 2014, 323, 114–125. [Google Scholar] [CrossRef]
- DeFazio, P.A. HR 3684—Infrastructure Investment and Jobs Act—(2021–2022). In Proceedings of the 117th Congress. 2021–2022. Available online: https://www.congress.gov/bill/117th-congress/house-bill/3684 (accessed on 15 February 2024).
- Yarmuth, J.A. H.R.5376—Inflation Reduction Act of 2022. In Proceedings of the 117th Congress, 2021–2022. Available online: https://www.congress.gov/bill/117th-congress/house-bill/5376 (accessed on 15 February 2024).
- Fernandes, P.M.; Botelho, H.S. A Review of Prescribed Burning Effectiveness in Fire Hazard Reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef]
- North, M.P.; Collins, B.M.; Stephens, S.L. Using Fire to Increase the Scale, Benefits and Future Maintenance of Fuels Treatments. J. For. 2012, 110, 392–401. [Google Scholar] [CrossRef]
- Hiers, J.K.; O’Brien, J.J.; Varner, J.M.; Butler, B.W.; Dickinson, M.; Furman, J.; Gallagher, M.; Godwin, D.; Goodrick, S.; Hood, S.M.; et al. Prescribed Fire Science: The Case for a Refined Research Agenda. Fire Ecol. 2020, 16, 11. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, J.J. Kill Thy Neighbour: An Individualistic Argument for the Evolution of Flammability. Oikos 1995, 73, 79. [Google Scholar] [CrossRef]
- Ross, C.W.; Loudermilk, E.L.; O’Brien, J.J.; Flanagan, S.A.; McDaniel, J.; Aubrey, D.P.; Lowe, T.; Hiers, J.K.; Skowronski, N.S. Lidar-Derived Estimates of Forest Structure in Response to Fire Frequency. Fire Ecol. 2024, 20, 44. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Hiers, J.K.; Belcher, C.M.; Bond, W.J.; Enquist, C.A.; Loudermilk, E.L.; Miesel, J.R.; O’Brien, J.J.; Pausas, J.G.; Hood, S.; et al. Principles of Fire Ecology. Fire Ecol. 2024, 20, 39. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Godwin, D.; Taylor, L.; Watts, A.C. Perspectives on Trends, Effectiveness, and Impediments to Prescribed Burning in the Southern U.S. Forests 2015, 6, 561–580. [Google Scholar] [CrossRef]
- Kolden, C.A. We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire 2019, 2, 30. [Google Scholar] [CrossRef]
- Cummins, K.; Noble, J.; Varner, J.M.; Robertson, K.M.; Hiers, J.K.; Nowell, H.K.; Simonson, E. The Southeastern U.S. Prescribed Fire Permit Database: Hot Spots and Hot Moments in Prescribed Fire across the Southeastern U.S.A. Fire 2023, 6, 372. [Google Scholar] [CrossRef]
- McKinney, S.T.; Abrahamson, I.; Jain, T.; Anderson, N. A Systematic Review of Empirical Evidence for Landscape-Level Fuel Treatment Effectiveness. Fire Ecol. 2022, 18, 21. [Google Scholar] [CrossRef]
- Key, C.H. Ecological and Sampling Constraints on Defining Landscape Fire Severity. Fire Ecol. 2006, 2, 34–59. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; General Technical Report RMRS-GTR-164-CD; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 164, pp. 1–55. [Google Scholar]
- Lentile, L.B.; Smith, A.M.S.; Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Lewis, S.A.; Robichaud, P.R. Remote Sensing for Prediction of 1-Year Post-Fire Ecosystem Condition. Int. J. Wildland Fire 2009, 18, 594. [Google Scholar] [CrossRef]
- Ntinopoulos, N.; Sakellariou, S.; Christopoulou, O.; Sfougaris, A. Fusion of Remotely-Sensed Fire-Related Indices for Wildfire Prediction through the Contribution of Artificial Intelligence. Sustainability 2023, 15, 11527. [Google Scholar] [CrossRef]
- Ross, C.W.; Loudermilk, E.L.; O’Brien, J.J.; Flanagan, S.A.; Snitker, G.; Hiers, J.K. Wildfire Severity to Valued Resources Mitigated by Prescribed Fire in the Okefenokee National Wildlife Refuge. Remote Sens. 2024, 16, 4708. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. JOSS 2019, 4, 1686. [Google Scholar] [CrossRef]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Hijmans, R.J. Terra: Spatial data analysis, 2025, R Package Version 1.8-54. Available online: https://cran.r-project.org/web/packages/terra/index.html (accessed on 15 February 2025).
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Melvin, M. National Prescribed Fire Use Survey Report; Coalition of Prescribed Fire Councils: Monroe, GA, USA, 2018. [Google Scholar]
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with Lubridate. J. Stat. Softw. 2011, 40, 1–25. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W. Calibration and Validation of the Relative Differenced Normalized Burn Ratio (RdNBR) to Three Measures of Fire Severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 11. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of Gridded Surface Meteorological Data for Ecological Applications and Modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Rollins, M.G.; Rollins, M.G. LANDFIRE: A Nationally Consistent Vegetation, Wildland Fire, and Fuel Assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar] [CrossRef]
- Hobbins, M.; Wood, A.; McEvoy, D.; Huntington, J.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index: Part I—Linking Drought Evolution to Variations in Evaporative Demand. J. Hydrometeorol. 2016, 17, 1745–1761. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Huntington, J.L.; Hobbins, M.T.; Wood, A.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index: Part II—CONUS-Wide Assessment Against Common Drought Indicators. J. Hydrometeorol. 2016, 17, 1763–1779. [Google Scholar] [CrossRef]
- Frick, H.; Chow, F.; Kuhn, M.; Mahoney, M.; Silge, J.; Wickham, H. Rsample: General Resampling Infrastructure. 2023. Available online: https://cran.r-project.org/web/packages/rsample/index.html (accessed on 15 February 2024).
- Pedersen, E.J.; Miller, D.L.; Simpson, G.L.; Ross, N. Hierarchical Generalized Additive Models in Ecology: An Introduction with Mgcv. PeerJ 2019, 7, e6876. [Google Scholar] [CrossRef]
- Guyette, R.P.; Stambaugh, M.C.; Dey, D.C.; Muzika, R.-M. Predicting Fire Frequency with Chemistry and Climate. Ecosystems 2012, 15, 322–335. [Google Scholar] [CrossRef]
- Collins, B.M.; Stephens, S.L. Stand-Replacing Patches within a ‘Mixed Severity’ Fire Regime: Quantitative Characterization Using Recent Fires in a Long-Established Natural Fire Area. Landsc. Ecol. 2010, 25, 927–939. [Google Scholar] [CrossRef]
- Steel, Z.L.; Collins, B.M.; Sapsis, D.B.; Stephens, S.L. Quantifying Pyrodiversity and Its Drivers. Proc. R. Soc. B 2021, 288, 20203202. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Thode, A.E. Quantifying Burn Severity in a Heterogeneous Landscape with a Relative Version of the Delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Thompson, J.R.; Spies, T.A.; Ganio, L.M. Reburn Severity in Managed and Unmanaged Vegetation in a Large Wildfire. Proc. Natl. Acad. Sci. USA 2007, 104, 10743–10748. [Google Scholar] [CrossRef]
- Parks, S.A.; Dillon, G.K.; Miller, C. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef]
- Finney, M.A. The Challenge of Quantitative Risk Analysis for Wildland Fire. For. Ecol. Manag. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Picotte, J.J.; Dockter, D.; Long, J.; Tolk, B.; Davidson, A.; Peterson, B. LANDFIRE Remap Prototype Mapping Effort: Developing a New Framework for Mapping Vegetation Classification, Change, and Structure. Fire 2019, 2, 35. [Google Scholar] [CrossRef]
- Stephens, S.L.; McIver, J.D.; Boerner, R.E.J.; Fettig, C.J.; Fontaine, J.B.; Hartsough, B.R.; Kennedy, P.L.; Schwilk, D.W. The Effects of Forest Fuel-Reduction Treatments in the United States. BioScience 2012, 62, 549–560. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. Extent and Drivers of Vegetation Type Conversion in Southern California Chaparral. Ecosphere 2019, 10, e02796. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Crouse, J.E.; Roccaforte, J.P.; Kalies, E.L. Do Thinning and/or Burning Treatments in Western USA Ponderosa or Jeffrey Pine-Dominated Forests Help Restore Natural Fire Behavior? For. Ecol. Manag. 2012, 269, 68–81. [Google Scholar] [CrossRef]
- Brodie, E.G.; Knapp, E.E.; Brooks, W.R.; Drury, S.A.; Ritchie, M.W. Forest Thinning and Prescribed Burning Treatments Reduce Wildfire Severity and Buffer the Impacts of Severe Fire Weather. Fire Ecol. 2024, 20, 17. [Google Scholar] [CrossRef]
- Weber, M.G.; Taylor, S.W. The Use of Prescribed Fire in the Management of Canada’s Forested Lands. For. Chron. 1992, 68, 324–334. [Google Scholar] [CrossRef]
- Hély, C.; Fortin, C.M.-J.; Anderson, K.R.; Bergeron, Y. Landscape Composition Influences Local Pattern of Fire Size in the Eastern Canadian Boreal Forest: Role of Weather and Landscape Mosaic on Fire Size Distribution in Mixedwood Boreal Forest Using the Prescribed Fire Analysis System. Int. J. Wildland Fire 2010, 19, 1099–1109. [Google Scholar] [CrossRef]
- Marchi, M.; Chianucci, F.; Ferrara, C.; Pontuale, G.; Pontuale, E.; Mavrakis, A.; Morrow, N.; Rossi, F.; Salvati, L. Sustainable Land-Use, Wildfires, and Evolving Local Contexts in a Mediterranean Country, 2000–2015. Sustainability 2018, 10, 3911. [Google Scholar] [CrossRef]
- Smith, C.; Perkins, O.; Mistry, J. Global Decline in Subsistence-Oriented and Smallholder Fire Use. Nat. Sustain. 2022, 5, 542–551. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C. Challenges in Developing Wildfire Understanding from Wildfire Information through Spatial Planning Processes. Sustainability 2024, 16, 420. [Google Scholar] [CrossRef]
- Marques, S.; Marto, M.; Bushenkov, V.; McDill, M.; Borges, J. Addressing Wildfire Risk in Forest Management Planning with Multiple Criteria Decision Making Methods. Sustainability 2017, 9, 298. [Google Scholar] [CrossRef]
- Varner, J.M.; Hiers, J.K.; Wheeler, S.B.; McGuire, J.; Quinn-Davidson, L.; Palmer, W.E.; Fowler, L. Increasing Pace and Scale of Prescribed Fire via Catastrophe Funds for Liability Relief. Fire 2021, 4, 77. [Google Scholar] [CrossRef]
Burn Severity Thresholds | dNBR |
---|---|
Enhanced Regrowth, high (post-fire) | −500 to −251 |
Enhanced Regrowth, low (post-fire) | −250 to −101 |
Unburned | −100 to +99 |
Low Severity | +100 to +269 |
Moderate–low severity | +270 to +439 |
Moderate–high severity | +440 to +659 |
High severity | +660 to +1300 |
Family | Link Function | Formula | Adjusted R2 | Deviance Explained |
---|---|---|---|---|
Gaussian | Identity | 0.829 | 83.9% | |
Parametric coefficients | ||||
Estimate | Std. Error | T-value | Pr(>|t|) | |
(Intercept) | 682.0 | 14.9 | 45.5 | <0.001 |
Agricultural | −20.1 | 2.6 | −7.6 | <0.001 |
WUI-Interface | −244.6 | 9.3 | −26.1 | <0.001 |
WUI-Intermix | −206.9 | 17.3 | −11.9 | <0.001 |
EDDI | 76.5 | 10.3 | 7.3 | <0.001 |
Approximate Significance of Smooth Terms | ||||
edf | Ref.df | F | p-value | |
s(Habitat) | 1.9 | 1.9 | 157.7 | <0.001 |
s(Agricultural) | 1.9 | 1.9 | 140.8 | <0.001 |
s(WUI-Interface) | 1.6 | 1.8 | 6.8 | <0.001 |
s(WUI-Intermix) | 1.8 | 1.9 | 23.4 | <0.001 |
s(X, Y) | 28.6 | 28.9 | 462.7 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ross, C.W.; Loudermilk, E.L.; Flanagan, S.A.; Snitker, G.; Hiers, J.K.; O’Brien, J.J. Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States. Sustainability 2025, 17, 6230. https://doi.org/10.3390/su17136230
Ross CW, Loudermilk EL, Flanagan SA, Snitker G, Hiers JK, O’Brien JJ. Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States. Sustainability. 2025; 17(13):6230. https://doi.org/10.3390/su17136230
Chicago/Turabian StyleRoss, C. Wade, E. Louise Loudermilk, Steven A. Flanagan, Grant Snitker, J. Kevin Hiers, and Joseph J. O’Brien. 2025. "Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States" Sustainability 17, no. 13: 6230. https://doi.org/10.3390/su17136230
APA StyleRoss, C. W., Loudermilk, E. L., Flanagan, S. A., Snitker, G., Hiers, J. K., & O’Brien, J. J. (2025). Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States. Sustainability, 17(13), 6230. https://doi.org/10.3390/su17136230