Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,343)

Search Parameters:
Keywords = labeling regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1194 KiB  
Article
DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions
by Tianmei Dai, Yusheng Wang, Xiaona Shen, Zhichuang Lü, Fanghao Wan and Wanxue Liu
Int. J. Mol. Sci. 2025, 26(15), 7466; https://doi.org/10.3390/ijms26157466 - 1 Aug 2025
Viewed by 124
Abstract
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity [...] Read more.
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity of invasive species and environmental temperature variations. We assessed and interpreted the epigenetic mechanisms of invasive and indigenous species’ differential tolerance to thermal stress through the invasive species Bemisia tabaci Mediterranean (MED) and the indigenous species Bemisia tabaci AsiaII3. We examine their thermal tolerance following exposure to heat and cold stress. We found that MED exhibits higher thermal resistance than AsiaII3 under heat stress. The fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) results proved that the increased thermal tolerance in MED is closely related to DNA methylation changes, other than genetic variation. Furthermore, the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis of DNA methyltransferases (Dnmts) suggested that increased expression of Dnmt3 regulates the higher thermal tolerance of female MED adults. A mechanism is revealed whereby DNA methylation enhances thermal tolerance in invasive species. Our results show that the Dnmt-mediated regulation mechanism is particularly significant for understanding invasive species’ successful invasion and rapid adaptation under global warming, providing new potential targets for controlling invasive species worldwide. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 1139 KiB  
Article
A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis
by Anna Artner, Irem Diler, Balázs Hankó, Szilvia Sebők and Romána Zelkó
J. Clin. Med. 2025, 14(15), 5436; https://doi.org/10.3390/jcm14155436 - 1 Aug 2025
Viewed by 216
Abstract
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to [...] Read more.
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to assess Hungarian regulatory practices regarding off-label statin use. Methods: A systematic literature search (PubMed, Web of Science, Scopus, ScienceDirect; 2010–May 2025) was conducted using the terms “drug repositioning” OR “off-label prescription” AND “statin” NOT “cardiovascular,” following PRISMA guidelines. Hungarian off-label usage data from the NNGYK (2008–2025) were also analyzed. Results: Out of 205 publications, 12 met the inclusion criteria—75% were oncology-focused, and 25% focused on infectious diseases. Most were preclinical (58%); only 25% offered strong clinical evidence. Applications included hematologic malignancies, solid tumors, Cryptococcus neoformans, SARS-CoV-2, and dengue virus. Mechanisms involved mevalonate pathway inhibition and modulation of host immune responses. Hungarian data revealed five approved off-label statin uses—three dermatologic and two pediatric metabolic—supported by the literature and requiring post-treatment reporting. Conclusions: While preclinical findings are promising, clinical validation of off-label statin use remains limited. Statins should be continued in cancer patients with cardiovascular indications, but initiation for other purposes should be trial-based. Future directions include biomarker-based personalization, regulatory harmonization, and cost-effectiveness studies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

20 pages, 1274 KiB  
Article
Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity
by Pavel Vejl, Agáta Čermáková, Martina Melounová, Daniela Čílová, Kamila Zdeňková, Eliška Čermáková and Jakub Vašek
Insects 2025, 16(8), 776; https://doi.org/10.3390/insects16080776 - 28 Jul 2025
Viewed by 297
Abstract
Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow [...] Read more.
Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow mealworm (Tenebrio molitor) larvae authorised for human consumption were fed wheat flour-based diets containing varying proportions of house cricket (Acheta domesticus) flour for 21 days. This was followed by a 48 h starvation period to assess the persistence of insect DNA in the digestive tract. Two novel, species-specific, single-copy markers were designed: ampd gene for the Acheta domesticus and MyD88 gene for the Tenebrio molitor. These were applied using qPCR and ddPCR. Both methods successfully detected cricket DNA in the guts of starved larvae. Linear regression analysis revealed a strong, statistically significant correlation between the proportion of Acheta domesticus flour in the diet and the normalised relative quantity of DNA. ddPCR proved to be more sensitive than qPCR, particularly in the detection of low DNA levels. These results suggest that the presence of DNA from undeclared insect species in edible insects may be indicative of their diet rather than contamination or adulteration. This highlights the importance of contextual interpretation in food authenticity testing. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

14 pages, 2268 KiB  
Article
CD1d-Restricted NKT Cells Promote Central Memory CD8+ T Cell Formation via an IL-15-pSTAT5-Eomes Axis in a Pathogen-Exposed Environment
by Yingyu Qin, Yilin Qian, Jingli Zhang and Shengqiu Liu
Int. J. Mol. Sci. 2025, 26(15), 7272; https://doi.org/10.3390/ijms26157272 - 28 Jul 2025
Viewed by 285
Abstract
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized [...] Read more.
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized by restricted microbial exposure, may limit our understanding of physiologically relevant immune memory development. This study reveals that CD1d-restricted NKT cells regulate central memory T cell (TCM) generation exclusively in a microbe-rich (“dirty”) environment. Under non-SPF housing, CD1d+/ and Ja18+/ mice exhibited enhanced TCM formation compared to NKT-deficient controls (CD1d//Ja18/), demonstrating that microbial experience is required for NKT-mediated TCM regulation. Mechanistically, CD1d-restricted NKT cells increased IL-15Rα expression on CD4+ T cells in CD1d+/ mice, potentiating IL-15 trans-presentation and thereby activating the IL-15/pSTAT5/Eomes axis critical for TCM maintenance. Functional validation through adoptive transfer of CFSE-labeled OT-1 memory cells revealed an NKT cell-dependent survival advantage in CD1d+/ hosts. This provides direct evidence that microbiota-experienced niches shape immune memory. Collectively, these findings establish CD1d-restricted NKT cells as physiological regulators of TCM generation and suggest their potential utility as vaccine adjuvants to enhance protective immunity. Full article
Show Figures

Figure 1

13 pages, 1428 KiB  
Article
Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies
by Mei Xiong, Daolei Cui, Yiping Cheng, Ziya Ma, Chengxin Liu, Chang’an Yan, Lizhen Li and Ping Xiang
Toxics 2025, 13(8), 622; https://doi.org/10.3390/toxics13080622 - 25 Jul 2025
Viewed by 348
Abstract
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk [...] Read more.
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk assessment models to evaluate dermal exposure risks. Results reveal that 80% of samples exceeded OEKO-TEX Class I limits for As (mean 1.01 mg/kg), Cd (max 0.25 mg/kg), and Cr (max 4.32 mg/kg), with infant clothing showing unacceptable hazard indices (HI = 1.13) due to Cd (HQ = 1.12). Artificial sweat extraction demonstrated high bioaccessibility for Cr (37.8%) and Ni (28.5%), while keratinocyte exposure triggered oxidative stress (131% ROS increase) and dose-dependent cytotoxicity (22–59% viability reduction). Dark-colored synthetic fabrics exhibited elevated metal loads, linking industrial dye practices to health hazards. These findings underscore systemic gaps in textile safety regulations, particularly for low- and middle-income countries reliant on cost-effective apparel. We propose three policy levers: (1) tightening infant textile standards for Cd/Cr, (2) incentivizing non-toxic dye technologies, and (3) harmonizing global labeling requirements. By bridging toxicological evidence with circular economy principles, this work advances strategies to mitigate heavy metal exposure while supporting Sustainable Development Goals (SDGs) 3 (health), 12 (responsible consumption), and 12.4 (chemical safety). Full article
Show Figures

Figure 1

19 pages, 2530 KiB  
Article
Soil Microbiome Drives Depth-Specific Priming Effects in Picea schrenkiana Forests Following Labile Carbon Input
by Kejie Yin, Lu Gong, Xinyu Ma, Xiaochen Li and Xiaonan Sun
Microorganisms 2025, 13(8), 1729; https://doi.org/10.3390/microorganisms13081729 - 24 Jul 2025
Viewed by 305
Abstract
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research [...] Read more.
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research object. An indoor incubation experiment was conducted by adding three concentrations (1% SOC, 2% SOC, and 3% SOC) of 13C-labelled glucose. We applied 13C isotope probe-phospholipid fatty acid (PLFA-SIP) technology to investigate the influence of readily labile organic carbon inputs on soil priming effect (PE), microbial community shifts at various depths, and the mechanisms underlying soil PE. The results indicated that the addition of 13C-labeled glucose accelerated the mineralization of soil organic carbon (SOC); CO2 emissions were highest in the 0–20 cm soil layer and decreased trend with increasing soil depth, with significant differences observed across different soil layers (p < 0.05). Soil depth had a positive direct effect on the cumulative priming effect (CPE); however, it showed negative indirect effects through physico-chemical properties and microbial biomass. The CPE of the 0–20 cm soil layer was significantly positively correlated with 13C-Gram-positive bacteria, 13C-Gram-negative bacteria, and 13C-actinomycetes. The CPE of the 20–40 cm and 40–60 cm soil layers exhibited a significant positive correlation with cumulative mineralization (CM) and microbial biomass carbon (MBC). Glucose addition had the largest and most significant positive effect on the CPE. Glucose addition positively affected PLFAs and particularly microbial biomass. This study provides valuable insights into the dynamics of soil carbon pools at varying depths following glucose application, advancing the understanding of forest soil carbon sequestration. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 3646 KiB  
Article
Nonmuscle Myosin-2B Regulates Apical Cortical Mechanics, ZO-1 Dynamics and Cell Size in MDCK Epithelial Cells
by Marine Maupérin, Niklas Klatt, Thomas Glandorf, Thomas Di Mattia, Isabelle Méan, Andreas Janshoff and Sandra Citi
Cells 2025, 14(15), 1138; https://doi.org/10.3390/cells14151138 - 23 Jul 2025
Viewed by 676
Abstract
In epithelial cells, nonmuscle myosin-2B (NM2B) shows a cortical localization and is tethered to tight junctions (TJs) and adherens junctions (AJs) by the junctional adaptor proteins cingulin and paracingulin. MDCK cells knock-out (KO) for cingulin show decreased apical membrane cortex stiffness and decreased [...] Read more.
In epithelial cells, nonmuscle myosin-2B (NM2B) shows a cortical localization and is tethered to tight junctions (TJs) and adherens junctions (AJs) by the junctional adaptor proteins cingulin and paracingulin. MDCK cells knock-out (KO) for cingulin show decreased apical membrane cortex stiffness and decreased TJ membrane tortuosity, and the rescue of these phenotypes requires the myosin-binding region of cingulin. Here, we investigated whether NM2B contributes to these phenotypes independently of cingulin by generating and characterizing clonal lines of MDCK cells KO for NM2B. The loss of NM2B resulted in decreased stiffness and increased fluidity of the apical cortex and reduced accumulation of E-cadherin and phalloidin-labeled actin filaments at junctions but had no significant effect on TJ membrane tortuosity. Fluorescence recovery after photobleaching (FRAP) showed that the KO of NM2B increased the dynamics of the TJ scaffold protein ZO-1, correlating with decreased ZO-1 accumulation at TJs. Finally, the KO of NM2B increased cell size in cells grown both in 2D and 3D but did not alter lumen morphogenesis of cysts. These results extend our understanding of the functions of NM2B by describing its role in the regulation of the mechanical properties of the apical membrane cortex and cell size and validate our model about the role of cingulin–NM2B interaction in the regulation of ZO-1 dynamics. Full article
Show Figures

Figure 1

21 pages, 17488 KiB  
Article
Mechanistic Study on the Inhibitory Effect of Dandelion Extract on Breast Cancer Cell Proliferation and Its Induction of Apoptosis
by Weifeng Mou, Ping Zhang, Yu Cui, Doudou Yang, Guanjie Zhao, Haijun Xu, Dandan Zhang and Yinku Liang
Biology 2025, 14(8), 910; https://doi.org/10.3390/biology14080910 - 22 Jul 2025
Viewed by 725
Abstract
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different [...] Read more.
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different polarities. MTT assays revealed that the ethyl acetate fraction exhibited the strongest inhibitory effect on cell proliferation. LC-MS analysis identified 12 potential active compounds, including sesquiterpenes such as Isoalantolactone and Artemisinin, which showed significantly lower toxicity toward normal mammary epithelial MCF-10A cells compared to tumor cells (p < 0.01). Mechanistic studies demonstrated that the extract induced apoptosis in a dose-dependent manner, with an apoptosis rate as high as 85.04%, and significantly arrested the cell cycle at the S and G2/M phases. Label-free quantitative proteomics identified 137 differentially expressed proteins (|FC| > 2, p < 0.05). GO enrichment analysis indicated that these proteins were mainly involved in cell cycle regulation and apoptosis. KEGG pathway analysis revealed that the antitumor effects were primarily mediated through the regulation of PI3K-Akt (hsa04151), JAK-STAT (hsa04630), and PPAR (hsa03320) signaling pathways. Moreover, differential proteins such as PI3K, AKT1S1, SIRT6, JAK1, SCD, STAT3, CASP8, STAT2, STAT6, and PAK1 showed strong correlation with the core components of the EA-2 fraction of dandelion. Molecular docking results demonstrated that these active compounds exhibited strong binding affinities with key target proteins such as PI3K and JAK1 (binding energy < −5.0 kcal/mol). This study elucidates the multi-target, multi-pathway synergistic mechanisms by which dandelion extract inhibits breast cancer, providing a theoretical basis for the development of novel antitumor agents. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

14 pages, 3849 KiB  
Article
Alkaline Earth Carbonate Engineered Pt Electronic States for High-Efficiency Propylene Oxidation at Low Temperatures
by Xuequan Sun, Yishu Lv, Yuan Shu, Yanglong Guo and Pengfei Zhang
Catalysts 2025, 15(8), 696; https://doi.org/10.3390/catal15080696 - 22 Jul 2025
Viewed by 368
Abstract
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth [...] Read more.
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth carbonates (Pt/MCO3, M = Mg, Ca, Ba) for low-temperature propylene combustion. The Pt/BaCO3 catalyst exhibited outstanding performance, achieving complete propylene conversion at 192 °C, significantly lower than Pt/MgCO3 (247 °C) and Pt/CaCO3 (282 °C). The enhanced activity stemmed from distinct MSI effects among the supports, with Pt/BaCO3 showing the poorest electron enrichment and lowest propylene adsorption energy. Through kinetic analyses, 18O2 isotope labeling, and comprehensive characterization, the reaction was confirmed to follow the Mars–van Krevelen (MvK) mechanism. Pt/BaCO3 achieves an optimal balance between propylene and oxygen adsorption, a critical factor underlying its superior activity. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

22 pages, 761 KiB  
Review
Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans
by Jovany Jordan Betancourt and Kirsten Nielsen
J. Fungi 2025, 11(7), 529; https://doi.org/10.3390/jof11070529 - 17 Jul 2025
Viewed by 475
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and causative agent of cryptococcosis and cryptococcal meningitis (CM). Cryptococcal disease accounts for up to 19% of AIDS-related mortalities globally, warranting its label as a pathogen of critical priority by the World Health Organization. Standard treatments [...] Read more.
Cryptococcus neoformans is an opportunistic fungal pathogen and causative agent of cryptococcosis and cryptococcal meningitis (CM). Cryptococcal disease accounts for up to 19% of AIDS-related mortalities globally, warranting its label as a pathogen of critical priority by the World Health Organization. Standard treatments for CM rely heavily on high doses of antifungal agents for long periods of time, contributing to the growing issue of antifungal resistance. Moreover, mortality rates for CM are still incredibly high (13–78%). Attempts to create new and effective treatments have been slow due to the complex and diverse set of immune-evasive and survival-enhancing virulence factors that C. neoformans employs. To bolster the development of better clinical tools, deeper study into host–Cryptococcus proteomes is needed to identify clinically relevant proteins, pathways, antigens, and beneficial host response mechanisms. Mass spectrometry-based proteomics approaches serve as invaluable tools for investigating these complex questions. Here, we discuss some of the insights into cryptococcal disease and biology learned using proteomics, including target proteins and pathways regulating Cryptococcus virulence factors, metabolism, and host defense responses. By utilizing proteomics to probe deeper into these protein interaction networks, new clinical tools for detecting, diagnosing, and treating C. neoformans can be developed. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

21 pages, 903 KiB  
Article
Preliminary Analysis of Printed Polypropylene Foils and Pigments After Thermal Treatment Using DSC and Ames Tests
by Lukas Prielinger, Eva Ortner, Martin Novak, Lea Markart and Bernhard Rainer
Materials 2025, 18(14), 3325; https://doi.org/10.3390/ma18143325 - 15 Jul 2025
Viewed by 339
Abstract
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical [...] Read more.
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical recycling processes and therefore require hazard identification. In this study, virgin polypropylene (PP) foils were printed with different types of inks (UV-cured, water-based) and colour shades. Thermal analysis of printed foils and pigments was performed using differential scanning calorimetry (DSC). Samples were then thermally treated below and above measured thermal events at 120 °C, 160 °C, 200 °C or 240 °C for 30 min. Subsequently, migration tests and miniaturised Ames tests were performed. Four out of thirteen printed foils and all three pigments showed positive results for mutagenicity in miniaturised Ames tests after thermal treatment at 240 °C. Additionally, pre-incubation Plate Ames tests (according to OECD 471) were performed on three pigments and one printed foil, yielding two positive results after thermal treatment at 240 °C. These results indicate that certain ink components form hazardous decomposition products when heated up to a temperature of 240 °C. However, further research is needed to gain a better understanding of the chemical processes that occur during high thermal treatment. Full article
Show Figures

Graphical abstract

23 pages, 2596 KiB  
Article
Integrated Behavioral and Proteomic Characterization of MPP+-Induced Early Neurodegeneration and Parkinsonism in Zebrafish Larvae
by Adolfo Luis Almeida Maleski, Felipe Assumpção da Cunha e Silva, Marcela Bermudez Echeverry and Carlos Alberto-Silva
Int. J. Mol. Sci. 2025, 26(14), 6762; https://doi.org/10.3390/ijms26146762 - 15 Jul 2025
Viewed by 315
Abstract
Zebrafish (Danio rerio) combine accessible behavioral phenotypes with conserved neurochemical pathways and molecular features of vertebrate brain function, positioning them as a powerful model for investigating early neurodegenerative processes and screening neuroprotective strategies. In this context, integrated behavioral and proteomic analyses [...] Read more.
Zebrafish (Danio rerio) combine accessible behavioral phenotypes with conserved neurochemical pathways and molecular features of vertebrate brain function, positioning them as a powerful model for investigating early neurodegenerative processes and screening neuroprotective strategies. In this context, integrated behavioral and proteomic analyses provide valuable insights into the initial pathophysiological events shared by conditions such as Parkinson’s disease and related disorders—including mitochondrial dysfunction, oxidative stress, and synaptic impairment—which emerge before overt neuronal loss and offer a crucial window to understand disease progression and evaluate therapeutic candidates prior to irreversible damage. To investigate this early window of dysfunction, zebrafish larvae were exposed to 500 μM 1-methyl-4-phenylpyridinium (MPP+) from 1 to 5 days post-fertilization and evaluated through integrated behavioral and label-free proteomic analyses. MPP+-treated larvae exhibited hypokinesia, characterized by significantly reduced total distance traveled, fewer movement bursts, prolonged immobility, and a near-complete absence of light-evoked responses—mirroring features of early Parkinsonian-like motor dysfunction. Label-free proteomic profiling revealed 40 differentially expressed proteins related to mitochondrial metabolism, redox regulation, proteasomal activity, and synaptic organization. Enrichment analysis indicated broad molecular alterations, including pathways such as mitochondrial translation and vesicle-mediated transport. A focused subset of Parkinsonism-related proteins—such as DJ-1 (PARK7), succinate dehydrogenase (SDHA), and multiple 26S proteasome subunits—exhibited coordinated dysregulation, as visualized through protein–protein interaction mapping. The upregulation of proteasome components and antioxidant proteins suggests an early-stage stress response, while the downregulation of mitochondrial enzymes and synaptic regulators reflects canonical PD-related neurodegeneration. Together, these findings provide a comprehensive functional and molecular characterization of MPP+-induced neurotoxicity in zebrafish larvae, supporting its use as a relevant in vivo system to investigate early-stage Parkinson’s disease mechanisms and shared neurodegenerative pathways, as well as for screening candidate therapeutics in a developmentally responsive context. Full article
(This article belongs to the Special Issue Zebrafish Model for Neurological Research)
Show Figures

Graphical abstract

17 pages, 1768 KiB  
Article
NeuroTIS+: An Improved Method for Translation Initiation Site Prediction in Full-Length mRNA Sequence via Primary Structural Information
by Wenqiu Xiao and Chao Wei
Appl. Sci. 2025, 15(14), 7866; https://doi.org/10.3390/app15147866 - 14 Jul 2025
Viewed by 234
Abstract
Translation initiation site (TIS) prediction in mRNA sequences constitutes an essential component of transcriptome annotation, playing a crucial role in deciphering gene expression and regulation mechanisms. Numerous computational methods have been proposed and achieved acceptable prediction accuracy. In our previous work, we developed [...] Read more.
Translation initiation site (TIS) prediction in mRNA sequences constitutes an essential component of transcriptome annotation, playing a crucial role in deciphering gene expression and regulation mechanisms. Numerous computational methods have been proposed and achieved acceptable prediction accuracy. In our previous work, we developed NeuroTIS, a novel method for TIS prediction based on a hybrid dependency network combined with a deep learning framework that explicitly models label dependencies both within coding sequences (CDSs) and between CDSs and TISs. However, this method has limitations in fully exploiting the primary structural information within mRNA sequences. First, it only captures label dependency within three neighboring codon labels. Second, it neglects the heterogeneity of negative TISs originating from different reading frames, which exhibit distinct coding features in their vicinity. In this paper, under the framework of NeuroTIS, we propose its enhanced version, NeuroTIS+, which allows for more sophisticated codon label dependency modeling via temporal convolution and homogenous feature building through an adaptive grouping strategy. Tests on transcriptome-wide human and mouse datasets demonstrate that the proposed method yields excellent prediction performance, significantly surpassing the existing state-of-the-art methods. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 250 KiB  
Review
The Influence of Microorganism on Insect-Related Pesticide Resistance
by Qiqi Fan, Hong Sun and Pei Liang
Agriculture 2025, 15(14), 1519; https://doi.org/10.3390/agriculture15141519 - 14 Jul 2025
Viewed by 440
Abstract
Insect pests inflict significant agricultural and economic losses on crops globally. Chemical control refers to the use of agrochemicals, such as insecticides, herbicides, and fungicides, to manage pests and diseases. Chemical control is still the prioritized method, as insecticides are highly effective and [...] Read more.
Insect pests inflict significant agricultural and economic losses on crops globally. Chemical control refers to the use of agrochemicals, such as insecticides, herbicides, and fungicides, to manage pests and diseases. Chemical control is still the prioritized method, as insecticides are highly effective and toxic to insect pests. However, it reduces the quality of the environment, threatens human health, and causes serious 3R (reduce, reuse, and recycle) problems. Current advances in the mining of functional symbiotic bacteria resources provide the potential to assuage the use of insecticides while maintaining an acceptably low level of crop damage. Recent research on insect–microbe symbiosis has uncovered a mechanism labeled “detoxifying symbiosis”, where symbiotic microorganisms increase host insect resistance through the metabolism of toxins. In addition, the physiological compensation effect caused by insect resistance affects the ability of the host to regulate the community composition of symbiotic bacteria. This paper reviews the relationship between symbiotic bacteria, insects, and insecticide resistance, focusing on the effects of insecticide resistance on the composition of symbiotic bacteria and the role of symbiotic bacteria in the formation of resistance. The functional symbiotic bacteria resources and their mechanisms of action need to be further explored in the future so as to provide theoretical support for the development of pest control strategies based on microbial regulation. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
17 pages, 643 KiB  
Review
Current Pharmacotherapies for Alcohol Use Disorder in Italy: From Neurobiological Targets to Clinical Practice
by Andrea Mastrostefano, Giuseppe Greco, Chiara De Bacco, Flavio Davini, Giacomo Polito, Edoardo Carnevale, Giuseppe Anastasi and Sergio Terracina
Targets 2025, 3(3), 24; https://doi.org/10.3390/targets3030024 - 11 Jul 2025
Viewed by 303
Abstract
Alcohol is a prevalent psychoactive substance and a risk factor for developing injuries and non-communicable diseases, representing a significant health and economic burden. Alcohol involves numerous molecular pathways. Its metabolism is regulated by alcohol dehydrogenases and aldehyde dehydrogenases; it also stimulates cholinergic interneurons, [...] Read more.
Alcohol is a prevalent psychoactive substance and a risk factor for developing injuries and non-communicable diseases, representing a significant health and economic burden. Alcohol involves numerous molecular pathways. Its metabolism is regulated by alcohol dehydrogenases and aldehyde dehydrogenases; it also stimulates cholinergic interneurons, increasing the sensitivity of 5-HT3 receptors, while chronic alcohol consumption alters the mesolimbic dopaminergic system involved in reward processing. The treatment of alcohol use disorder (AUD) is essential to manage complex patients, following an evidence-based approach. The aim of this narrative review is to provide a clear and practical summary to support and assist healthcare professionals in the Italian context. Approved pharmacological treatments for AUD include oral naltrexone and acamprosate, sodium oxybate, disulfiram, and nalmefene. Off-label therapies include baclofen, topiramate, gabapentin, pregabalin, ondansetron, and cytisine. A more informed clinical and practical approach that understands the altered neuronal signaling pathways is essential for offering effective, efficient, appropriate, and safe therapeutic algorithms for complex patients with alcohol use disorder. A comprehensive framework should include integrated treatments with a personalized approach. Full article
Show Figures

Figure 1

Back to TopTop