ijms-logo

Journal Browser

Journal Browser

Cutting-Edge Insights into Bacterial Infection and Host Immune Response

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 856

Special Issue Editor


E-Mail Website
Guest Editor
1. Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
2. Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Interests: Brucella; immunopathology; gestational complications; airborne brucellosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Pathogenic bacteria account for millions of infectious disease cases worldwide every year. These pathogens have developed exquisite mechanisms and specialized molecules to ensure host cell invasion, colonization, and immune escape. The success of the host immune response in controlling these infections depends on the stimulation of an adequate arm of immunity and its ability to counteract these pathogenic mechanisms.

This Special Issue aims to explore new advances in bacterial pathogenicity, unravel the cellular and molecular mechanisms behind bacteria–host interactions, identify effective immune effectors, and provide a theoretical framework for the development of improved therapeutic and vaccine strategies. We invite researchers to publish reviews and research articles exploring these areas. The topics of interest include but are not limited to the following:

  • Molecular interactions between bacteria and hosts;
  • Identification and characterization of bacterial virulence factors;
  • Bacterial mechanisms for host cell invasion and persistent infection;
  • Host cell signaling pathways activated during bacterial infections;
  • Cellular and molecular immune responses to bacterial infections;
  • Bacterial mechanisms of immune evasion and modulation;
  • Development of interventions targeting bacteria–host molecular interactions.

Dr. Pablo C. Baldi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bacteria–host interaction
  • virulence factors
  • cellular and molecular immune response
  • immune evasion mechanisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2268 KiB  
Article
CD1d-Restricted NKT Cells Promote Central Memory CD8+ T Cell Formation via an IL-15-pSTAT5-Eomes Axis in a Pathogen-Exposed Environment
by Yingyu Qin, Yilin Qian, Jingli Zhang and Shengqiu Liu
Int. J. Mol. Sci. 2025, 26(15), 7272; https://doi.org/10.3390/ijms26157272 - 28 Jul 2025
Viewed by 292
Abstract
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized [...] Read more.
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized by restricted microbial exposure, may limit our understanding of physiologically relevant immune memory development. This study reveals that CD1d-restricted NKT cells regulate central memory T cell (TCM) generation exclusively in a microbe-rich (“dirty”) environment. Under non-SPF housing, CD1d+/ and Ja18+/ mice exhibited enhanced TCM formation compared to NKT-deficient controls (CD1d//Ja18/), demonstrating that microbial experience is required for NKT-mediated TCM regulation. Mechanistically, CD1d-restricted NKT cells increased IL-15Rα expression on CD4+ T cells in CD1d+/ mice, potentiating IL-15 trans-presentation and thereby activating the IL-15/pSTAT5/Eomes axis critical for TCM maintenance. Functional validation through adoptive transfer of CFSE-labeled OT-1 memory cells revealed an NKT cell-dependent survival advantage in CD1d+/ hosts. This provides direct evidence that microbiota-experienced niches shape immune memory. Collectively, these findings establish CD1d-restricted NKT cells as physiological regulators of TCM generation and suggest their potential utility as vaccine adjuvants to enhance protective immunity. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 851 KiB  
Review
The Multifaceted Role of Regulatory T Cells in Sepsis: Mechanisms, Heterogeneity, and Pathogen-Tailored Therapies
by Yingyu Qin and Jingli Zhang
Int. J. Mol. Sci. 2025, 26(15), 7436; https://doi.org/10.3390/ijms26157436 - 1 Aug 2025
Viewed by 370
Abstract
Sepsis is a life-threatening condition caused by a dysregulated immune response to infection, characterized by an initial hyperinflammatory phase frequently followed by compensatory immunosuppression (CARS). Regulatory T cells (Tregs) play a critical, biphasic role: inadequate suppression during early hyperinflammation fails to control cytokine [...] Read more.
Sepsis is a life-threatening condition caused by a dysregulated immune response to infection, characterized by an initial hyperinflammatory phase frequently followed by compensatory immunosuppression (CARS). Regulatory T cells (Tregs) play a critical, biphasic role: inadequate suppression during early hyperinflammation fails to control cytokine storms, while excessive/persistent activity in late-phase immunosuppression drives immune paralysis and secondary infection susceptibility. This review explores advances in targeting Treg immunoregulation across bacterial, viral, and fungal sepsis, where pathogenic type critically influenced the types of immunoresponses, shaping Treg heterogeneity in terms of phenotype, survival, and function. Understanding this multifaceted Treg biology offers novel therapeutic avenues, highlighting the need to decipher functional heterogeneity and develop precisely timed, pathogen-tailored immunomodulation to safely harness beneficial Treg roles while mitigating detrimental immunosuppression. Full article
Show Figures

Figure 1

Back to TopTop