The Influence of Microorganism on Insect-Related Pesticide Resistance
Abstract
1. Introduction
2. Association Between Endosymbionts and Insecticide Resistance of Insects
3. Molecular Mechanism of Resistance Against Insecticides by Endosymbionts
3.1. Direct Degradation of Pesticides by Symbiotic Bacteria
3.2. Indirect Regulation of Symbiotic Bacteria on the Host
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, S.Y.; Hu, R.F.; Zhang, C.; Shi, G.M. Do farmers misuse pesticides in crop production in China? Evidence from a farm household survey. Pest Manag. Sci. 2019, 75, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.L.; Zeng, J.; Wu, K.M. Research and application of crop pest monitoring and early warning technology in China. Front. Agric. Sci. Eng. 2022, 9, 19–36. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Fan, R.; Naz, H.; Bamisile, B.S.; Hafeez, M.; Ghani, M.I.; Wei, Y.; Xu, Y.; Chen, X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front. Physiol. 2023, 13, 1112278. [Google Scholar] [CrossRef]
- Moustafa, M.A.; Moteleb, R.I.; Ghoneim, Y.F.; Hafez, S.S.; Ali, R.E.; Eweis, E.E.; Hassan, N.N. Monitoring resistance and biochemical studies of three Egyptian field strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to six insecticides. Toxics 2023, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Plá, I.; García de Oteyza, J.; Tur, C.; Martínez, M.Á.; Laurín, M.C.; Alonso, E.; Martínez, M.; Martín, Á.; Sanchis, R.; Navarro, M.C.; et al. Sterile insect technique programme against Mediterranean fruit fly in the Valencian community (Spain). Insects 2021, 12, 415. [Google Scholar] [CrossRef]
- Abbas, M.; Saleem, M.; Hussain, D.; Ramzan, M.; Jawad Saleem, M.; Abbas, S.; Hussain, N.; Irshad, M.; Hussain, K.; Ghouse, G.; et al. Review on integrated disease and pest management of field crops. Int. J. Trop. Insect Sci. 2022, 42, 3235–3243. [Google Scholar] [CrossRef]
- Bhandari, M.K.; Paudel, M. Genetic, biological and sterile insect techniques: Insect pest management strategies: A review. Agric. Rev. 2024, 45, 390–399. [Google Scholar] [CrossRef]
- Lance, D.R.; McInnis, D.O. Biological basis of the sterile insect technique. In Sterile Insect Technique; CRC Press: Boca Raton, FL, USA, 2021; pp. 113–142. [Google Scholar]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Zhou, W.; Li, M.; Achal, V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg. Contam. 2024, 11, 100410. [Google Scholar] [CrossRef]
- Bamal, D.; Duhan, A.; Pal, A.; Beniwal, R.K.; Kumawat, P.; Dhanda, S.; Goyat, A.; Hooda, V.S.; Yadav, R. Herbicide risks to non-target species the environment: A review. Environ. Chem. Lett. 2024, 22, 2977–3032. [Google Scholar] [CrossRef]
- Chowdhury, S.K.; Banerjee, M.; Basnett, D.; Mazumdar, T. Natural pesticides for pest control in agricultural crops: An alternative and eco-friendly method. Plant Sci. Today 2024, 11, 433–450. [Google Scholar]
- Fellin, L.; Grassi, A.; Puppato, S.; Saddi, A.; Anfora, G.; Ioriatti, C.; Rossi-Stacconi, M.V. First report on classical biological control releases of the larval parasitoid Ganaspis brasiliensis against Drosophila suzukii in northern Italy. BioControl 2023, 68, 1–12. [Google Scholar] [CrossRef]
- Zhao, M.; Lin, X.Y.; Guo, X.R. The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals. Insects 2022, 13, 583. [Google Scholar] [CrossRef]
- Rupawate, P.S.; Roylawar, P.; Khandagale, K.; Gawande, S.; Ade, A.B.; Jaiswal, D.K.; Borgave, S. Role of gut symbionts of insect pests: A novel target for insect-pest control. Front. Microbiol. 2023, 14, 1146390. [Google Scholar] [CrossRef]
- Han, S.; Akhtar, M.R.; Xia, X.F. Functions and regulations of insect gut bacteria. Pest Manag. Sci. 2024, 80, 4828–4840. [Google Scholar] [CrossRef]
- Banfi, D.; Mastore, M.; Bianchi, T.; Brivio, M.F. The expression levels of heat shock protein 90 (hsp90) in Galleria mellonella following infection with the entomopathogenic nematode Steinernema carpocapsae and its symbiotic bacteria Xenorhabdus nematophila. Insects 2025, 16, 201. [Google Scholar] [CrossRef]
- Rafiqi, A.M.; Polo, P.G.; Milat, N.S.; Durmuş, Z.Ö.; Çolak-Al, B.; Alarcón, M.E.; Çağıl, F.Z.; Rajakumar, A. Developmental integration of endosymbionts in insects. Front. Ecol. Evol. 2022, 10, 846586. [Google Scholar] [CrossRef]
- Kaltenpoth, M.; Flórez, L.V.; Vigneron, A.; Dirksen, P.; Engl, T. Origin and function of beneficial bacterial symbioses in insects. Nat. Rev. Microbiol. 2025, 1–17. [Google Scholar] [CrossRef]
- Trinder, M.; McDowell, T.W.; Daisley, B.A.; Ali, S.N.; Leong, H.S.; Sumarah, M.W.; Reid, G. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Appl. Environ. Microbiol. 2016, 82, 6204–6213. [Google Scholar] [CrossRef]
- Lv, C.; Huang, Y.Z.; Luan, J.B. Insect–microbe symbiosis-based strategies offer a new avenue for the management of insect pests their transmitted pathogens. Crop Health 2024, 2, 18. [Google Scholar] [CrossRef]
- Yang, K.; Chen, H.; Bing, X.L.; Xia, X.; Zhu, Y.X.; Hong, X.Y. Wolbachia Spiroplasma could influence bacterial communities of the spider mite Tetranychus truncatus. Exp. Appl. Acarol. 2021, 83, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, S.; Zhang, X.; Zhang, K.; Liu, W.; Zhang, R.; Zhang, Z. Enterobacter hormaechei in the intestines of housefly larvae promotes host growth by inhibiting harmful intestinal bacteria. Parasites Vectors 2021, 14, 598. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chen, H.; Bing, X.L.; Xia, X.; Zhu, Y.X.; Hong, X.Y. Wolbachia dominate Spiroplasma in the co-infected spider mite Tetranychus truncatus. Insect Mol. Biol. 2020, 29, 19–37. [Google Scholar] [CrossRef]
- Janke, R.S.; Kaftan, F.; Niehs, S.P.; Scherlach, K.; Rodrigues, A.; Svatoš, A.; Flórez, L.V. Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages. ISME J. 2022, 16, 2691–2701. [Google Scholar] [CrossRef]
- Zhou, X.; Ling, X.; Guo, H.; Zhu-Salzman, K.; Ge, F.; Sun, Y. Serratia symbiotica enhances fatty acid metabolism of pea aphid to promote host development. Int. J. Mol. Sci. 2021, 22, 5951. [Google Scholar] [CrossRef]
- Tian, P.P.; Zhang, Y.L.; Huang, J.L.; Li, W.Y.; Liu, X.D. Arsenophonus interacts with Buchnera to improve growth performance of aphids under amino acid stress. Microbiol. Spectr. 2023, 11, e01792-23. [Google Scholar] [CrossRef]
- Doremus, M.R.; Hunter, M.S. Symbiosis: An escalating arms race between a butterfly and bacterium. Curr. Biol. 2025, 35, R339–R341. [Google Scholar] [CrossRef]
- Haider, K.; Abbas, D.; Galian, J.; Ghafar, M.A.; Kabir, K.; Ijaz, M.; Hussain, M.; Khan, K.A.; Ghramh, H.A.; Raza, A. The multifaceted roles of gut microbiota in insect physiology, metabolism, and environmental adaptation: Implications for pest management strategies. World J. Microbiol. Biotechnol. 2025, 41, 75. [Google Scholar] [CrossRef]
- Mondal, S.; Somani, J.; Roy, S.; Babu, A.; Pandey, A.K. Insect microbial symbionts: Ecology, interactions, biological significance. Microorganisms 2023, 11, 2665. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, T.; Wan, H. Mobile resistance elements: Symbionts that modify insect host resistance. J. Agric. Food Chem. 2025, 73, 3842–3853. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Zhang, Y.H.; Li, W.H.; Tang, T.; Wan, H.; You, H.; Li, J.H. Fitness and evolution of insecticide resistance associated with gut symbionts in metaflumizone-resistant Plutella xylostella. Crop Prot. 2019, 124, e104869. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liu, H.M.; Peng, H.; Wang, Y.; Zhang, C.X.; Guo, X.X.; Wang, H.F.; Liu, L.J.; Lv, W.X.; Cheng, P.; et al. Symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide. PLoS Neglected Trop. Dis. 2022, 16, e0010208. [Google Scholar] [CrossRef]
- Pietri, J.E.; Liang, D. The links between insect symbionts and insecticide resistance: Causal relationships and physiological tradeoffs. Ann. Entomol. Soc. Am. 2018, 111, 92–97. [Google Scholar] [CrossRef]
- Li, W.H.; Jin, D.C.; Shi, C.; Li, F.J. Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci. Rep. 2017, 7, 1947. [Google Scholar] [CrossRef]
- Jaffar, S.; Ahmad, S.; Lu, Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front. Microbiol. 2022, 13, 979383. [Google Scholar] [CrossRef]
- Ibrahim, S.; Gupta, R.K.; War, A.R.; Hussain, B.; Kumar, A.; Sofi, T. Degradation of chlorpyriphos and polyethylene by endosymbiotic bacteria from citrus mealybug. Saudi J. Biol. Sci. 2021, 28, 3214–3224. [Google Scholar] [CrossRef]
- Daisley, B.A.; Trinder, M.; McDowell, T.W.; Collins, S.L.; Sumarah, M.W.; Reid, G. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with Lactobacilli in a Drosophila melanogaster insect model. Appl. Environ. Microbiol. 2018, 84, e02820-17. [Google Scholar] [CrossRef]
- Itoh, H.; Tago, K.; Hayatsu, M.; Kikuchi, Y. Detoxifying symbiosis: Microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 2018, 35, 434–454. [Google Scholar] [CrossRef]
- Almeida, L.G.; Moraes, L.A.; Trigo, J.R.; Omoto, C.; Consoli, F.L. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE 2017, 12, e0174754. [Google Scholar] [CrossRef]
- Malathi, V.M.; More, R.P.; Anandham, R.; Gracy, G.R.; Mohan, M.; Venkatesan, T.; Samaddar, S.; Jalali, S.K.; Sa, T. Gut bacterial diversity of insecticide-susceptible and -resistant nymphs of the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and elucidation of their putative functional roles. J. Microbiol. Biotechnol. 2018, 28, 976–986. [Google Scholar]
- Gracy, R.G.; Malathi, V.M.; Jalali, S.K.; Jose, V.L.; Thulasi, A. Variation in larval gut bacteria between insecticide-resistant and -susceptible populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Phytoparasitica 2016, 44, 477–490. [Google Scholar] [CrossRef]
- Xia, X.F.; Zheng, D.D.; Zhong, H.Z.; Qin, B.C.; Gurr, G.M.; Vasseur, L.; Lin, H.L.; Bai, J.L.; He, W.Y.; You, M.S. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 2013, 8, e68852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Tang, T.; Li, W.H.; Cai, T.W.; Li, J.H.; Wan, H. Functional profiling of the gut microbiomes in two different populations of the brown planthopper, Nilaparvata lugens. J. Asia-Pac. Entomol. 2018, 21, 1309–1314. [Google Scholar] [CrossRef]
- Akami, M.; Njintang, N.Y.; Gbaye, O.A.; Andongma, A.A.; Rashid, M.A.; Niu, C.; Nukenine, E.N. Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Sci. Rep. 2019, 9, e6435. [Google Scholar] [CrossRef]
- Zhang, J.H.; Pan, Y.; Zheng, C.; Gao, X.W.; Wei, X.; Xi, J.H.; Peng, T.F.; Shang, Q.L. Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii Glover revealed by pyrosequencing. Comp. Biochem. Physiol. 2016, 20, 151–158. [Google Scholar] [CrossRef]
- Echaubard, P.; Duron, O.; Agnew, P.; Sidobre, C.; Noel, V.; Weill, M.; Michalakis, Y. Rapid evolution of Wolbachia density in insecticide resistant Culex pipiens. Heredity 2010, 104, 15–19. [Google Scholar] [CrossRef]
- Berticat, C.; Rousset, F.; Raymond, M.; Berthomieu, A.; Weill, M. High Wolbachia density in insecticide-resistant mosquitoes. Proc. R. Soc. Lond. Ser. B. 2002, 269, 1413–1416. [Google Scholar] [CrossRef]
- Hrdina, A.; Iatsenko, I. The roles of metals in insect–microbe interactions and immunity. Curr. Opin. Insect Sci. 2022, 49, 71–77. [Google Scholar] [CrossRef]
- Gorman, M.J. Iron homeostasis in insects. Annu. Rev. Entomol. 2023, 68, 51–67. [Google Scholar] [CrossRef]
- Sun, Y.; Li, T.; Zhou, G.; Zhou, Y.; Wu, Y.; Xu, J.; Chen, J.; Zhong, S.; Zhong, D.; Liu, R.; et al. Relationship between deltamethrin resistance and gut symbiotic bacteria of Aedes albopictus by 16S rDNA sequencing. Parasites Vectors 2024, 17, 330. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Y.; Xu, S.B.; Guan, R.B.; Gu, Y.C.; Miao, X.X.; Li, H.C. A symbiotic gut bacterium (Bacillus cereus) enhances insect susceptibility to insecticides by reducing antioxidant and detoxification enzyme. Entomol. Gen. 2025, 45, 229–238. [Google Scholar] [CrossRef]
- Ghanim, M.; Kontsedalov, S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manage. Sci. 2009, 65, 939–942. [Google Scholar] [CrossRef]
- Thia, J.A.; Dorai, A.P.; Hoffmann, A.A. Symbiotic bacteria and pest control: Plant toxins, chemical pesticides, and fungal entomopathogens. Trends Microbiol. 2025. [Google Scholar] [CrossRef]
- Deng, S.J.; Tu, L.; Li, L.; Hu, J.P.; Li, J.L.; Tang, J.X.; Zhang, M.C.; Zhu, G.D.; Cao, J. A symbiotic bacterium regulates the detoxification metabolism of deltamethrin in Aedes albopictus. Pestic. Biochem. Physiol. 2025, 212, 106445. [Google Scholar] [CrossRef]
- Pan, Q.; Yu, S.J.; Lei, S.; Zhang, S.H.; Ding, L.L.; Liu, L.; Li, S.C.; Wang, X.F.; Lou, B.H.; Ran, C. Bacterial symbionts contribute to insecticide susceptibility of Diaphorina citri via changing the expression level of host detoxifying genes. J. Agric. Food Chem. 2024, 72, 15164–15175. [Google Scholar] [CrossRef]
- Barnard, K.; Jeanrenaud, A.C.; Brooke, B.D.; Oliver, S.V. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci. Rep. 2019, 9, 9117. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, R. Life history and functional capacity of the microbiome are altered in beta-cypermethrin-resistant cockroaches. Int. J. Parasitol. 2019, 49, 715–723. [Google Scholar] [CrossRef]
- Zhang, Y.; Ju, F. Uninheritable but widespread bacterial symbiont Enterococcus casseliflavus mediates detoxification of the insecticide chlorantraniliprole in the agricultural invasive pest Spodoptera frugiperda. J. Agric. Food Chem. 2024, 72, 18365–18377. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, H.W.; Bhatt, P. Microbial adaptation and impact into the pesticide’s degradation. Arch. Microbiol. 2022, 204, 288. [Google Scholar] [CrossRef]
- Yin, F.; Ge, T.; Zalucki, M.P.; Xiao, Y.; Peng, Z.; Li, Z. Gut symbionts affect Plutella xylostella (L.) susceptibility to chlorantraniliprole. Pestic. Biochem. Physiol. 2025, 209, 106327. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Pan, Z.; Jin, C.; Ni, Y.; Fu, Z.; Jin, Y. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere 2022, 227, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Skaljac, M.; Kirfel, P.; Grotmann, J.; Vilcinskas, A. Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon Pisum. Pest Manag Sci. 2018, 74, 1829. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef]
- Ishigami, K.; Jang, S.; Itoh, H.; Kikuchi, Y. Insecticide resistance governed by gut symbiosis in a rice pest, Cletus punctiger, under laboratory conditions. Biol. Lett. 2021, 17, 20200780. [Google Scholar] [CrossRef]
- Cheng, D.; Guo, Z.; Riegler, M.; Xi, Z.; Liang, G.; Xu, Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 2017, 5, 13. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Yong, H.; Liu, Z.; Wang, W.; Lu, Y. The contribution of gut bacteria to pesticide resistance of Tribolium castaneum (Herbst). J. Stored Prod. Res. 2023, 103, 102160. [Google Scholar] [CrossRef]
- Ozdal, O.G.; Algur, O.F. Biodegradation α-endosulfan and α- cypermethrin by Acinetobacter schindleri B7 isolated from the microflora of grasshopper (Poecilimon tauricola). Arch. Microbiol. 2022, 204, 159. [Google Scholar]
- Ozdal, M.; Ozdal, O.G.; Alguri, O.F. Isolation and characterization of alpha-endosulfan degrading bacteria from the microflora of cockroaches. Pol. J. Microbiol. 2016, 65, 63–68. [Google Scholar] [CrossRef]
- El Khoury, S.; Gauthier, J.; Mercier, P.L.; Moïse, S.; Giovenazzo, P.; Derome, N. Honeybee gut bacterial strain improved survival and gut microbiota homeostasis in Apis mellifera exposed in vivo to clothianidin. Microbiol. Spectrum. 2024, 12, e00578-24. [Google Scholar] [CrossRef]
- Pang, R.; Chen, M.; Yue, L.; Xing, K.; Li, T.; Kang, K.; Liang, Z.; Yuan, L.; Zhang, W. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genet. 2018, 14, e1007725. [Google Scholar] [CrossRef]
- Li, Q.; Sun, J.; Qin, Y.; Fan, J.; Zhang, Y.; Tan, X.; Hou, M.; Chen, J. Reduced insecticide susceptibility of the wheat aphid Sitobion miscanthi after infection by the secondary bacterial symbiont Hamiltonella defensa. Pest Manag. Sci. 2021, 77, 1936–1944. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, W.; Chen, T.; Su, Y.; Han, X.; Yao, Y. Sublethal and transgenerational effects of Nitenpyram on Acyrthosiphon gossypii and its impacts on symbiotic bacteria. Crop Prot. 2025, 191, 107162. [Google Scholar] [CrossRef]
- Fan, C.; Zhou, T.; Zhao, L.; Zhang, K.; Li, D.; Elumalai, P.; Xi, L.; Wang, L.; Ji, J.; Cui, J.; et al. Parasitoid of Aphis gossypii, Binodoxys communis Gahan exhibits metabolic changes in symbiotic bacterial community upon exposure of insecticides. Emerging Contam. 2025, 11, 100395. [Google Scholar] [CrossRef]
- Fernández, M.D.M.; Meeus, I.; Billiet, A. Influence of microbiota in the susceptibility of parasitic wasps to abamectin insecticide: Deep sequencing, esterase and toxicity tests. Pest Manag. Sci. 2019, 75, 79–86. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Zhu, F.; Shen, Z.; Jiang, H.; Li, Z.; Liu, X.; Xu, H. Function of cytochrome p450s and gut microbiome in biopesticide adaptation of Grapholita molesta on different host diets. Int. J. Mol. Sci. 2023, 24, 15435. [Google Scholar] [CrossRef]
- Shemshadian, A.; Vatandoost, H.; Oshaghi, M.A.; Abai, M.R.; Djadid, N.D. Relationship between Wolbachia infection in Culex quinquefasciatus and its resistance to insecticide. Heliyon 2021, 7, e06749. [Google Scholar] [CrossRef]
- Zeng, T.; Fu, Q.; Luo, F.; Dai, J.; Fu, R.; Qi, Y.; Deng, X.; Lu, Y.; Xu, Y. Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-Cypermethrin in the oriental fruit fly. ISME J. 2024, 18, wrae058. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Guo, H. Variations in endosymbiont infection between buprofezin-resistant and susceptible strains of Laodelphax striatellus (Fallen). Curr. Microbiol. 2018, 75, 709. [Google Scholar] [CrossRef]
- Chen, G.; Li, Q.; Yang, X. Comparison of the co-occurrence patterns of the gut microbial community between bt-susceptible and bt-resistant strains of the rice stem borer, Chilo suppressalis. J. Pest. Sci. 2023, 96, 299–315. [Google Scholar] [CrossRef]
- Blanton, A.; Olds, M.; Martinez, A.; Putman, J.; Armstrong, D.; Ravenscraft, A. Enantiomer-specific malathion degradation by gut microbes of the colorado potato beetle. bioRxiv 2025, 3. [Google Scholar] [CrossRef]
- Francis, C.; Aneesh, E.M. Gut bacterium induced pesticide resistance in insects with special emphasis to mosquitoes. Int. J. Trop. Insect Sci. 2022, 42, 2051–2064. [Google Scholar] [CrossRef]
- He, L.; Liu, B.; Tian, J.; Lu, F.; Li, X.; Tian, Y. Culturable epiphytic bacteria isolated from Teleogryllus occipitalus crickets metabolize insecticides. Arch. Insect Biochem. Physiol. 2018, 99, e21501. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Das, S.B.; Rath, P.C.; Adak, T.; Parameswaran, C.; Jambhulkar, N.N.; Govindharaj, G.P.P.; Gadratagi, B.G.; Patil, N.B.; Mohapatra, S.D.; et al. Comparative assessment of the gut bacterial diversity associated with field population of three rice stem borers and their in vitro insecticide degradation ability. J. Asia-Pac. Entomol. 2024, 27, 102229. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Lu, Y. Biodegradation of insecticides by gut bacteria isolated from stored grain beetles and its implication in host insecticide resistance. J. Stored Prod. Res. 2022, 96, 101943. [Google Scholar] [CrossRef]
- Xia, X.J.; Wu, W.; Chen, J.P.; Shan, H.W. The gut bacterium Serratia marcescens mediates detoxification of organophosphate pesticide in Riptortus pedestris by microbial degradation. J. Appl. Entomol. 2023, 147, 406–415. [Google Scholar] [CrossRef]
- Özdal, Ö.G.; Algur, Ö.F. Isolation and identification of the pyrethroid insecticide deltamethrin degrading bacteria from insects. Avrupa Bilim Teknol. Derg. 2020, 18, 905–910. [Google Scholar] [CrossRef]
- Li, X.; Fang, T.; Gao, T.; Gui, H.; Chen, Y.; Zhou, L.; Zhang, Y.; Yang, Y.; Xu, L.; Long, Y. Widespread presence of gut bacterium Glutamicibacter ectropisis sp. nov. confers enhanced resistance to the pesticide bifenthrin in tea pests. Sci. Total Environ. 2024, 955, 176784. [Google Scholar] [CrossRef]
- Lv, N.N.; Li, R.; Cheng, S.H.; Zhang, L.; Liang, P.; Gao, X.W. The gut symbiont Sphingomonas mediates imidacloprid resistance in the important agricultural insect pest Aphis gossypii Glover. BMC Biol. 2023, 21, 86. [Google Scholar] [CrossRef]
- Malook, S.; Arora, A.K.; Wong, A.C.N. The role of microbiomes in shaping insecticide resistance: Current insights and emerging paradigms. Curr. Opin. Insect Sci. 2025, 69, 101346. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wang, W.F.; Lu, Y.J. Symbiotic microbiota and insecticide resistance in insects. Chin. J. Appl. Entomol. 2021, 58, 265–276. [Google Scholar]
- Jing, T.Z.; Qi, F.H.; Wang, Z.Y. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome 2020, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.T.; Gong, X.; Liu, H.H.; Wu, B.X.; Peng, C.W.; Hong, X.Y.; Bing, X.L. The symbiont Wolbachia alleviates pesticide susceptibility in the two-spotted spider mite Tetranychus urticae through enhanced host detoxification pathways. Insect Sci. 2024, 31, 1822–1837. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, Y.; Sun, W.; Li, Q.; Huang, X.; Zhi, D.; Zi, H.; Ji, R.; Long, Y.; Gong, C.; et al. The symbiont Wolbachia increases resistance to bifenthrin in Ectropis grisescens by regulating the host detoxification function. Ecotoxicol. Environ. Saf. 2025, 289, 117666. [Google Scholar] [CrossRef] [PubMed]
- Indiragandhi, P.; Anandham, R.; Madhaiyan, M.; Poonguzhali, S.; Kim, G.; Saravanan, V. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J. Appl. Microbiol. 2007, 103, 2664–2675. [Google Scholar]
- Peterson, B.F. Microbiome toxicology—Bacterial activation and detoxification of insecticidal compounds. Curr. Opin. Insect Sci. 2024, 63, 101192. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, F.; Zhang, J. Gut microbiota accelerate the insecticidal activity of plastid-expressed Bacillus thuringiensis cry3bb to a leaf beetle, Plagiodera versicolora. Microbiol. Spectr. 2023, 11, e05049-22. [Google Scholar] [CrossRef]
- Paddock, K.J.; Pereira, A.E.; Finke, D.L.; Ericsson, A.C.; Hibbard, B.E.; Shelby, K.S. Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Mol. Ecol. 2021, 30, 5438–5453. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; De Mandal, S.; Shakeel, M.; Hua, Y.; Shoukat, R.F.; Fu, D.; Jin, F. Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environ. Pollut. 2021, 271, 116271. [Google Scholar] [CrossRef]
- Wolfe, Z.M.; Scharf, M.E. Microbe-mediated activation of indoxacarb in German cockroach (Blattella germanica L.). Pestic. Biochem. Physiol. 2022, 188, 105234. [Google Scholar] [CrossRef]
Pesticide | Target Agrochemical | Symbiont | Insect Species | Description | References |
---|---|---|---|---|---|
Organophosphate | chlorpyrifos methyl | Serratia | Acyrthosiphon pisum | The host was more sensitive to the tested insecticides after Serratia infection, but there is a fitness cost. | [64] |
chlorpyrifos | Stenotrophomonas | Bombyx mori | Increased insecticide resistance to chlorpyrifos by providing essential amino acids to increase host fitness and circumvent the deleterious effects of these toxic chemicals. | [65] | |
fenitrothion | Burkholderia | Cletus punctiger | Bacteria can directly degrade fenitrothion into non-toxic substances. | [66] | |
trichlorphon | Citrobacter sp. | Bactrocera dorsalis | Increased insecticide resistance of hosts by degrading trichlorphon into chloral hydrate and promoting expression of hydrolase-related genes | [67] | |
malathion, pirimiphos-methyl | Bacillus cereus and Achromobacter xylosoxidans | Tribolium castaneum | B. cereus and A. xylosoxidans can decompose and utilize the test insecticide as well as improve the survival rate and metabolic detoxification enzyme activity. | [68] | |
Organochloride | α-endosulfan | Acinetobacter schindler | Poecilimon tauricola | Degradation rate of A. schindler to α-endosulfan was 67.31%. | [69] |
α-endosulfan | Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, and Acinetobacter lwoffii G5 | Blatta orientalis | The degradation of α-endosulfan by P. aeruginosa G1, S. maltophilia G2, and A. lwoffii G5 was 88.5%, 85.5%, and 80.2%, respectively. | [70] | |
Neonicotinoid | imidacloprid | Serratia | Acyrthosiphon pisum | The host was more sensitive to the tested insecticides after Serratia infection, but there is a fitness cost. | [64] |
clothianidin | Enterobacter sp. and Pantoea sp. | Apis mellifera | Direct degradation metabolism. | [71] | |
imidacloprid | Arsenophonus | Nilaparvata lugens | Reduced insecticide resistance to imidacloprid by regulating expression of P450 and UGT gene. | [72] | |
imidacloprid and acetamiprid | Hamiltonella defensa | Sitobion miscanthi | The host was less sensitive to the tested insecticides after H. defensa infection, and insects infected with H. defensa strains had higher survival rate. | [73] | |
nitenpyram | Buchnera and Sphingomonas | Acyrthosiphon gossypii | The richness of Buchnera and Sphingomonas changed notably after nitenpyram exposure. | [74] | |
sulfoxaflor and flupyradifurone | Actinobacteriota, Bacteroidota, and Firmicutes | Binodoxys communis | The richness of Actinobacteriota, Bacteroidota, and Firmicutes changed notably after insecticide exposure. | [75] | |
Antibiotic | abamectin | Arthrobacter | Eretmocerus mundus | Arthrobacter contained esterases involved in abamectin-degrading metabolism. | [76] |
emamectin benzoate | Pantoea | Grapholita molesta | The abundance of Pantoea promoted the resistance of host to emamectin benzoate. | [77] | |
Pyrethroid | bifenthrin | Wolbachia/Profftella | Diaphorina citri | Affects the host’s resistance to bifenthrin by regulating the expression of DcitCCE15. | [57] |
deltamethrin | Wolbachia | Culex quinquefasciatus | Wolbachia could decrease host resistance to insecticide. | [78] | |
β-cypermethrin | Enterococcus casseliflavus/ Lactococcus lactis | Bactrocera dorsalis | Increase the host’s resistance to β-cypermethrin by increasing the enzymatic activities of GST and CYP450s. | [79] | |
deltamethrin | Pantoea spp., Flavobacterium spp., and Aeromonas spp. | Aedes albopictus | Pantoea spp., Flavobacterium spp., and Aeromonas spp. were significantly more abundant in resistant mosquitoes. | [52] | |
α-cypermethrin | Acinetobacter schindler | Poecilimon tauricola | Degradation rate of A. schindler to α-cypermethrin is 68.4%. | [69] | |
deltamethrin | Bacillus cereus and Achromobacter xylosoxians | Tribolium castaneum | B. cereus and A. xylosoxidans can decompose and utilize the test insecticide as well as improve the survival rate and metabolic detoxification enzyme activity. | [68] | |
Diamide | chlorantraniliprole | Enterococcus casseliflavus | Spodoptera frugiperda | Increases the host’s insecticide resistance to chlorantraniliprole by breaking amide bonds and dehalogenating insecticides. | [60] |
cyantraniliprole | Hamiltonella defensa | Sitobion miscanthi | The host was less sensitive to the tested insecticides after H. defensa infection, and insects infected with H. defensa strains had a higher survival rate. | [73] | |
Inset growth regulator | buprofezin | Wolbachia/Serratia | Laodelphax striatellus | Wolbachia exposure reduced pesticide sensitivity and detoxification enzyme activity; Serratia had higher abundance in resistant strain. | [80] |
Carbamate | methomyl | Serratia | Acyrthosiphon pisum | The host was more sensitive to the tested insecticides after Serratia infection, but it has a fitness cost. | [64] |
Microbial | B. thuringiensis (Bt) | Enterococcus | Chilo suppressalis | Enterococcus had higher abundance in Bt-susceptible strain. | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Q.; Sun, H.; Liang, P. The Influence of Microorganism on Insect-Related Pesticide Resistance. Agriculture 2025, 15, 1519. https://doi.org/10.3390/agriculture15141519
Fan Q, Sun H, Liang P. The Influence of Microorganism on Insect-Related Pesticide Resistance. Agriculture. 2025; 15(14):1519. https://doi.org/10.3390/agriculture15141519
Chicago/Turabian StyleFan, Qiqi, Hong Sun, and Pei Liang. 2025. "The Influence of Microorganism on Insect-Related Pesticide Resistance" Agriculture 15, no. 14: 1519. https://doi.org/10.3390/agriculture15141519
APA StyleFan, Q., Sun, H., & Liang, P. (2025). The Influence of Microorganism on Insect-Related Pesticide Resistance. Agriculture, 15(14), 1519. https://doi.org/10.3390/agriculture15141519