Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = isotypism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 419 KiB  
Article
Serum Immunoglobulin Changes in Multiple Myeloma Patients Treated with CAR T-Cell Therapy
by Alexa Burger, Ulrike Bacher, Michele Hoffmann, Katja Seipel, Christof Schild, Inna Shaforostova and Thomas Pabst
Curr. Issues Mol. Biol. 2025, 47(8), 640; https://doi.org/10.3390/cimb47080640 - 9 Aug 2025
Viewed by 302
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for relapsed or refractory multiple myeloma (RRMM), with high response rates of 80–95%. Serum immunoglobulin changes have been observed throughout conventional multiple myeloma treatment, including after immunomodulatory drugs, proteasome inhibitors, and [...] Read more.
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for relapsed or refractory multiple myeloma (RRMM), with high response rates of 80–95%. Serum immunoglobulin changes have been observed throughout conventional multiple myeloma treatment, including after immunomodulatory drugs, proteasome inhibitors, and autologous stem cell transplantation. However, the clinical significance of new abnormal protein bands (APBs) following CAR T-cell therapy is largely unexplored. We retrospectively analyzed consecutive multiple myeloma (MM) patients who received CAR T-cell therapy at the University Hospital Bern between May 2021 and February 2024. Serum paraprotein (M-protein) patterns were assessed using immuno-fixation electrophoresis (IFE) before and after CAR T-cell treatment. Patients were grouped based on serum immunoglobulin changes. Among 46 patients, 9 (19.6%) developed new APBs following CAR T-cell therapy. No significant differences in overall survival (OS) or progression-free survival (PFS) were observed between patients with and without APBs. Immunoglobulin changes occurred in both relapsed and non-relapsed patients, suggesting that the appearance of new APBs does not indicate disease progression. This observation aligns with previous reports of paraprotein changes following conventional MM therapies. This report suggests that new APBs following CAR T-cell therapy are a relatively common finding but do not correlate with inferior clinical outcomes. Our results highlight the need for larger, multi-center studies to further investigate this phenomenon in MM patients undergoing CAR T-cell therapy. Full article
(This article belongs to the Special Issue Multiple Myeloma: From Molecular Mechanism to Diagnosis and Therapy)
Show Figures

Figure 1

28 pages, 3873 KiB  
Article
Homologous and Heterologous Vaccination Regimens with mRNA and rVSV Platforms Induce Potent Immune Responses Against SFTSV Glycoprotein
by Tomaz B. Manzoni, Jonna B. Westover, Kendall A. Lundgreen, Philip D. Hicks, Raegan J. Petch, Jordan T. Ort, Drew Weissman, Steven H. Y. Fan, Scott E. Hensley, Norbert Pardi, Brian B. Gowen and Paul Bates
Viruses 2025, 17(8), 1095; https://doi.org/10.3390/v17081095 - 8 Aug 2025
Viewed by 425
Abstract
Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic bunyavirus with a high case-fatality ratio for which there is no approved vaccine. Studies have assessed different vaccine technologies. However, few studies have yet assessed the immunogenicity of heterologous prime-boost regimens. [...] Read more.
Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic bunyavirus with a high case-fatality ratio for which there is no approved vaccine. Studies have assessed different vaccine technologies. However, few studies have yet assessed the immunogenicity of heterologous prime-boost regimens. Methods: Here, we compare a lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA-based vaccine encoding the SFTSV glycoproteins, Gn and Gc, to our recently described recombinant VSV SFTSV (rVSV-SFTSV) vaccine in single dose, homologous, and heterologous prime-boost regimens in mice. Results: We show that all regimens protect from pathogenic SFTSV challenge and elicit strong long-lasting antibody responses. Furthermore, strong cellular immunity is elicited by mRNA-LNP immunizations and by heterologous immunization with an rVSV-SFTSV prime and mRNA-LNP boost. Cellular responses robustly polarized towards a type 1 response, characterized by high levels of IFNγ, TNFα, and IL-2. Immunization with mRNA led to a mixed type 1/type 2 immune response, as determined by antibody isotypes IgG1 and IgG2c. We found that homologous immunization leads to stronger antibody responses while heterologous immunization drives a slightly stronger cellular response. Conclusions: Taken together, the vaccine platforms described here represent strong vaccine candidates for further development. Full article
(This article belongs to the Special Issue Severe Fever with Thrombocytopenia Syndrome Virus 2025)
Show Figures

Figure 1

14 pages, 1605 KiB  
Article
Supramolecular Switching by Substituent Tuning: A Crystal Engineering Study of 2-Amino- and 2,3-Diamino-5-Halogenopyridines
by Irina S. Konovalova and Guido J. Reiss
Crystals 2025, 15(8), 700; https://doi.org/10.3390/cryst15080700 - 31 Jul 2025
Viewed by 362
Abstract
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction [...] Read more.
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction energies between molecules was employed to estimate the driving forces of crystal formation. As a result, regularities in crystal structure organization were identified. For compounds 1 and 2, a dimeric building unit is formed by two N–H…Npyr hydrogen bonds. These dimers are further connected to neighboring units by C–H…π, C–H…N, N…X (X = Cl, Br), and non-specific interactions. The aforementioned intermolecular interactions give rise to layered structures that are similar but not isotypical. No significant contributions from π–π or N–H…N(H2) interactions are observed in 1 and 2. The structures of 3 and 4 are isotypical and crystallize in the non-centrosymmetric space group P212121. The most important intermolecular interactions are N–H…Npyr, N–H…N(H2), and stacking interactions. These interactions lead to identical columnar-layered structures in both 3 and 4. No significant contributions from halogen bonds of the type N…X (X = Cl, Br) are found in 3 and 4. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals (2nd Edition))
Show Figures

Figure 1

19 pages, 2696 KiB  
Article
Cell Type-Specific Effects of Fusarium Mycotoxins on Primary Neurons and Astroglial Cells
by Viktória Szentgyörgyi, Brigitta Tagscherer-Micska, Anikó Rátkai, Katalin Schlett, Norbert Bencsik and Krisztián Tárnok
Toxins 2025, 17(8), 368; https://doi.org/10.3390/toxins17080368 - 25 Jul 2025
Viewed by 391
Abstract
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain [...] Read more.
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain barrier in many species, their effect on neuronal function remains unclear. We investigated the cell viability effects of these toxins on specified neural cell types, including mouse primary neuronal, astroglial, and mixed-cell cultures 24 or 48 h after mycotoxin administration. DON decreased cell viability in a dose-dependent manner, independent of the culture type. Fumonisin B1 was toxic in pure neuronal cultures only at high doses, but toxicity was attenuated in mixed and pure astroglial cultures. ZEA had significant effects on all culture types in 10 nM by increasing cell viability and network activity, as revealed by multi-electrode array measurements. Since ZEA is a mycoestrogen, we analyzed the effects of ZEA on the expression of estrogen receptor isotypes ERα and ERβ and the mitochondrial voltage-dependent anion channel via qRT-PCR. In neuronal and mixed cultures, ZEA administration decreased ERα expression, while in astroglial cultures, it induced the opposite effect. Thus, our results emphasize that Fusarium mycotoxins act in a cell-specific manner. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

25 pages, 7475 KiB  
Article
Human Dialyzable Leukocyte Extract Enhances Albendazole Efficacy and Promotes Th1/Th2-Biased Lymphocyte and Antibody Responses in Peritoneal Cavity of Murine Model of Mesocestoides vogae Infection
by Gabriela Hrčková, Dagmar Mudroňová, Katarína Reiterová, Serena Cavallero and Ilaria Bellini
Int. J. Mol. Sci. 2025, 26(14), 6994; https://doi.org/10.3390/ijms26146994 - 21 Jul 2025
Viewed by 356
Abstract
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, [...] Read more.
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, the site of larval proliferation and parasite-induced immunosuppression. Peritoneal lymphoid cells were analysed by flow cytometry and qPCR. Cells proliferative responses to ConA, LPS, and parasite excretory/secretory (E/S) antigens, cytokine production (ELISA), IgM and IgG isotypes in exudates and parasite antigen recognition (Western blot) were assessed. Efficacy was measured by larval burden and 14-3-3 gene expression in larvae. HLE combined with ABZ enhanced larval clearance and suppressed 14-3-3 gene expression in larvae. HLE and combination therapy increased CD3+ T cell frequencies, especially CD3+high, reduced regulatory CD3+/IL-10 Tregs and expression of Foxp3+. All treatments diminished CD19+/IL-10+ Bregs, correlating with lower CD9 and Atf3 mRNA levels compared to infected mice. Transcription factors T-bet expression was strongly upregulated, while GATA3 was moderately elevated. IFN-γ production and T/B cell proliferation were restored after HLE and combination therapy, partially, even in the presence of E/S antigens. IgM and total IgG levels against parasite antigens declined, while Th1-associated IgG2a increased in ABZ+HLE and HLE-treated groups. Albendazole failed to reverse the immunosuppressive Treg-type immunity but was more effective in reducing Breg populations and their functions. HLE enhanced ABZ efficacy by restoring Th1 responsiveness, reducing Treg/Breg activity, and modulating antibody profiles. It represents a promising immunomodulatory adjuvant in the treatment of the infections associated with Th2/Treg-driven immunosuppression. Full article
(This article belongs to the Special Issue Molecular Research on Parasitic Infection)
Show Figures

Figure 1

24 pages, 3435 KiB  
Article
Loss of IgA and IgM Compromises Broad Neutralization of Structurally Divergent SARS-CoV-2 Variants
by Yalcin Pisil, Tomoyuki Miura, Kiyoki Ito and Yoshihiro Watanabe
Antibodies 2025, 14(3), 59; https://doi.org/10.3390/antib14030059 - 12 Jul 2025
Viewed by 1065
Abstract
Objectives: The durability and breadth of neutralizing antibodies following SARS-CoV-2 mRNA vaccination remain incompletely understood. This study aimed to investigate how longitudinal changes in antibody isotype composition impact neutralization against structurally diverse SARS-CoV-2 variants. Methods: After screening a broader cohort of mRNA-vaccinated sera, [...] Read more.
Objectives: The durability and breadth of neutralizing antibodies following SARS-CoV-2 mRNA vaccination remain incompletely understood. This study aimed to investigate how longitudinal changes in antibody isotype composition impact neutralization against structurally diverse SARS-CoV-2 variants. Methods: After screening a broader cohort of mRNA-vaccinated sera, time-matched samples collected one month (1 mpv) and three months post-vaccination (3 mpv) were selected for detailed analysis. Neutralization assays against live virus variants, enzyme-linked immunosorbent assays (ELISA), and immunogold electron microscopy were performed to assess antibody titers, isotype levels, and virion morphology. Results: Neutralization titers declined markedly at 3 mpv, particularly against immune-evasive variants. Notably, the Lambda variant showed disproportionately high sensitivity to early-phase sera despite its divergence from the vaccine strain. Antibody isotyping showed that IgA and IgM decreased over time, while IgG levels were relatively more sustained. Electron microscopy revealed broader virion size heterogeneity in Lambda (50–200 nm) compared to Wuhan (80–120 nm), potentially enhancing multivalent antibody engagement. Consistently, ELISA under reduced spike density conditions showed that IgA and IgM retained stronger binding than IgG. Conclusions: These findings indicate that the decline of IgA and IgM compromises neutralization breadth, especially against structurally divergent variants such as Lambda. Sustaining dynamic multivalent isotype responses that adapt to diverse spike morphologies may be critical for broad cross-variant immunity. Full article
Show Figures

Graphical abstract

14 pages, 2006 KiB  
Perspective
Lupus Anticoagulant Testing for Diagnosis of Antiphospholipid Syndrome: A Perspective Informed by Local Practice
by Emmanuel J. Favaloro and Leonardo Pasalic
J. Clin. Med. 2025, 14(14), 4812; https://doi.org/10.3390/jcm14144812 - 8 Jul 2025
Viewed by 1174
Abstract
Assessment for the presence or absence of lupus anticoagulant (LA) represents a common investigation in hemostasis laboratories. In particular, LA represents one of the laboratory criteria for the diagnosis of definite antiphospholipid syndrome (APS). The other laboratory criteria are the solid phase assays [...] Read more.
Assessment for the presence or absence of lupus anticoagulant (LA) represents a common investigation in hemostasis laboratories. In particular, LA represents one of the laboratory criteria for the diagnosis of definite antiphospholipid syndrome (APS). The other laboratory criteria are the solid phase assays (anticardiolipin (aCL) and anti-β2Glycoprotein I (aβ2GPI) antibodies of IgG and IgM isotypes). Current International Society on Thrombosis and Haemostasis (ISTH) guidance recommends testing LA by at least two tests based on different principles, with the activated partial thromboplastin time (aPTT) and dilute Russell viper venom time (dRVVT) being preferred. Additional assays may be used in addition, or instead of these assays in particular situations. For example, aPTT and dRVVT assays are very sensitive to the presence of various anticoagulants, and this may lead to false-positive identification of LA. This is particularly problematic in the age of the DOACs (direct oral anticoagulants), which are now the leading anticoagulants in use worldwide. We review recent literature on LA testing as well as our local practice to provide an update on this common test procedure. Our experience should be useful for laboratories struggling with LA interpretation for diagnosis or exclusion of APS. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

13 pages, 2026 KiB  
Article
Pre-Existing Anti-Inflammatory Immune Conditions Influence Early Antibody Avidity and Isotype Profile Following Comirnaty® Vaccination in Mice
by Mariangeles Castillo, María C. Miraglia, Florencia C. Mansilla, Cecilia P. Randazzo, Leticia V. Bentancor, Teresa Freire and Alejandra V. Capozzo
Vaccines 2025, 13(7), 677; https://doi.org/10.3390/vaccines13070677 - 24 Jun 2025
Viewed by 610
Abstract
Background/Objectives: Vaccine immunogenicity is often suboptimal in vulnerable populations such as the elderly, infants, and individuals in low- and middle-income countries. One contributing factor may be pre-existing immunomodulatory conditions, including helminth infections. This study investigates the impact of Fasciola hepatica (F. hepatica [...] Read more.
Background/Objectives: Vaccine immunogenicity is often suboptimal in vulnerable populations such as the elderly, infants, and individuals in low- and middle-income countries. One contributing factor may be pre-existing immunomodulatory conditions, including helminth infections. This study investigates the impact of Fasciola hepatica (F. hepatica) derived molecules on the early humoral response to the COVID-19 mRNA vaccine Comirnaty® in a mouse model. Methods: BALB/c mice were pretreated with a F. hepatica protein extract (FH) or complete Freund’s adjuvant (CFA) prior to vaccination. Cytokine production and antibody responses were assessed at 0, 14, and 21 days post-vaccination (dpv) through serum analysis and ex vivo splenocyte stimulation with the SARS-CoV-2 receptor-binding domain (RBD) or LPS. Results: At 0 dpv, FH-treated mice showed increased serum IL-10, while CFA treatment induced IL-12. FH- but not CFA-treated splenocytes secreted IL-10 upon RBD or LPS stimulation. At 21 dpv, FH-treated mice lacked IFN-γ production but maintained IL-10 and showed elevated IL-4, consistent with a Th2-skewed profile. Although total anti-RBD IgG levels were similar between groups, FH-treated mice exhibited reduced IgG avidity and a higher IgG1/IgG2 ratio. CFA-treated mice showed delayed avidity maturation. Conclusions: Prior exposure to F. hepatica antigens can modulate the early immune response to Comirnaty®, affecting both cellular activation and antibody quality. This altered response may reflect a reduced early protective capacity of the vaccine, which might need to be considered when designing or evaluating vaccination strategies using mRNA vaccines in helminth-endemic regions. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

14 pages, 3348 KiB  
Article
In Silico Identification of Novel Compounds as Anthelmintics Against Haemonchus contortus Through Inhibiting β-Tubulin Isotype 1 and Glutathione S-Transferase
by Yaqian Jin, Sheikh Arslan Sehgal, Faizul Hassan and Guiqin Liu
Animals 2025, 15(13), 1846; https://doi.org/10.3390/ani15131846 - 23 Jun 2025
Cited by 2 | Viewed by 567
Abstract
Haemonchosis caused by the parasitic worm Haemonchus contortus is a major threat to cattle and other ruminants and imposes significant economic losses in the livestock industry. Different medications have been reported; however, these are not reliable now due to mass drug resistance. The [...] Read more.
Haemonchosis caused by the parasitic worm Haemonchus contortus is a major threat to cattle and other ruminants and imposes significant economic losses in the livestock industry. Different medications have been reported; however, these are not reliable now due to mass drug resistance. The current study investigates potential inhibitors of two H. contortus proteins: glutathione S-transferase (GST) and beta-tubulin isotype 1. GST helps the parasite to detoxify harmful substances, while beta-tubulin is essential for the cell division and structure. By using computational approaches, natural compounds were identified to inhibit the selected proteins. The 3D structures of GST and β-tubulin isotype 1 were prepared, and pharmacophore models were generated to search the Molport natural compound library. The lowest binding energy ranged from −6.7 to −10.4 Kcal/mol. Post-docking interactional analyses revealed that Glu45, Arg46, Cys126, Gln131, Lys252, Asn247, and Arg251 residues were the most common interacting residues in β-tubulin isotype 1. Similarly, in GST, Leu99, Asn100, Arg103, Lys107, Glu162, and Met163 were the most common interacting residues. In conclusion, extensive computational analyses including virtual screening, docking, and MD simulations revealed that the compound Molport-039-195-358 might have the ability to control haemonchosis by targeting GST and β-tubulin isotype 1. The in silico studies identified potent compounds by targeting GST and β-tubulin isotype 1 against Haemonchus contortus. The reported findings provide a foundation for the development of novel anthelmintic therapies. Full article
(This article belongs to the Special Issue Molecular Approaches to Control Intestinal Parasites in Animals)
Show Figures

Figure 1

11 pages, 1047 KiB  
Brief Report
Light Chain Isotype and Antibody-Specificity Impact on Virus Neutralization
by Lin Sun, Roman Palt, Georg Schütz, Esther Föderl-Höbenreich, Laura Brod, Antonia Hermle, Anja Lux, Herta Steinkellner and Somanath Kallolimath
Antibodies 2025, 14(2), 50; https://doi.org/10.3390/antib14020050 - 17 Jun 2025
Viewed by 505
Abstract
Therapeutic antibodies with lambda light chains (λ-Abs) are underrepresented compared to kappa light chains (κ-Abs). Here, we evaluated two SARS-CoV-2-specific monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding as κ and λ variants. mAbs expressed in glycoengineered Nicotiana benthamiana [...] Read more.
Therapeutic antibodies with lambda light chains (λ-Abs) are underrepresented compared to kappa light chains (κ-Abs). Here, we evaluated two SARS-CoV-2-specific monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding as κ and λ variants. mAbs expressed in glycoengineered Nicotiana benthamiana did not show differences in expression levels, glycosylation, and antigen binding, while κ-Abs exhibited slightly increased thermodynamic stability over λ-Abs. SARS-CoV-2 neutralization and IgG-FcγR immune complex studies revealed increased activities of H4 IgG1κ compared to H4 IgG1λ, with no differences observed between P5C3 variants. Our results indicate that constant light chain variability and Ab specificity contribute to Ab features, a fact that should be considered in engineering therapeutics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

22 pages, 1599 KiB  
Review
Advances in Food Allergy Immunotherapy: Current Strategies and Role of Antibodies Isotypes
by Yolanda Garcia-Carmona and Maria A. Curotto de Lafaille
Cells 2025, 14(12), 900; https://doi.org/10.3390/cells14120900 - 14 Jun 2025
Viewed by 1860
Abstract
Food allergies result from dysregulated immune responses to dietary antigens. IgE antibodies are key in triggering allergic reactions through binding to high-affinity receptors on mast cells and triggering mast cell activation when crosslinked by allergens. In contrast, IgG antibodies—particularly IgG4—are linked to immunomodulation [...] Read more.
Food allergies result from dysregulated immune responses to dietary antigens. IgE antibodies are key in triggering allergic reactions through binding to high-affinity receptors on mast cells and triggering mast cell activation when crosslinked by allergens. In contrast, IgG antibodies—particularly IgG4—are linked to immunomodulation and tolerance. Allergen-specific memory B cells, especially IgG1+ cells, undergo class-switching to IgE, and IgE plasma cells underlie allergy persistence. Although there is no cure, allergen-specific immunotherapy (AIT) aims to achieve sustained unresponsiveness by gradually increasing allergen exposure. Oral immunotherapy (OIT), a form of AIT, induces a shift from a TH2-skewed response to a more regulated immune profile, characterized by a switch from IgE to IgG4 and IgA isotypes. This review outlines current insights into AIT’s cellular and humoral mechanisms, with implications for improving long-term outcomes and developing predictive biomarkers. Full article
Show Figures

Graphical abstract

26 pages, 2617 KiB  
Article
Humoral and Cellular Immune Responses to SARS-CoV-2 in Participants with Head and Neck Cancer
by Luminita Mărutescu, Alexandru Enea, Nefeli-Maria Antoniadis, Marian Neculae, Diana Antonia Costea, Marcela Popa, Elena Dragu, Elena Codrici, Violeta Ristoiu, Bianca Galateanu, Ariana Hudita, Gratiela Gradisteanu Pircalabioru, Abdelali Filali-Mouhim, Serban Vifor Gabriel Bertesteanu, Veronica Lazăr, Carmen Chifiriuc, Raluca Grigore and Petronela Ancuta
Viruses 2025, 17(6), 848; https://doi.org/10.3390/v17060848 - 13 Jun 2025
Viewed by 1000
Abstract
Background: SARS-CoV-2 immunity is understudied in cancer patients. Here, we monitored natural/vaccine-induced SARS-CoV-2 immunity in patients with head and neck cancer (HNC) stratified as vaccinated (mRNA/adenovirus-based vaccines), convalescent, and hybrid immunity. Methods: Plasma/PBMC samples were collected from 49 patients with HNC and 14 [...] Read more.
Background: SARS-CoV-2 immunity is understudied in cancer patients. Here, we monitored natural/vaccine-induced SARS-CoV-2 immunity in patients with head and neck cancer (HNC) stratified as vaccinated (mRNA/adenovirus-based vaccines), convalescent, and hybrid immunity. Methods: Plasma/PBMC samples were collected from 49 patients with HNC and 14 non-oncologic controls recruited between August 2021 and March 2022. Longitudinal follow-up was performed on 25 HNC patients. Plasma antibodies (Abs) against Spike (S1/S2), receptor-binding domain (RBD), and nucleocapsid (NC) of IgG/IgA isotypes and 25 cytokines/chemokines were quantified using MILLIPLEX® technology. The frequency, phenotype, and isotype of circulating SARS-CoV-2-specific B-cells were studied by flow cytometry using RBD tetramers (Tet++). The proliferation of B-cells and CD4+ and CD8+ T-cells in response to Spike/NC peptides was monitored by a carboxyfluorescein succinimidyl ester (CFSE) assay. Results: Plasma SARS-CoV-2 S1/S2/RBD IgG/IgA Abs were detected in all HNC participants at enrollment median time since immunization (TSI) 117 days at levels similar to controls and were significantly higher in convalescent/hybrid versus vaccinated. NC IgG/IgA Abs were only detected after infection. The frequency of Tet++ B-cells, enriched in the CD27+ memory phenotype and IgG/IgA isotype, positively correlated with plasma levels of RBD IgG/IgA Abs and Spike-specific CD4+ T-cell proliferation, regardless of the immunization status and TSI. Spike/NC-specific B-cell proliferation reached the highest levels in convalescent HNC and was positively correlated with NC IgG Abs, but not with the frequency of Tet++ B-cells. Finally, Tet++ B-cell frequencies remained stable between the two subsequent visits (median TSI: 117 versus 341 days), indicating their ability to persist for a relatively long time. Conclusions: This study monitored SARS-CoV-2 humoral/cellular immunity in an HNC cohort relative to non-oncologic participants and demonstrates that SARS-CoV-2-specific B-cells persist beyond 11 months post-immunization. These findings have implications for the management of HNC in the context of SARS-CoV-2 infection and other viral infections. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

18 pages, 2527 KiB  
Article
Targeting Azole-Resistant Candida albicans: Tetrapeptide Tuftsin-Modified Liposomal Vaccine Induces Superior Immune Protection
by Masood A. Khan, Arif Khan, Abdullah M. Alnuqaydan, Aqel Albutti, Basmah F. Alharbi and Mohammad Owais
Vaccines 2025, 13(6), 630; https://doi.org/10.3390/vaccines13060630 - 11 Jun 2025
Viewed by 1026
Abstract
Background/objectives: Candida albicans is a major fungal pathogen that poses a serious threat to immunocompromised individuals. The increasing prevalence of fluconazole-resistant strains presents a critical clinical challenge, emphasizing the urgent need for novel therapeutic strategies. This study aimed to evaluate the prophylactic potential [...] Read more.
Background/objectives: Candida albicans is a major fungal pathogen that poses a serious threat to immunocompromised individuals. The increasing prevalence of fluconazole-resistant strains presents a critical clinical challenge, emphasizing the urgent need for novel therapeutic strategies. This study aimed to evaluate the prophylactic potential of a new liposomal vaccine formulation, Tuft-lip-WCAgs, comprising Tuftsin and C. albicans whole cell antigens, in providing immune protection against systemic candidiasis. Methods: The vaccine formulation was tested in a murine model of systemic C. albicans infection. The efficacy of the Tuft-lip-WCAg vaccine was evaluated through a survival analysis, fungal burden assessments, and immunological profiling. Immune responses were assessed by measuring serum antibody titers and isotypes, T cell proliferation, and cytokine secretion (IFN-γ and IL-4) from splenocytes. Results: FLZ treatment showed weak antifungal activity, high MIC values, and limited biofilm disruption and failed to ensure long-term survival, resulting in 100% mortality by day 40. In contrast, Tuft-lip-WCAg vaccination was well tolerated and conferred complete protection, with no detectable fungal burden by day 40. Vaccinated mice exhibited significantly elevated total antibody titers (166,667 ± 14,434), increased IgG2a levels, and enhanced T cell proliferation (stimulation index: 3.9 ± 0.84). Splenocytes from immunized mice secreted markedly higher levels of IFN-γ (634 ± 128 pg/mL) and IL-4 (582 ± 82 pg/mL), indicating a balanced Th1/Th2 immune response. Tuft-lip-WCAg vaccination also achieved 100% survival and the lowest kidney fungal burden (556 ± 197 CFUs/g). Conclusions: Tuft-lip-WCAg formulation is a safe, immunogenic, and highly effective vaccine candidate that offers complete protection against drug-resistant C. albicans in a murine model. These findings support its promise as a novel immunoprophylactic strategy, particularly for immunocompromised populations at high risk of invasive candidiasis. Full article
(This article belongs to the Special Issue Peptide-Based Vaccines)
Show Figures

Figure 1

19 pages, 1642 KiB  
Article
Gut Microbiota in a Viral Model of Multiple Sclerosis: Modulation and Pitfalls by Oral Antibiotic Treatment
by Ijaz Ahmad, Seiichi Omura, Sundar Khadka, Fumitaka Sato, Ah-Mee Park, Sandesh Rimal and Ikuo Tsunoda
Cells 2025, 14(12), 871; https://doi.org/10.3390/cells14120871 - 9 Jun 2025
Viewed by 829
Abstract
Viral infections have been associated with multiple sclerosis (MS), an immune-mediated disease in the central nervous system (CNS). Since Theiler’s murine encephalomyelitis virus (TMEV) can induce MS-like demyelination, TMEV infection is the most widely used viral model for MS. Although the precise pathophysiology [...] Read more.
Viral infections have been associated with multiple sclerosis (MS), an immune-mediated disease in the central nervous system (CNS). Since Theiler’s murine encephalomyelitis virus (TMEV) can induce MS-like demyelination, TMEV infection is the most widely used viral model for MS. Although the precise pathophysiology is unknown, altered fecal bacterial populations were associated with distinct immune gene expressions in the CNS. We aimed to determine the role of gut microbiota in TMEV infection by administering an antibiotic cocktail in drinking water before (prophylactic administration) or after (therapeutic administration) TMEV infection. The antibiotic administration reduced total eubacteria, including the phyla Bacillota and Bacteroidota, but increased the phylum Pseudomonadata in feces. Prophylactic administration did not alter TMEV-induced inflammatory demyelination clinically or histologically, without changes in anti-viral IgG1/IgG2c levels or lymphoproliferative responses; therapeutic administration temporarily suppressed the neurological signs. Although antibiotic treatment had minimal effects on TMEV infection, adding metronidazole and ampicillin in drinking water substantially reduced water intake in the antibiotic group of mice, resulting in significant body weight loss. Since dehydration and stress could affect immune responses and gut microbiota, caution should be exercised when planning or evaluating the oral antibiotic cocktail treatment in experimental animals. Full article
Show Figures

Figure 1

25 pages, 1365 KiB  
Review
Regulators and Conductors of Immunity: Natural Immune System in Health and Autoimmunity
by Katalin Böröcz, Dávid Szinger, Diána Simon, Timea Berki and Péter Németh
Int. J. Mol. Sci. 2025, 26(11), 5413; https://doi.org/10.3390/ijms26115413 - 5 Jun 2025
Viewed by 1002
Abstract
Natural autoantibodies (nAAbs) recognize self-antigens and are an important component of the immune system, having evolved from invertebrates to vertebrates, and are viewed as stable byproducts of immune function and essential players in health and disease. Initially characterized by their conserved nature and [...] Read more.
Natural autoantibodies (nAAbs) recognize self-antigens and are an important component of the immune system, having evolved from invertebrates to vertebrates, and are viewed as stable byproducts of immune function and essential players in health and disease. Initially characterized by their conserved nature and multi-reactivity, primarily as IgM isotypes, nAAbs are now recognized for their adaptability in response to infections and vaccinations, bridging innate and adaptive immunity. The nAAbs and the cellular elements, such as γδ T, iNKT, and MAIT cells, of the natural immune system perform a primary defense network with moderate antigen-specificity. This comprehensive literature review was conducted to analyze the role of natural autoantibodies (nAAbs) in health and disease. The review focused on research published over the past 40 years, emphasizing studies related to infectious diseases, vaccinations, and autoimmune disorders. Recent studies suggest that nAAbs engage in complex interactions in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and type 1 diabetes. Their roles in immunological processes, such as maternal tolerance during pregnancy, further underscore their complexity. Emerging evidence indicates that nAAbs and the cellular elements of the natural immune system may contribute to both disease pathogenesis and protective mechanisms, highlighting their dual nature. Continued research on nAAbs is vital for improving our understanding of immune responses and developing therapeutic strategies for autoimmune disorders and infectious diseases. Full article
Show Figures

Figure 1

Back to TopTop