Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145)

Search Parameters:
Keywords = isothermal reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 220
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

16 pages, 5202 KiB  
Article
Active Sites in Low-Loaded Copper-Exchanged Mordenite: Spectroscopic and Stability Study for Methane Oxidation Using Mild Conditions
by Rodrigo Mojica, Marlene González-Montiel, Daniel Ramírez-Rosales, Paula M. Crespo-Barrera and Amado Enrique Navarro-Frómeta
Processes 2025, 13(6), 1795; https://doi.org/10.3390/pr13061795 - 5 Jun 2025
Viewed by 449
Abstract
Low-loaded copper-exchanged mordenite samples (3 wt.% of copper) were prepared by a solid-state milling method using controlled conditions. The milled samples were then submitted to a calcination process where trimeric copper active species were formed, according to XPS, EPR, IR, and UV–vis recorded [...] Read more.
Low-loaded copper-exchanged mordenite samples (3 wt.% of copper) were prepared by a solid-state milling method using controlled conditions. The milled samples were then submitted to a calcination process where trimeric copper active species were formed, according to XPS, EPR, IR, and UV–vis recorded spectra. To verify the interaction of the active site with methane at mild conditions, a test experimental design was developed in a batch reactor configuration using mild two-step conditions: (1) activation temperature at 400 °C in an air atmosphere, and (2) isothermal conversion process at 200 °C with 6 bar methane. The analyzed samples were active in methanol conversion in batch conditions, nonetheless less efficient than the usually reported copper mono μ-oxo sites using harder experimental conditions. The herein reported copper active sites are as follows: a trinuclear copper active cluster [Cu3(μ-O)3]2+ and a possible intermediate during methane contact detected as bis(μ-oxo) dicopper species were identified and studied on each reaction step. This study revealed that trinuclear copper active sites can be obtained through grinding. Nonetheless, they stabilize after a calcination stage in an air atmosphere. Their stability is then maintained during the whole cyclic experimental test, suggesting their potential use for multicyclic processes. Full article
Show Figures

Graphical abstract

21 pages, 9841 KiB  
Article
Influence of Different Precursors on Properties and Photocatalytic Activity of g-C3N4 Synthesized via Thermal Polymerization
by Debora Briševac, Ivana Gabelica, Floren Radovanović-Perić, Kristina Tolić Čop, Gordana Matijašić, Davor Ljubas and Lidija Ćurković
Materials 2025, 18(11), 2522; https://doi.org/10.3390/ma18112522 - 27 May 2025
Viewed by 503
Abstract
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized [...] Read more.
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized in a muffle furnace at three different temperatures: 450°, 500°, and 550 °C for 2 h, while the samples made of a mixture of melamine and cyanuric acid (with mass ratios of 1:1, 1:2, and 2:1) were synthesized at 550 °C for 2 h. All the samples were characterized in order to determine their chemical and physical properties, such as crystallite size and structure, and phase composition by the following techniques: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Nitrogen adsorption/desorption isotherms were used to investigate the Brunauer, Emmett, and Teller (BET) specific surface area and Barrett–Joyner–Halenda (BJH) pore size distribution. Band gap values were determined by diffuse reflectance spectroscopy (DRS). Furthermore, adsorption and photocatalytic degradation of the local anesthetic drug procaine were monitored under UV-A, visible, and simulated solar irradiation in a batch reactor. Kinetic parameters, as well as photocatalytic mechanisms using scavengers, were determined and analyzed. The results of the photocatalysis experiments were compared to the benchmark TiO2 Evonik Aeroxide P25. The results indicated that the g-C3N4 sample synthesized from urea at 500 °C for 2 h exhibited the highest degradation rate of procaine under visible light. Full article
Show Figures

Figure 1

21 pages, 18800 KiB  
Article
Research on Thermo-Mechanical Response of Solid-State Core Matrix in a Heat Pipe Cooled Reactor
by Xintong Peng, Cong Liu, Yangbin Deng, Jingyu Nie, Yingwei Wu and Guanghui Su
Energies 2025, 18(6), 1423; https://doi.org/10.3390/en18061423 - 13 Mar 2025
Viewed by 596
Abstract
Due to its advantages of simple structure and high inherent safety, the heat pipe cooled reactor (HPR) could be widely applied in deep-sea navigation, deep-space exploration and land-based power supply as a promising advanced special nuclear power equipment option. In HPRs, the space [...] Read more.
Due to its advantages of simple structure and high inherent safety, the heat pipe cooled reactor (HPR) could be widely applied in deep-sea navigation, deep-space exploration and land-based power supply as a promising advanced special nuclear power equipment option. In HPRs, the space between the components (fuel rods and heat pipes) is filled with solid matrix material, forming a continuous solid reactor core. Thermo-mechanical response of the solid core is a special issue for HPRs and has great impacts on reactor safety. Considering the irradiation and burnup effects, the thermal and mechanical modeling of an HPR was conducted with ABAQUS-2021 in this study. The thermo-mechanical response under long-term normal operation, accident transients and single heat pipe failed conditions was simulated and analyzed. The whole core presents relatively good isothermality due to the high thermal conductivity of the solid matrix. As for the mechanical performance, the maximum stress was about 300 MPa, and the maximum displacement of the matrix could be as high as 3.7 mm. It could lead to significant variation of the reactor physical parameters, which warrants further attention in reactor design and safety analysis. Reactivity insertion accidents or single heat pipe failure has obvious influence on the thermo-mechanical performance of the local matrix, but they did not cause any failure risks, because the HPR design eliminates the dramatic power flash-up and the solid-state core avoids the heat transfer crisis caused by the coolant phase transition. A quantitative evaluation of thermo-mechanical performance was completed by this research, which is of great value for reactor design and safety evaluation of HPRs. Full article
(This article belongs to the Special Issue Optimal Design and Analysis of Advanced Nuclear Reactors)
Show Figures

Figure 1

25 pages, 6133 KiB  
Article
Chemical Looping CH4 Reforming Through Isothermal Two-Step Redox Cycling of SrFeO3 Oxygen Carrier in a Tubular Solar Reactor
by Stéphane Abanades, Xinhe Wang and Srirat Chuayboon
Molecules 2025, 30(5), 1076; https://doi.org/10.3390/molecules30051076 - 26 Feb 2025
Viewed by 667
Abstract
The chemical looping reforming of methane using an SrFeO3 oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to [...] Read more.
The chemical looping reforming of methane using an SrFeO3 oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to producing syngas. The two-step isothermal process encompassed partial perovskite reduction with methane (partial oxidation of CH4) and exothermic oxidation of SrFeO3-δ with CO2 or H2O splitting under the same operating temperature. The oxygen carrier material was shaped in the form of a reticulated porous foam structure for enhancing heat and mass transfer, and it was cycled in a solar-heated tubular reactor under different operating parameters (temperature: 950–1050 °C, methane mole fraction: 5–30%, and type of oxidant gas: H2O vs. CO2). This study aimed to assess the fuel production capacity of the two-step process and to demonstrate the potential of using strontium ferrite perovskite during solar cycling for the first time. The maximum H2 and CO production rates during CH4-induced reduction were 70 and 25 mL/min at 1000 °C and 15% CH4 mole fraction. The increase in both the cycle temperature and the methane mole fraction promoted the reduction step, thereby enhancing syngas yields up to 569 mL/g during reduction at 1000 °C under 30% CH4 (778 mL/g including both cycle steps), and thus outperforming the performance of the benchmark ceria material. In contrast, the oxidation step was not significantly affected by the experimental conditions and the material’s redox performance was weakly dependent on the nature of the oxidizing gas. The syngas yield remained above 200 mL/g during the oxidation step either with H2O or CO2. Twelve successive redox cycles with stable patterns in the syngas production yields validated material stability. Combining concentrated solar energy and chemical looping reforming was shown to be a promising and sustainable pathway toward carbon-neutral solar fuels. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

29 pages, 4254 KiB  
Article
Activated Carbons Derived from Brewing Cereal Residues and Pineapple Peelings for Removal of Acid Orange 7 (AO7) Dye
by Samadou Sanni, Ibrahim Tchakala, Tomkouani Kodom, Bonito Aristide Karamoko, Limam Moctar Bawa and Yaovi Holade
Molecules 2025, 30(4), 881; https://doi.org/10.3390/molecules30040881 - 14 Feb 2025
Cited by 1 | Viewed by 752
Abstract
The tremendous increase in agro-industrial waste poses major environmental problems and highlights the need for innovative, sustainable solutions. One promising solution would be converting these organic wastes, such as unvalued pineapple peels (ANA) and brewer’s grains (ECB), into activated carbons to meet the [...] Read more.
The tremendous increase in agro-industrial waste poses major environmental problems and highlights the need for innovative, sustainable solutions. One promising solution would be converting these organic wastes, such as unvalued pineapple peels (ANA) and brewer’s grains (ECB), into activated carbons to meet the impending challenge of wastewater treatment. In particular, Acid Orange 7 (AO7) is one of the most widely used synthetic dyes, a significant portion of which ends up in water, posing environmental and health problems with limiting decentralized and cost-effective solutions. To address these two challenges, we investigated the best conditions for converting these organic wastes into alternative activated carbons (named CA-ANA and CA-ECB) for AO7 dye removal under representative adsorption conditions. Extensive characterization (SEM, EDX, XRD, BET) revealed an amorphous, mesoporous structure with specific surface areas of 1150–1630 m2 g−1, outperforming the majority of other biomass-derived activated carbons reported for AO7 removal. Adsorption followed pseudo-second-order kinetics and the Langmuir isotherm, with record AO7 removal efficiencies of 90–99% for AO7 concentrations of 25–35 mg L−1 in a batch reactor, the driving forces being electrostatic attraction, π–π interactions, and hydrogen bonding. These results undoubtedly highlight the potential of current waste-derived activated carbons as sustainable solutions for efficient wastewater treatment. Full article
(This article belongs to the Special Issue Recent Research Progress of Novel Ion Adsorbents)
Show Figures

Graphical abstract

17 pages, 3021 KiB  
Article
Effect of High Temperature on CO2 Gasification Kinetics of Sub-Bituminous Coal Fly Ash
by Tae-Jin Kang, Jin-Hee Lee, Da-Hye Lee, Hyo-Sik Kim and Suk-Hwan Kang
Sustainability 2025, 17(4), 1519; https://doi.org/10.3390/su17041519 - 12 Feb 2025
Viewed by 1119
Abstract
Gasification is an eco-friendly thermochemical conversion process that can use various raw materials to generate high value-added products. Coal fly ash residue from coal-based thermal power plants must be effectively managed and utilized. Therefore, this study investigates the effects of high temperatures (1100–1300 [...] Read more.
Gasification is an eco-friendly thermochemical conversion process that can use various raw materials to generate high value-added products. Coal fly ash residue from coal-based thermal power plants must be effectively managed and utilized. Therefore, this study investigates the effects of high temperatures (1100–1300 °C) on the gasification kinetics of two types of coal fly ash (KPU and LG) under isothermal CO2 balance using a thermo-balance reactor. Three models were applied to study the reactivity of the coal fly ashes: the shrinking core model (SCM), the volume reaction model (VRM), and the random pore model (RPM). The results showed that among the three models, the SCM-based simulation was the most similar to the experimental data. We determined that low activation energy and a high pre-exponential factor achieve high gasification reactivity. With the SCM, the activation energy values for the CO2 gasification of the KPU and LG coal fly ashes were 52.7 and 59.6 kJ/mol, respectively, and their pre-exponential factors were 1.90 × 102 and 6.51 × 102, respectively. Moreover, the high reactivity of the two fly ashes was attributed to the high reaction temperature and presence of moisture and volatile matter. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

22 pages, 3513 KiB  
Article
Isothermal Pyrolysis of Bamboo and Pinewood Biomass: Product Characterization and Comparative Study in a Fluidized Bed Reactor
by Manqoba Shezi and Sammy Lewis Kiambi
Bioengineering 2025, 12(2), 99; https://doi.org/10.3390/bioengineering12020099 - 22 Jan 2025
Cited by 2 | Viewed by 1506
Abstract
Fast pyrolysis of biomass is crucial for sustainable biofuel production, necessitating thorough characterization of feedstocks to optimize thermal conversion technologies. This study investigated the isothermal pyrolysis of bamboo and pinewood biomass in a sand-fluidized bed reactor, aiming to assess biomass suitability for commercial [...] Read more.
Fast pyrolysis of biomass is crucial for sustainable biofuel production, necessitating thorough characterization of feedstocks to optimize thermal conversion technologies. This study investigated the isothermal pyrolysis of bamboo and pinewood biomass in a sand-fluidized bed reactor, aiming to assess biomass suitability for commercial bio-oil production. The pyrolysis products and biomass species were characterized through proximate and ultimate analyses, along with GCMS, FTIR, SEM/EDX, and structural analysis to assess their chemical and physical properties. Results indicated that pine bio-oil possesses superior energy density, with a higher calorific value (20.38 MJ/kg) compared to bamboo (18.70 MJ/kg). Pine biomass yielded greater organic phase bio-oil (BOP) at 13 wt%, while bamboo produced 9 wt%. Energy yields were also notable, with pine exhibiting an energy yield of 15% for bio-oil organic phase (EBOP), compared to 11% for bamboo. The fibrous nature of bamboo biomass resulted in less-reacted biomass at constant reaction time due to flow resistance during pyrolysis. Pine bio-oil organic phase (P-BOP) demonstrated a higher heating value (23.90 MJ/kg) than bamboo (B-BOP). The findings suggest that while both biomass types are viable renewable energy sources, pine biomass is more favorable for commercialization due to its superior energy properties and efficiency in pyrolysis. Full article
Show Figures

Graphical abstract

17 pages, 3787 KiB  
Article
The Influence of Heat Treatment on the Photoactivity of Amine-Modified Titanium Dioxide in the Reduction of Carbon Dioxide
by Iwona Pełech, Piotr Staciwa, Daniel Sibera, Konrad Sebastian Sobczuk, Wiktoria Majewska, Ewelina Kusiak-Nejman, Antoni W. Morawski, Kaiying Wang and Urszula Narkiewicz
Molecules 2024, 29(18), 4348; https://doi.org/10.3390/molecules29184348 - 13 Sep 2024
Viewed by 1079
Abstract
Modification of titanium dioxide using ethylenediamine (EDA), diethylamine (DEA), and triethylamine (TEA) has been studied. As the reference material, titanium dioxide prepared by the sol–gel method using titanium(IV) isopropoxide as a precursor was applied. The preparation procedure involved heat treatment in the microwave [...] Read more.
Modification of titanium dioxide using ethylenediamine (EDA), diethylamine (DEA), and triethylamine (TEA) has been studied. As the reference material, titanium dioxide prepared by the sol–gel method using titanium(IV) isopropoxide as a precursor was applied. The preparation procedure involved heat treatment in the microwave reactor or in the high-temperature furnace. The obtained samples have been characterized in detail. The phase composition was determined through the X-ray diffraction method, and the average crystallite size was calculated based on it. Values for specific surface areas and the total pore volumes were calculated based on the isotherms obtained through the low-temperature nitrogen adsorption method. The bang gap energy was estimated based on Tauc’s plots. The influence of the type and content of amine, as well as heat treatment on the photocatalytic activity of modified titanium dioxide in the photocatalytic reduction of carbon dioxide, was determined and discussed. It was clear that, regardless of the amount and content of amine introduced, the higher photoactivity characterized the samples prepared in the microwave reactor. The highest amounts of hydrogen, carbon monoxide, and methane have been achieved using triethylamine-modified titanium dioxide. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

19 pages, 4667 KiB  
Article
Building a Code-Based Model to Describe Syngas Production from Biomass
by Simon Brinkmann and Bernhard C. Seyfang
ChemEngineering 2024, 8(5), 94; https://doi.org/10.3390/chemengineering8050094 - 12 Sep 2024
Viewed by 2555
Abstract
Due to growing interest in providing and storing sufficient renewable energies, energy generation from biomass is becoming increasingly important. Biomass gasification represents the process of converting biomass into hydrogen-rich syngas. A one-dimensional kinetic reactor model was developed to simulate biomass gasification processes as [...] Read more.
Due to growing interest in providing and storing sufficient renewable energies, energy generation from biomass is becoming increasingly important. Biomass gasification represents the process of converting biomass into hydrogen-rich syngas. A one-dimensional kinetic reactor model was developed to simulate biomass gasification processes as an alternative to cost-intensive experiments. The presented model stands out as it contains the additional value of universal use with different biomass types and a more comprehensive application due to its integration into the DWSIM process simulator. The model consists of mass and energy balances based on the kinetics of selected reactions. Two different reactor schemes are simulated: (1) a fixed bed reactor and (2) a fluidized bed reactor. The operating mode can be set as isothermal or non-isothermal. The model was programmed using Python and integrated into DWSIM. Depending on incoming mass flows (biomass, oxygen, steam), biomass type, reactor type, reactor dimensions, temperature, and pressure, the model predicts the mass flows of char, tar, hydrogen, carbon monoxide, carbon dioxide, methane, and water. Comparison with experimental data from the literature validates the results gained from our model. Full article
(This article belongs to the Special Issue Process Intensification for Chemical Engineering and Processing)
Show Figures

Figure 1

18 pages, 2811 KiB  
Article
Are Rh Catalysts a Suitable Choice for Bio-Oil Reforming? The Case of a Commercial Rh Catalyst in the Combined H2O and CO2 Reforming of Bio-Oil
by José Valecillos, Leire Landa, Gorka Elordi, Aingeru Remiro, Javier Bilbao and Ana Guadalupe Gayubo
Catalysts 2024, 14(9), 571; https://doi.org/10.3390/catal14090571 - 29 Aug 2024
Cited by 2 | Viewed by 1114
Abstract
Bio-oil combined steam/dry reforming (CSDR) with H2O and CO2 as reactants is an attractive route for the joint valorization of CO2 and biomass towards the sustainable production of syngas (H2 + CO). The technological development of the process [...] Read more.
Bio-oil combined steam/dry reforming (CSDR) with H2O and CO2 as reactants is an attractive route for the joint valorization of CO2 and biomass towards the sustainable production of syngas (H2 + CO). The technological development of the process requires the use of an active and stable catalyst, but also special attention should be paid to its regeneration capacity due to the unavoidable and quite rapid catalyst deactivation in the reforming of bio-oil. In this work, a commercial Rh/ZDC (zirconium-doped ceria) catalyst was tested for reaction–regeneration cycles in the bio-oil CSDR in a fluidized bed reactor, which is beneficial for attaining an isothermal operation and, moreover, minimizes catalyst deactivation by coke deposition compared to a fixed-bed reactor. The fresh, spent, and regenerated catalysts were characterized using either N2 physisorption, H2-TPR, TPO, SEM, TEM, or XRD. The Rh/ZDC catalyst is initially highly active for the syngas production (yield of 77% and H2/CO ratio of 1.2) and for valorizing CO2 (conversion of 22%) at 700 °C, with space time of 0.125 gcatalyst h (goxygenates)−1 and CO2/H2O/C ratio of 0.6/0.5/1. The catalyst activity evolves in different periods that evidence a selective deactivation of the catalyst for the reforming reactions of the different compounds, with the CH4 reforming reactions (with both steam and CO2) being more rapidly affected by catalyst deactivation than the reforming of hydrocarbons or oxygenates. After regeneration, the catalyst’s textural properties are not completely restored and there is a change in the Rh–support interaction that irreversibly deactivates the catalyst for the CH4 reforming reactions (both SR and DR). As a result, the coke formed over the regenerated catalyst is different from that over the fresh catalyst, being an amorphous mass (of probably turbostractic nature) that encapsulates the catalyst and causes rapid deactivation. Full article
Show Figures

Graphical abstract

16 pages, 5846 KiB  
Article
Activated Iron-Porous Carbon Nanomaterials as Adsorbents for Methylene Blue and Congo Red
by Daniel Sibera, Iwona Pełech, Piotr Staciwa, Robert Pełech, Ewa Ekiert, Gulsen Yagmur Kayalar and Urszula Narkiewicz
Molecules 2024, 29(17), 4090; https://doi.org/10.3390/molecules29174090 - 29 Aug 2024
Cited by 2 | Viewed by 1261
Abstract
The adsorption properties of microporous carbon materials modified with iron citrate were investigated. The carbon materials were produced based on resorcinol-formaldehyde resin, treated in a microwave assisted solvothermal reactor, and next carbonized in the tube furnace at a temperature of 700 °C under [...] Read more.
The adsorption properties of microporous carbon materials modified with iron citrate were investigated. The carbon materials were produced based on resorcinol-formaldehyde resin, treated in a microwave assisted solvothermal reactor, and next carbonized in the tube furnace at a temperature of 700 °C under argon atmosphere. Iron citrate was applied as a modifier, added to the material precursor before the synthesis in the reactor, in the quantity enabling to obtain the nanocomposites with C:Fe mass ratio equal to 10:1. Some samples were additionally activated using potassium oxalate or potassium hydroxide. The phase composition of the produced nanocomposites was determined using the X-ray diffraction method. Scanning and transmission electron microscopy was applied to characterize the changes in samples’ morphology resulting from the activation process and/or the introduction of iron into the carbon matrix. The adsorption of nitrogen from gas phase and dyes (methylene blue and congo red) from water solution on the obtained materials was investigated. In the case of methylene blue, the adsorption equilibrium isotherms followed the Langmuir isotherm model. However, in the case of congo red, a linear dependency of adsorption and concentration in a broad equilibrium concentration range was found and well-described using the Henry equation. The most efficient adsorption of methylene blue was noticed for the sample activated with potassium hydroxide and modified with iron citrate, and a maximum adsorption capacity of 696 mg/g was achieved. The highest congo red adsorption was noticed for the non-activated sample modified with iron citrate, and the partition coefficient for this material equaled 171 dm3/g. Full article
Show Figures

Figure 1

13 pages, 2877 KiB  
Article
A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification
by Nan Wang, Xiaobin Dong, Yijie Zhou, Rui Zhu, Luyao Liu, Lulu Zhang and Xianbo Qiu
Sensors 2024, 24(15), 5028; https://doi.org/10.3390/s24155028 - 3 Aug 2024
Cited by 1 | Viewed by 2382
Abstract
A low-cost, handheld centrifugal microfluidic system for multiplexed visual detection based on recombinase polymerase amplification (RPA) was developed. A concise centrifugal microfluidic chip featuring four reaction units was developed to run multiplexed RPA amplification in parallel. Additionally, a significantly shrunk-size and cost-effective handheld [...] Read more.
A low-cost, handheld centrifugal microfluidic system for multiplexed visual detection based on recombinase polymerase amplification (RPA) was developed. A concise centrifugal microfluidic chip featuring four reaction units was developed to run multiplexed RPA amplification in parallel. Additionally, a significantly shrunk-size and cost-effective handheld companion device was developed, incorporating heating, optical, rotation, and sensing modules, to perform multiplexed amplification and visual detection. After one-time sample loading, the metered sample was equally distributed into four separate reactors with high-speed centrifugation. Non-contact heating was adopted for isothermal amplification. A tiny DC motor on top of the chip was used to drive steel beads inside reactors for active mixing. Another small DC motor, which was controlled by an elaborate locking strategy based on magnetic sensing, was adopted for centrifugation and positioning. Visual fluorescence detection was optimized from different sides, including material, surface properties, excitation light, and optical filters. With fluorescence intensity-based visual detection, the detection results could be directly observed through the eyes or with a smartphone. As a proof of concept, the handheld device could detect multiple targets, e.g., different genes of African swine fever virus (ASFV) with the comparable LOD (limit of detection) of 75 copies/test compared to the tube-based RPA. Full article
Show Figures

Figure 1

23 pages, 4546 KiB  
Article
Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study
by Anastasia Skourti, Stefania Giannoulia, Maria K. Daletou and Christos A. Aggelopoulos
Nanomaterials 2024, 14(15), 1298; https://doi.org/10.3390/nano14151298 - 1 Aug 2024
Cited by 3 | Viewed by 2073
Abstract
The oxidation of multi-walled carbon nanotubes (MWCNTs) using cold plasma was investigated for their subsequent use as adsorbents for the removal of dyes from aqueous solutions. The properties of MWCNTs after plasma modification and their adsorption capacities were compared with pristine and chemically [...] Read more.
The oxidation of multi-walled carbon nanotubes (MWCNTs) using cold plasma was investigated for their subsequent use as adsorbents for the removal of dyes from aqueous solutions. The properties of MWCNTs after plasma modification and their adsorption capacities were compared with pristine and chemically oxidized nanotubes. The modification process employed a reactor where plasma was generated through dielectric barrier discharges (DBD) powered by high-voltage nanosecond pulses. Various modification conditions were examined, such as processing time and pulse voltage amplitude. The degree of oxidation and the impact on the chemistry and structure of the nanotubes was investigated through various physicochemical and morphological characterization techniques (XPS, BET, TEM, etc.). Maximum oxidation (O/C = 0.09 from O/C = 0.02 for pristine MWCNTs) was achieved after 60 min of nanopulsed-DBD plasma treatment. Subsequently, the modified nanotubes were used as adsorbents for the removal of the dye methylene blue (MB) from water. The adsorption experiments examined the effects of contact time between the adsorbent and MB, as well as the initial dye concentration in water. The plasma-modified nanotubes exhibited high MB removal efficiency, with adsorption capacity proportional to the degree of oxidation. Notably, their adsorption capacity significantly increased compared to both pristine and chemically oxidized MWCNTs (~54% and ~9%, respectively). Finally, the kinetics and mechanism of the adsorption process were studied, with experimental data fitting well to the pseudo-second-order kinetic model and the Langmuir isotherm model. This study underscores the potential of plasma technology as a low-cost and environmentally friendly approach for material modification and water purification. Full article
Show Figures

Graphical abstract

14 pages, 3126 KiB  
Article
Comprehensive Experimental Study of Biomass Conversion Behavior: From Particle Phenomena to Reactor Scale
by João Silva, Lelis Fraga, Senhorinha Teixeira and José Teixeira
Energies 2024, 17(15), 3650; https://doi.org/10.3390/en17153650 - 24 Jul 2024
Cited by 1 | Viewed by 1085
Abstract
During biomass combustion in a grate-fired boiler, each particle undergoes a sequence of different reactions, and the phenomena differ from the conversion of a single, thermally thin, particle. Hence, this paper aims to deepen the understanding of biomass conversion processes and provides valuable [...] Read more.
During biomass combustion in a grate-fired boiler, each particle undergoes a sequence of different reactions, and the phenomena differ from the conversion of a single, thermally thin, particle. Hence, this paper aims to deepen the understanding of biomass conversion processes and provides valuable insights for advancing biomass-based energy systems. Firstly, the weight loss characteristics of the larger particles of eucalyptus, pine, acacia, and olive samples were investigated at different isothermal temperatures in a purpose-built reactor that simulates the devolatilization process in a controllable manner. As opposed to the thermogravimetric analysis using thermally thin particles, it was concluded that all fuels show that the combustion of large particles does not exhibit separate consecutive conversion stages, due to internal diffusion resistance. Furthermore, it was verified that the devolatilization rate depends mainly on the reactor temperature, and, consequently, the mass-loss profile is independent of the biomass type. In addition to these experiments, the composition of the gases over the devolatilization period was analyzed for the main fuel used in power plants, eucalyptus. Once again, a strong correlation to the reactor temperature was observed, with CO2 and CO always being the main devolatilization products. The temperature dependence of both compounds presented an increase from 8 to 13% between 600 and 800 °C for CO, while the CO2 yield only slightly increased from 11 to 12%. These observations were essential to identify the transport phenomena effect and the gaseous products released during the biomass combustion. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

Back to TopTop