Novel Nanostructured Materials and Their Applications in Wastewater Treatment

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Environmental Nanoscience and Nanotechnology".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 9529

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi’an 710021, China
Interests: nanomaterials; self-cleaning materials; catalysis; photothermal conversion
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent decades, the greatest challenge in wastewater treatment has been to reduce its negative economic and environmental implications. Nanostructured materials have many unique properties, such as a large surface area, structural anisotropy, tunable bandgap, and high carrier mobility. As a result of these properties, they have attracted increasing research interest for their application in electronics, environmental pollution prevention, and catalysis, as well as in energy storage and energy conversion. Overall, nanomaterials have the potential to meet the higher effluent quality requirements and reduce the energy consumption in wastewater treatment.

This Special Issue focuses on the properties of nanostructured materials and their associated novel devices for wastewater treatment. We welcome submissions of original research-based articles and reviews related to nanostructured materials.

Dr. Yong Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanostructured materials
  • photocatalysis
  • novel device
  • wastewater treatment
  • photothermal conversion
  • interface evaporator

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 4546 KiB  
Article
Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study
by Anastasia Skourti, Stefania Giannoulia, Maria K. Daletou and Christos A. Aggelopoulos
Nanomaterials 2024, 14(15), 1298; https://doi.org/10.3390/nano14151298 - 1 Aug 2024
Viewed by 751
Abstract
The oxidation of multi-walled carbon nanotubes (MWCNTs) using cold plasma was investigated for their subsequent use as adsorbents for the removal of dyes from aqueous solutions. The properties of MWCNTs after plasma modification and their adsorption capacities were compared with pristine and chemically [...] Read more.
The oxidation of multi-walled carbon nanotubes (MWCNTs) using cold plasma was investigated for their subsequent use as adsorbents for the removal of dyes from aqueous solutions. The properties of MWCNTs after plasma modification and their adsorption capacities were compared with pristine and chemically oxidized nanotubes. The modification process employed a reactor where plasma was generated through dielectric barrier discharges (DBD) powered by high-voltage nanosecond pulses. Various modification conditions were examined, such as processing time and pulse voltage amplitude. The degree of oxidation and the impact on the chemistry and structure of the nanotubes was investigated through various physicochemical and morphological characterization techniques (XPS, BET, TEM, etc.). Maximum oxidation (O/C = 0.09 from O/C = 0.02 for pristine MWCNTs) was achieved after 60 min of nanopulsed-DBD plasma treatment. Subsequently, the modified nanotubes were used as adsorbents for the removal of the dye methylene blue (MB) from water. The adsorption experiments examined the effects of contact time between the adsorbent and MB, as well as the initial dye concentration in water. The plasma-modified nanotubes exhibited high MB removal efficiency, with adsorption capacity proportional to the degree of oxidation. Notably, their adsorption capacity significantly increased compared to both pristine and chemically oxidized MWCNTs (~54% and ~9%, respectively). Finally, the kinetics and mechanism of the adsorption process were studied, with experimental data fitting well to the pseudo-second-order kinetic model and the Langmuir isotherm model. This study underscores the potential of plasma technology as a low-cost and environmentally friendly approach for material modification and water purification. Full article
Show Figures

Graphical abstract

21 pages, 5067 KiB  
Article
In-Situ Hydrothermal Fabrication of ZnO-Loaded GAC Nanocomposite for Efficient Rhodamine B Dye Removal via Synergistic Photocatalytic and Adsorptive Performance
by Kehinde Shola Obayomi, Sie Yon Lau, Zongli Xie, Stephen R. Gray and Jianhua Zhang
Nanomaterials 2024, 14(14), 1234; https://doi.org/10.3390/nano14141234 - 22 Jul 2024
Cited by 1 | Viewed by 849
Abstract
In this work, zinc oxide (ZnO)/granular activated carbon (GAC) composites at different ZnO concentrations (0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC) were prepared by an in-situ hydrothermal method and demonstrated synergistic photocatalytic degradation and adsorption of rhodamine B (RhB). The thermal stability, morphological structure, elemental composition, [...] Read more.
In this work, zinc oxide (ZnO)/granular activated carbon (GAC) composites at different ZnO concentrations (0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC) were prepared by an in-situ hydrothermal method and demonstrated synergistic photocatalytic degradation and adsorption of rhodamine B (RhB). The thermal stability, morphological structure, elemental composition, crystallographic structure, and textural properties of developed catalysts were characterized by thermal gravimetric analysis (TGA/DTG), scanning electron microscopy equipped with energy dispersive-x-ray (SEM-EDS), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. The successful loading of ZnO onto GAC was confirmed by SEM-EDS and XRD analysis. The BET surface areas of GAC, 0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC were 474 m2/g, 450 m2/g, 453 m2/g, and 421 m2/g, respectively. The decrease in GAC could be attributed to the successful loading of ZnO on the GAC surface. Notably, 0.5M-ZnO@GAC exhibited the best photocatalytic degradation efficiency of 82% and 97% under UV-A and UV-C light over 120 min, attributed to improved crystallinity and visible light absorption. The photocatalytic degradation parameters revealed that lowering the RhB concentration and raising the catalyst dosage and pH beyond the point of zero charge (PZC) would favor the RhB degradation. Photocatalytic reusability was demonstrated over five cycles. Scavenger tests revealed that the hydroxyl radicals (OH), superoxide radicals (O2−•), and photoinduced hole (h+) radicals play a major role during the RhB degradation process. Based on the TOC results, the RhB mineralization efficiency of 79.1% was achieved by 0.5M-ZnO@GAC. Additionally, GAC exhibited a strong adsorptive performance towards RhB, with adsorption capacity and the RhB removal of 487.1 mg/g and 99.5% achieved within 90 min of equilibrium time. The adsorption characteristics were best described by pseudo-second-order kinetics, suggesting chemical adsorption. This research offers a new strategy for the development of effective photocatalyst materials with potential for wider wastewater treatment applications. Full article
Show Figures

Graphical abstract

22 pages, 4341 KiB  
Article
Supramolecular Self-Assembled Nanostructures Derived from Amplified Structural Isomerism of Zn(II)−Sn(IV)−Zn(II) Porphyrin Triads and Their Visible Light Photocatalytic Degradation of Pollutants
by Nirmal Kumar Shee and Hee-Joon Kim
Nanomaterials 2024, 14(13), 1104; https://doi.org/10.3390/nano14131104 - 27 Jun 2024
Viewed by 724
Abstract
Two structural isomeric porphyrin-based triads (Zn(II)porphyrin−Sn(IV)porphyrin−Zn(II)porphyrin) denoted as T1 and T2 were prepared from the reaction of meso-[5-(4-hydroxyphenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato]zinc(II) (ZnL) with trans-dihydroxo-[5,10-bis(3-pyridyl)-15,20-bis(phenyl)porphyrinato]tin(IV) (SnP1) and trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP2), respectively. All the compounds were characterized using UV–vis spectroscopy, [...] Read more.
Two structural isomeric porphyrin-based triads (Zn(II)porphyrin−Sn(IV)porphyrin−Zn(II)porphyrin) denoted as T1 and T2 were prepared from the reaction of meso-[5-(4-hydroxyphenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato]zinc(II) (ZnL) with trans-dihydroxo-[5,10-bis(3-pyridyl)-15,20-bis(phenyl)porphyrinato]tin(IV) (SnP1) and trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP2), respectively. All the compounds were characterized using UV–vis spectroscopy, emission spectroscopy, ESI−MS, 1H NMR spectroscopy, and FE-SEM. Most importantly, the two structurally isomeric porphyrin-based triads supramolecularly self-assembled into completely different nanostructures. T1 exhibits a nanosphere morphology, whereas T2 exhibits a nanofiber morphology. The amplified geometric feature in the structural isomeric porphyrin-based triads dictates the physical and chemical properties of the two triads. Both compounds showed the morphology-dependent visible light catalytic photodegradation of rhodamine B dye (74–97% within 90 min) and tetracycline antibiotic (44–71% within 45 min) in water. In both cases, the photodegradation efficiency of T2 was higher than that of T1. The present investigation can significantly contribute to the remediation of wastewater by tuning the conformational changes in porphyrin-based photocatalysts. Full article
Show Figures

Figure 1

18 pages, 3872 KiB  
Article
Biopolymer Meets Nanoclay: Rational Fabrication of Superb Adsorption Beads from Green Precursors for Efficient Capture of Pb(II) and Dyes
by Jie Qi, Xue Wang, Huan Zhang, Xiangyu Liu, Wenbo Wang, Qingdong He and Fang Guo
Nanomaterials 2024, 14(9), 766; https://doi.org/10.3390/nano14090766 - 26 Apr 2024
Viewed by 1002
Abstract
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of “structure optimization design”, environment-friendly composite beads (named [...] Read more.
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of “structure optimization design”, environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater. Full article
Show Figures

Figure 1

15 pages, 6906 KiB  
Article
Novel Effective Photocatalytic Self-Cleaning Coatings: TiO2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying
by Chunyan He, Jialin He, Sainan Cui, Xiujuan Fan, Shuanjian Li, Yaqi Yang, Xi Tan, Xiaofeng Zhang, Jie Mao, Liuyan Zhang and Changguang Deng
Nanomaterials 2023, 13(24), 3123; https://doi.org/10.3390/nano13243123 - 12 Dec 2023
Cited by 1 | Viewed by 1280
Abstract
Photocatalytic coatings can degrade volatile organic compounds into non-toxic products, which has drawn the attention of scholars around the world. However, the pollution of dust on the coating adversely affects the photocatalytic efficiency and service life of the coating. Here, a series of [...] Read more.
Photocatalytic coatings can degrade volatile organic compounds into non-toxic products, which has drawn the attention of scholars around the world. However, the pollution of dust on the coating adversely affects the photocatalytic efficiency and service life of the coating. Here, a series of TiO2-polyfluoroalkoxy (PFA) coatings with different contents of PFA were fabricated by suspension plasma spraying technology. The results demonstrate that the hybrid coatings contain a large number of circular and ellipsoidal nanoparticles and a porous micron-nano structure due to the inclusion of PFA. According to the optimized thermal spraying process parameters, TiO2 nanoparticles were partially melted to retain most of the anatase phases, whereas PFA did not undergo significant carbonization. As compared to the TiO2 coating, the static contact angle of the composite coating doped with 25 wt.% PFA increased from 28.2° to 134.1°. In addition, PFA strongly adsorbs methylene blue, resulting in a greater involvement of methylene blue molecules in the catalyst, where the catalytic rate of hybrid coatings is up to 95%. The presented nanocomposite coatings possess excellent photocatalytic and self-cleaning properties and are expected to find wider practical applications in the field of photocatalysis. Full article
Show Figures

Figure 1

16 pages, 5329 KiB  
Article
Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water
by Qingdong He, Jie Qi, Xiangyu Liu, Huan Zhang, Yiwen Wang, Wenbo Wang and Fang Guo
Nanomaterials 2023, 13(19), 2627; https://doi.org/10.3390/nano13192627 - 23 Sep 2023
Cited by 1 | Viewed by 1130
Abstract
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay [...] Read more.
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through an associated calcination-hydrothermal activation process. It has been confirmed that most of the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further hydrothermal activation process may further improve the pore structure and increase surface active sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5% for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In addition, the composite adsorbent also shows high removal capacity for single-component and two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-derived composite adsorbent can be used as an inexpensive material for the decontamination of dyed wastewater. Full article
Show Figures

Figure 1

16 pages, 2611 KiB  
Article
Co-Carbonized Waste Polythene/Sugarcane Bagasse Nanocomposite for Aqueous Environmental Remediation Applications
by Moonis Ali Khan, Ayoub Abdullah Alqadami, Saikh Mohammad Wabaidur and Byong-Hun Jeon
Nanomaterials 2023, 13(7), 1193; https://doi.org/10.3390/nano13071193 - 27 Mar 2023
Cited by 8 | Viewed by 1314
Abstract
The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water [...] Read more.
The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water decolorization application. An SBPE composite material was developed and co-pyrolyzed under an inert atmosphere to develop the activated SBPEAC composite. Both SBPE and SBPEAC composites were characterized to analyze their morphological characteristics, specific surface area, chemical functional groups, and elemental composition. The adsorption efficacies of the composites were comparatively tested in the removal of malachite green (MG) from water. The SBPEAC composite had a specific surface area of 284.5 m2/g and a pore size of ~1.33 nm. Batch-scale experiments revealed that the SBPEAC composite performed better toward MG adsorption compared to the SBPE composite. The maximum MG uptakes at 318 K on SBPEAC and SBPE were 926.6 and 375.6 mg/g, respectively. The adsorption of MG on both composites was endothermic. The isotherm and kinetic modeling data for MG adsorption on SBPEAC was fitted to pseudo-second-order kinetic and Langmuir isotherm models, while Elovich kinetic and D-R isotherm models were better fitted for MG adsorption on SBPE. Mechanistically, the MG adsorption on both SBPE and SBPEAC composites involved electrostatic interaction, H-bonding, and π-π/n-π interactions. Full article
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 5565 KiB  
Review
Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications
by Xiaodong Zhou, Hongxin Zang, Yong Guan, Shuangjian Li and Mingming Liu
Nanomaterials 2023, 13(19), 2639; https://doi.org/10.3390/nano13192639 - 26 Sep 2023
Cited by 2 | Viewed by 1835
Abstract
Superhydrophobic flexible strain sensors, which combine superhydrophobic coatings with highly sensitive flexible sensors, significantly enhance sensor performance and expand applications in human motion monitoring. Superhydrophobic coatings provide water repellency, surface self-cleaning, anti-corrosion, and anti-fouling properties for the sensors. Additionally, they enhance equipment durability. [...] Read more.
Superhydrophobic flexible strain sensors, which combine superhydrophobic coatings with highly sensitive flexible sensors, significantly enhance sensor performance and expand applications in human motion monitoring. Superhydrophobic coatings provide water repellency, surface self-cleaning, anti-corrosion, and anti-fouling properties for the sensors. Additionally, they enhance equipment durability. At present, many studies on superhydrophobic flexible sensors are still in the early research stage; the wear resistance and stability of sensors are far from reaching the level of industrial application. This paper discusses fundamental theories such as the wetting mechanism, tunneling effect, and percolation theory of superhydrophobic flexible sensors. Additionally, it reviews commonly used construction materials and principles of these sensors. This paper discusses the common preparation methods for superhydrophobic flexible sensors and summarizes the advantages and disadvantages of each method to identify the most suitable approach. Additionally, this paper summarizes the wide-ranging applications of the superhydrophobic flexible sensor in medical health, human motion monitoring, anti-electromagnetic interference, and de-icing/anti-icing, offering insights into these fields. Full article
Show Figures

Figure 1

Back to TopTop