Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = irradiated food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3023 KiB  
Article
Improving Grain Safety Using Radiation Dose Technologies
by Raushangul Uazhanova, Meruyert Ametova, Zhanar Nabiyeva, Igor Danko, Gulzhan Kurtibayeva, Kamilya Tyutebayeva, Aruzhan Khamit, Dana Myrzamet, Ece Sogut and Maxat Toishimanov
Agriculture 2025, 15(15), 1669; https://doi.org/10.3390/agriculture15151669 - 1 Aug 2025
Viewed by 231
Abstract
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various [...] Read more.
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various cereal crops cultivated in Kazakhstan. Samples were irradiated at doses ranging from 1 to 5 kGy, and microbiological indicators—including Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (QMAFAnM), yeasts, and molds—were quantified according to national standards. Experimental results demonstrated an exponential decline in microbial contamination, with a >99% reduction achieved at doses of 4–5 kGy. The modeled inactivation kinetics showed strong agreement with the experimental data: R2 = 0.995 for QMAFAnM and R2 = 0.948 for mold, confirming the reliability of the exponential decay models. Additionally, key quality parameters—including protein content, moisture, and gluten—were evaluated post-irradiation. The results showed that protein levels remained largely stable across all doses, while slight but statistically insignificant fluctuations were observed in moisture and gluten contents. Principal component analysis and scatterplot matrix visualization confirmed clustering patterns related to radiation dose and crop type. The findings substantiate the feasibility of electron beam treatment as a scalable and safe technology for improving the microbiological quality and storage stability of cereal crops. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

9 pages, 1131 KiB  
Article
The Impact of Low-Level Laser Irradiation on the Activity of Alpha-Amylase
by Mustafa Salih Al Musawi
Photonics 2025, 12(8), 774; https://doi.org/10.3390/photonics12080774 - 31 Jul 2025
Viewed by 193
Abstract
Background: Clinical diagnostics, food industries, and biotechnological processes typically use an enzyme called alpha-amylase to metabolize carbohydrates. Objective: The aim of this study is to investigate how low-level laser irradiation (LLLI) affects alpha-amylase activity towards determining the usability of LLLI in non-invasive [...] Read more.
Background: Clinical diagnostics, food industries, and biotechnological processes typically use an enzyme called alpha-amylase to metabolize carbohydrates. Objective: The aim of this study is to investigate how low-level laser irradiation (LLLI) affects alpha-amylase activity towards determining the usability of LLLI in non-invasive enzymatic modulation. Methods: Enzyme solutions were irradiated at 10, 20, 30, and 40 J/cm2 utilizing 589 nm and 532 nm diode-pumped solid-state lasers. The iodine–starch colorimetric method was used to quantify post-irradiation enzymatic activity, with inverse correlations found between absorbance and activity levels. Modulation was determined by the wavelength and dosage. Results: Enzymatic activity significantly improved when utilizing 589 nm irradiation at lower doses, maximizing at 120% at 20 J/cm2 (p < 0.01). Neutral or inhibitory effects were revealed when higher doses were applied. Enzymatic activity showed progressive inhibition when 532 nm irradiation was applied, declining to 75% at 40 J/cm2 (p < 0.01). Conclusions: These outcomes indicate that conformational flexibility and catalytic efficiency occur when applying lower-energy photons at 589 nm, whilst oxidative stress and impaired enzymatic function are induced by higher-energy photons at 532 nm. This is consistent with the biphasic dose–response characteristic of photobiomodulation. Full article
(This article belongs to the Special Issue Advanced Technologies in Biophotonics and Medical Physics)
Show Figures

Figure 1

19 pages, 4270 KiB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley III and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Viewed by 315
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

24 pages, 1580 KiB  
Article
Liposome-Based Encapsulation of Extract from Wild Thyme (Thymus serpyllum L.) Tea Processing Residues for Delivery of Polyphenols
by Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Natalija Čutović, Smilja B. Marković, Verica B. Djordjević and Branko M. Bugarski
Foods 2025, 14(15), 2626; https://doi.org/10.3390/foods14152626 - 26 Jul 2025
Viewed by 346
Abstract
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid [...] Read more.
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid compositions on encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential, stability, thermal properties, diffusion coefficient, and diffusion resistance of the liposomes was investigated. Liposomes with 10 mol% sterols (either cholesterol or β-sitosterol) exhibited the highest EE of polyphenols, while increasing sterol content to 30 mol% resulted in decreased EE. Particle size and PDI increased with sterol content, while liposomes prepared without sterols showed the smallest vesicle size. Encapsulation of the extract led to smaller liposomal diameters and slight increases in PDI values. Zeta potential measurements revealed that sterol incorporation enhanced the surface charge and stability of liposomes, with β-sitosterol showing the most pronounced effect. Stability testing demonstrated minimal changes in size, PDI, and zeta potential during storage. UV irradiation and lyophilization processes did not cause significant polyphenol leakage, although lyophilization slightly increased particle size and PDI. Differential scanning calorimetry revealed that polyphenols and sterols modified the lipid membrane transitions, indicating interactions between extract components and the liposomal bilayer. FT-IR spectra confirmed successful integration of the extract into the liposomes, while UV exposure did not significantly alter the spectral features. Thiobarbituric acid reactive substances (TBARS) assay demonstrated the extract’s efficacy in mitigating lipid peroxidation under UV-induced oxidative stress. In contrast, liposomes enriched with sterols showed enhanced peroxidation. Polyphenol diffusion studies showed that encapsulation significantly delayed release, particularly in sterol-containing liposomes. Release assays in simulated gastric and intestinal fluids confirmed controlled, pH-dependent polyphenol delivery, with slightly better retention in β-sitosterol-enriched systems. These findings support the use of β-sitosterol- and cholesterol-enriched liposomes as stable carriers for polyphenolic compounds from wild thyme extract, as bioactive antioxidants, for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Encapsulation and Delivery Systems in the Food Industry)
Show Figures

Figure 1

28 pages, 525 KiB  
Review
Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
by Daniel A. Leontieff, Keisuke Ikehata, Yasutaka Inanaga and Seiji Furukawa
Processes 2025, 13(8), 2331; https://doi.org/10.3390/pr13082331 - 23 Jul 2025
Viewed by 620
Abstract
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented [...] Read more.
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented ozone at full scale, others have yet to fully embrace these technologies’ effectiveness. This review article examines recent publications from the past two decades, exploring novel applications of ozone-based technologies in treating wastewater from diverse sectors, including food and beverage, agriculture, aquaculture, textile, pulp and paper, oil and gas, medical and pharmaceutical manufacturing, pesticides, cosmetics, cigarettes, latex, cork manufacturing, semiconductors, and electroplating industries. The review underscores ozone’s broad applicability in degrading recalcitrant synthetic and natural organics, thereby reducing toxicity and enhancing biodegradability in industrial effluents. Additionally, ozone-based treatments prove highly effective in disinfecting pathogenic microorganisms present in these effluents. Continued research and application of these ozonation and ozone-based advanced oxidation processes hold promise for addressing environmental challenges and advancing sustainable wastewater management practices globally. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

16 pages, 3339 KiB  
Article
Impact of Spectral Irradiance Control on Bioactive Compounds and Color Preservation in Solar-Dried Papaya
by Diana Paola García-Moreira, Erick César López-Vidaña, Ivan Moreno and Lucía Delgadillo-Ruiz
Processes 2025, 13(7), 2311; https://doi.org/10.3390/pr13072311 - 20 Jul 2025
Viewed by 936
Abstract
The quality effects of spectral irradiance conditions during papaya (Carica papaya L.) drying were investigated using three different dryers: a solar dryer with dynamic irradiance control (SDIC), a cylindrical solar dryer (CSD), and a solar simulator dryer (SSD). This study builds upon [...] Read more.
The quality effects of spectral irradiance conditions during papaya (Carica papaya L.) drying were investigated using three different dryers: a solar dryer with dynamic irradiance control (SDIC), a cylindrical solar dryer (CSD), and a solar simulator dryer (SSD). This study builds upon previous PDLC film applications in solar drying by specifically examining its impact on phytochemical preservation and color degradation, addressing gaps in spectral-specific effects on food quality parameters. The drying conditions were as follows: a temperature of 50 °C for each method, 700 w/m2 for both SDIC and solar simulator dryers (SSD), and full solar irradiance for the cylindrical solar dryer (CSD). The cylindrical solar dryer exhibited 210 min of drying time due to higher solar irradiance than SDIC (300 min), while SSD lasted 180 min. Drying rates were highest for CSD (0.056 g H2O/g d.m. min−1), followed by SDIC (0.027 g H2O/g d.m. min−1). Color analysis revealed that CSD resulted in the most significant color degradation, followed by SSD and SDIC. This was attributed to the varying spectral composition of radiation in each method. The CSD, with a full solar spectrum, including higher UV and visible radiation, induced more pronounced color changes than SDIC, which received lower intensity radiation in these ranges. Chemical analyses showed that SSD samples had the highest antioxidant activity (1432.91 µmol TE/g dw by ABTS) and phenolic content (58.92 mg GAE/100 g), suggesting simulated conditions may better preserve certain phytochemicals. SDIC maintained better carotenoid-related color parameters while showing intermediate antioxidant levels (1084.09 µmol TE/g dw). These results demonstrate that irradiance control significantly impacts drying efficiency and quality parameters. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

9 pages, 1253 KiB  
Proceeding Paper
Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents
by Alexander Gerdt, Anna-Maria Gierke, Petra Vatter and Martin Hessling
Biol. Life Sci. Forum 2025, 47(1), 1; https://doi.org/10.3390/blsf2025047001 - 16 Jul 2025
Viewed by 219
Abstract
Microbial contamination of food can lead to faster spoilage and infections. Therefore, disinfection processes are required that have a low detrimental effect on the nutritional content. Concerning radiation disinfection, two spectral ranges have recently become important. The Far-UVC spectral range, with a wavelength [...] Read more.
Microbial contamination of food can lead to faster spoilage and infections. Therefore, disinfection processes are required that have a low detrimental effect on the nutritional content. Concerning radiation disinfection, two spectral ranges have recently become important. The Far-UVC spectral range, with a wavelength below 230 nm and visible violet light. In this study, leaf spinach was used to investigate the extent to which these radiations inactivate Escherichia coli, but also to determine if the vitamin C or chlorophyll content was reduced. Frozen spinach leaves (Spinacia oleracea) were contaminated with E. coli × pGLO and irradiated with either a 222 nm krypton chloride lamp or 405 nm LEDs. The achieved bacterial reduction was determined by plating the irradiated samples on agar plates and subsequent colony counting. The vitamin C concentration was determined by means of redox titration, and the concentrations of chlorophyll a and chlorophyll b were determined using spectrometry. Both irradiations exhibited a strong antimicrobial impact on E. coli. The average log reduction doses were about 19 mJ/cm2 (222 nm) and 87 J/cm2 (405 nm), respectively. The vitamin C concentration decreased by 30% (222 nm) or 20% (405 nm), and the chlorophyll concentrations decreased by about 25%. Both irradiation approaches are able to substantially reduce microorganisms on spinach leaves by two orders of magnitude, but this is associated with a reduction in the nutrient content. Full article
Show Figures

Figure 1

20 pages, 9542 KiB  
Article
Effect of Electron Beam Irradiation on Microbiological Safety and Quality of Chilled Poultry Meat from Kazakhstan
by Raushangul Uazhanova, Ulbala Tungyshbayeva, Sungkar Nurdaulet, Almas Zhanbolat, Yus Aniza Yusof, Shakhsanam Seksenbay, Igor Danko and Zamzagul Moldakhmetova
Processes 2025, 13(7), 2267; https://doi.org/10.3390/pr13072267 - 16 Jul 2025
Viewed by 432
Abstract
Ensuring the safety and extending the shelf life of chilled poultry meat is vital in modern poultry meat production, particularly given the recent increase in demand in this area. Chilled meat has a short shelf life, so producers have limited time to sell [...] Read more.
Ensuring the safety and extending the shelf life of chilled poultry meat is vital in modern poultry meat production, particularly given the recent increase in demand in this area. Chilled meat has a short shelf life, so producers have limited time to sell their products and must rely on various methods of extending shelf life. Compared with other non-thermal methods, electron beam irradiation is a new non-thermal meat preservation technique with low cost, avoidance of contamination, and antibacterial effects. In this study, we investigate the effect of electron beam irradiation on the microbiological and physicochemical quality of chilled poultry meat produced in Kazakhstan to assess its suitability for use in local food processing systems. The samples were electron-beam-treated at doses of 2, 4, 6, and 8 kGy and stored in a refrigerator. Microbiological and physicochemical property evaluations were carried out for a period of 14 days. Our results demonstrated a significant decrease in total aerobic and facultative anaerobic microorganisms, and no detectable levels of Salmonella spp. and Listeria monocytogenes in the irradiated samples. The pH measurements remained stable at low doses; in comparison, higher doses resulted in a slight decrease. Moisture, protein, fat, and ash content were also evaluated and showed minimal changes as functions of irradiation dose. Our results indicate that electron beam irradiation, particularly at a dose of 2–4 kGy, effectively improves microbiological safety and extends the shelf life of chilled poultry meat up to 5–6 days, making it a promising solution for the modern poultry meat industry. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

23 pages, 5750 KiB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 299
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

17 pages, 1507 KiB  
Article
Long Shelf-Life Ready-to-Eat Plant-Based Whole Hard-Boiled Eggs: Low Allergenic and Regular Formulas
by Kanda Wongwailikhit, Suvimol Soithongsuk and Yupakanit Puangwerakul
Foods 2025, 14(13), 2220; https://doi.org/10.3390/foods14132220 - 24 Jun 2025
Viewed by 466
Abstract
This study aimed to develop a shelf-stable, plant-based whole hard-boiled egg analogue, available in both regular and low-allergenic versions. Six plant proteins—soy, mung bean, pea, rice, potato, and wheat—were formulated into egg white and yolk components, with mung bean and wheat proteins showing [...] Read more.
This study aimed to develop a shelf-stable, plant-based whole hard-boiled egg analogue, available in both regular and low-allergenic versions. Six plant proteins—soy, mung bean, pea, rice, potato, and wheat—were formulated into egg white and yolk components, with mung bean and wheat proteins showing the most promising sensory and visual qualities. Two preservation methods, thermal pasteurization (75–85 °C, 15–20 min) and gamma irradiation (2–5 kGy), were applied to extend shelf life while maintaining product quality. Thermal treatment at 75 °C for 15 min and gamma irradiation at 3.5 kGy were identified as optimal conditions, balancing sensory acceptability and microbial safety. Sensory evaluation by 100 untrained panelists revealed favorable scores for appearance, texture, and overall liking, without significant differences among selected formulations (p > 0.05). Accelerated shelf life testing and Q10 modeling predicted a shelf life of 188 days for thermally pasteurized eggs and 253 days (8.42 months) for gamma-irradiated eggs at 30 °C. These results demonstrate the feasibility of developing a consumer-acceptable, plant-based hard-boiled egg analogue with extended ambient shelf life. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

25 pages, 6496 KiB  
Article
Combined UV and Formic Acid Treatment Suppresses Aspergillus flavus and Aflatoxin B1 on Dried Red Chili Powder
by Xiaoman Chen, Gang Yang, Yi Zhang, Yaoyao Su, Jun Huang, Aijun Li, Kewei Chen, Muying Du, Zsolt Zalán, Sameh Awad and Jianquan Kan
Foods 2025, 14(13), 2194; https://doi.org/10.3390/foods14132194 - 23 Jun 2025
Viewed by 434
Abstract
Aflatoxin contamination poses a significant food safety risk, particularly during the storage of dried chili peppers. This study evaluated the efficacy of formic acid treatment, ultraviolet (UV) treatment, and combined UV-formic acid treatment in both preventing and controlling Aspergillus flavus in dried red [...] Read more.
Aflatoxin contamination poses a significant food safety risk, particularly during the storage of dried chili peppers. This study evaluated the efficacy of formic acid treatment, ultraviolet (UV) treatment, and combined UV-formic acid treatment in both preventing and controlling Aspergillus flavus in dried red chili powder. Efficacy was assessed by measuring the growth diameter of A. flavus colonies on un-colonized and already colonized dried red chili powder. The optimal treatment conditions for the UV-formic acid combination were determined through single-factor experiments, orthogonal experiments, and quality assessment. Finally, the effects of the UV-formic acid combination on the cell membrane, antioxidant system, and energy metabolism of A. flavus were investigated. The results revealed that fumigation of un-colonized dried red chili powder with 5% formic acid for 24 h inhibited A. flavus growth by 93.29% and toxin synthesis by 99.41%. In contrast, treatment of already colonized chili powder with 10% formic acid inhibited A. flavus colony growth by 50%. Through a three-factor, three-level orthogonal experiment followed by quality testing, the optimal conditions were determined to be 8% formic acid concentration, a UV irradiation distance of 15 cm, and a treatment time of 75 min. This optimized combined treatment reduced the required fumigation time from 24 h to 1.25 h. This technique achieved complete suppression of aflatoxin B1 synthesis on un-colonized dried red chili powder. On already colonized chili powder, the mycelial growth inhibition rate was 48.05 ± 6.68%, and aflatoxin B1 synthesis was inhibited by 91.32 ± 3.15%. Quality assessment revealed that the UV-formic acid co-treatment parameters did not significantly affect key quality indicators including color, capsaicin content, total phenolic content (p > 0.05). Furthermore, UV-formic acid treatment disrupt the cell membrane structure of A. flavus, impairs its antioxidant and energy metabolism systems, and induces mitochondrial dysfunction. The study confirmed the synergistic antifungal effect of formic acid and UV, providing a potential industrialized solution for enhancing the safety and storage stability of dried chili products. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

15 pages, 1505 KiB  
Article
The Effects of UV-LED Technology on the Quality of Ready-to-Eat Pomegranates: Epigenetic Indicators and Metabolomic Analysis
by Aihemaitijiang Aihaiti, Yuanpeng Li, Xinmeng Huang, Yuting Yang, Ailikemu Mulati and Jiayi Wang
Foods 2025, 14(13), 2192; https://doi.org/10.3390/foods14132192 - 23 Jun 2025
Viewed by 393
Abstract
Pomegranates are rich in nutrients and classified among ready-to-eat fruits and vegetables. Although this ready-to-eat produce offers convenience, it presents risks associated with pathogenic microorganisms, highlighting the need for pre-sale disinfection. Ultraviolet light-emitting diodes (UV-LEDs) constitute an innovative non-thermal processing technology for food [...] Read more.
Pomegranates are rich in nutrients and classified among ready-to-eat fruits and vegetables. Although this ready-to-eat produce offers convenience, it presents risks associated with pathogenic microorganisms, highlighting the need for pre-sale disinfection. Ultraviolet light-emitting diodes (UV-LEDs) constitute an innovative non-thermal processing technology for food products, offering reduced heat generation and lower energy consumption compared to traditional ultraviolet (UV) irradiation methods. This study analyzed the effects of UV-LED technology on pomegranate seed quality over 0 to 5 days of storage. The results demonstrated significant increases in anthocyanins, polyphenols, ascorbic acid, and the antioxidant capacity in pomegranate following treatment, peaking on day 3. In contrast, the control group showed declining trends. After treatment, the aerobic mesophilic counts and counts of mold and yeast levels during storage measured between 2.73–3.23 log CFU/g and 2.56–3.29 log CFU/g, respectively, significantly lower than the control group. Non-targeted metabolomic analysis showed that UV-LED treatment prompted modifications in the biosynthetic pathways of flavonoids, flavonols, and anthocyanins. The expression of peonidin-3-O-rutinoside chloride increased by 46.46-fold within the anthocyanin biosynthesis pathway. In conclusion, UV-LED treatment represents a potential approach to the disinfection of ready-to-eat fruits and vegetables. Full article
Show Figures

Figure 1

16 pages, 2678 KiB  
Article
Detection of Electron Beam-Irradiated Bone-Containing Foods Using a Robust Method of Electron Paramagnetic Resonance Spectrometry
by Ashfaq Ahmad Khan and Muhammad Kashif Shahid
Physchem 2025, 5(3), 24; https://doi.org/10.3390/physchem5030024 - 20 Jun 2025
Viewed by 709
Abstract
Food irradiation is gaining popularity worldwide due to its potential to extend shelf life, improve hygienic quality, and meet trade requirements. The electron paramagnetic resonance (EPR) method is a reliable and sensitive technique for detecting untreated and irradiated foods. This study investigated the [...] Read more.
Food irradiation is gaining popularity worldwide due to its potential to extend shelf life, improve hygienic quality, and meet trade requirements. The electron paramagnetic resonance (EPR) method is a reliable and sensitive technique for detecting untreated and irradiated foods. This study investigated the effectiveness of EPR in identifying irradiated meat and seafood containing bones. Beef, lamb, chicken, and various fish were irradiated with electron beams at different doses and analysed using an EPR spectrometer. During irradiation, the food samples were surrounded by small ice bags to prevent autodegradation of cells and nuclei. After the irradiation process, the samples were stored at −20 °C. For EPR signal recording, the flesh, connective tissues, and bone marrow were removed from the bone samples, which were then oven-dried at 50 °C. The EPR spectra were recorded using an X-band EPR analyzer. Unirradiated and irradiated samples were identified based on the nature of the EPR signals as well as the g-values of symmetric and asymmetric signals. The study found that the EPR method is effective in distinguishing between unirradiated and irradiated bone-containing foods across nearly all applied radiation doses. The peak-to-peak amplitude of the EPR signals increased with increasing radiation doses. It was observed that unirradiated bone samples showed low-intensity symmetrical signals, while irradiated samples showed typical asymmetric signals. Overall, the study demonstrated that the EPR method is a reliable and sensitive technique for identifying irradiated foods containing bones and can be used for the control, regulation, and proper surveillance of food irradiation. Full article
(This article belongs to the Section Experimental and Computational Spectroscopy)
Show Figures

Figure 1

17 pages, 1675 KiB  
Article
Assisted Extraction of Hemp Oil and Its Application to Design Functional Gluten-Free Bakery Foods
by Noemi Baldino, Mario F. O. Paleologo, Mariateresa Chiodo, Olga Mileti, Francesca R. Lupi and Domenico Gabriele
Molecules 2025, 30(12), 2665; https://doi.org/10.3390/molecules30122665 - 19 Jun 2025
Viewed by 559
Abstract
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and [...] Read more.
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and long extraction time can influence the yield and the purity of the extracts, affecting the quality of the final product. This study focused on optimizing CBD oil extraction from hemp inflorescences and its incorporation into a gluten-free bakery product for functionalization. Dynamic maceration (DME), assisted by ultrasound and microwave irradiation, was used. Our study explored the impact of varying sonication times (three distinct durations) and microwave powers (three levels, applied for two different irradiation times) on the resulting extracts. HPLC analysis was performed on these extracts. Subsequently, we used hemp flour and hemp oil to bake gluten-free cupcakes, which were fortified with the extracted CBD oil. Rheological characterization was used to investigate the cupcake properties, along with stereoscopic, color and puncture analysis performed on the baked samples. The most effective extraction parameters identified were 30 s of microwave irradiation at 700 W, yielding 45.2 ± 2.0 g of CBD extract, and 15 min of sonication, which resulted in 53.2 ± 2.5 g. Subsequent rheological characterization indicated that the product exhibited mechanical properties and a temperature profile comparable to a benchmark, evidenced by a height of 4.1 ± 0.2 cm and a hardness of 1.9 ± 0.2 N. These promising values demonstrate that hemp oil and hemp flour are viable ingredients for traditional cakes and desserts, notably contributing increased nutritional value through the CBD-enriched hemp oil and the beneficial profile of hemp flour. Full article
Show Figures

Graphical abstract

28 pages, 5945 KiB  
Article
Liposomal Encapsulation of Carob (Ceratonia siliqua L.) Pulp Extract: Design, Characterization, and Controlled Release Assessment
by Aleksandra A. Jovanović, Dragana Dekanski, Milena D. Milošević, Ninoslav Mitić, Aleksandar Rašković, Nikola Martić and Andrea Pirković
Pharmaceutics 2025, 17(6), 776; https://doi.org/10.3390/pharmaceutics17060776 - 13 Jun 2025
Viewed by 520
Abstract
Background: Carob (Ceratonia siliqua L.) pulp flour is primarily used in the food industry. As a rich source of bioactive compounds, particularly polyphenols, it holds promise for pharmaceutical formulation research and development. Objectives: This study focused on developing liposomal particles loaded with [...] Read more.
Background: Carob (Ceratonia siliqua L.) pulp flour is primarily used in the food industry. As a rich source of bioactive compounds, particularly polyphenols, it holds promise for pharmaceutical formulation research and development. Objectives: This study focused on developing liposomal particles loaded with carob pulp extract using the proliposome method, followed by modifications through UV irradiation and sonication. Methods: The resulting liposomes were analyzed for encapsulation efficiency, vesicle size, polydispersity index (PDI), mobility, zeta potential, viscosity, surface tension, density, antioxidant activity, FT-IR spectra, and release kinetics under simulated gastrointestinal conditions. In addition, nanoparticle tracking analysis and transmission electron microscopy (TEM) were used for liposomal characterization. Results: The findings revealed a high encapsulation efficiency across all samples (>70%). The particle size and PDI measurements confirmed the presence of a multilamellar and uniform liposomal system before post-processing modifications. The medium value of zeta potential suggested a moderately electrostatically stabilized liposomal suspension. The sonicated liposomes demonstrated a higher concentration of vesicles in comparison to non-treated and UV-irradiated samples. TEM analysis revealed purified liposomal vesicles with preserved structural integrity. Encapsulation, as well as UV irradiation and sonication of liposomes, did not diminish the extract’s anti-DPPH activity. However, the ABTS radical scavenging potential of the pure extract was significantly lower compared to its encapsulated counterparts. UV irradiation and sonication notably reduced the anti-ABTS capacity of the extract-liposome system. Monitoring the release of bioactive compounds demonstrated controlled delivery from liposomal particles under simulated gastrointestinal conditions. Conclusions: Overall, liposomal formulations of carob pulp extract exhibit significant potential for further development as a functional food ingredient or for use in the prevention and treatment of various diseases. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

Back to TopTop