Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = ion source lifetime improvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4985 KiB  
Review
Analysis of State-of-Charge Estimation Methods for Li-Ion Batteries Considering Wide Temperature Range
by Yu Miao, Yang Gao, Xinyue Liu, Yuan Liang and Lin Liu
Energies 2025, 18(5), 1188; https://doi.org/10.3390/en18051188 - 28 Feb 2025
Cited by 3 | Viewed by 1304
Abstract
Lithium-ion batteries are the core energy storage technology for electric vehicles and energy storage systems. Accurate state-of-charge (SOC) estimation is critical for optimizing battery performance, ensuring safety, and predicting battery lifetime. However, SOC estimation faces significant challenges under extreme temperatures and complex operating [...] Read more.
Lithium-ion batteries are the core energy storage technology for electric vehicles and energy storage systems. Accurate state-of-charge (SOC) estimation is critical for optimizing battery performance, ensuring safety, and predicting battery lifetime. However, SOC estimation faces significant challenges under extreme temperatures and complex operating conditions. This review systematically examines the research progress on SOC estimation techniques over a wide temperature range, focusing on two mainstream approaches: model improvement and data-driven methods. The model improvement method enhances temperature adaptability through temperature compensation and dynamic parameter adjustment. Still, it has limitations in dealing with the nonlinear behavior of batteries and accuracy and real-time performance at extreme temperatures. In contrast, the data-driven method effectively copes with temperature fluctuations and complex operating conditions by extracting nonlinear relationships from historical data. However, it requires high-quality data and substantial computational resources. Future research should focus on developing high-precision, temperature-adaptive models and lightweight real-time algorithms. Additionally, exploring the deep coupling of physical models and data-driven methods with multi-source heterogeneous data fusion technology can further improve the accuracy and robustness of SOC estimation. These advancements will promote the safe and efficient application of lithium batteries in electric vehicles and energy storage systems. Full article
(This article belongs to the Special Issue Electrochemical Conversion and Energy Storage System)
Show Figures

Figure 1

21 pages, 2700 KiB  
Article
Degradation-Aware Derating of Lithium-Ion Battery Energy Storage Systems in the UK Power Market
by Inessa Rajah, Jake Sowe, Michael Schimpe and Jorge Varela Barreras
Electronics 2024, 13(19), 3817; https://doi.org/10.3390/electronics13193817 - 27 Sep 2024
Cited by 2 | Viewed by 1892
Abstract
As more renewable energy sources are integrated into the United Kingdom’s power grid, flexibility services are becoming integral to ensuring energy security. This has encouraged the proliferation of Lithium-ion battery storage systems, with 85 GW in development. However, battery degradation impacts both system [...] Read more.
As more renewable energy sources are integrated into the United Kingdom’s power grid, flexibility services are becoming integral to ensuring energy security. This has encouraged the proliferation of Lithium-ion battery storage systems, with 85 GW in development. However, battery degradation impacts both system lifespan and the economic viability of large-scale projects. With rising commodity costs and supply chain issues, maximising the value of energy storage is critical. Traditional methods of mitigating battery ageing rely on static limits based on inflexible warranties, which do not fully account for the complexity of battery degradation. This study examined an alternative, degradation-aware current derating strategy to improve system performance. Using an optimisation model simulating UK energy trading, combined with an electro-thermal and semi-empirical battery model, we assessed the impact of this approach. Interviews with industry leaders validated the modelled parameters and the relevance of the alternative strategy. Results show the degradation-aware strategy can extend battery lifetime by 5–8 years and improve net present value and internal rate of return over a 15-year period compared with traditional methods. These findings highlight the economic benefits of flexible, degradation-aware operational strategies and suggest that more adaptive warranties could accelerate renewable energy integration and lower costs for storage operators. Full article
(This article belongs to the Special Issue Innovative Smart Microgrids for Power System)
Show Figures

Figure 1

11 pages, 2682 KiB  
Article
Development and Evaluation of Ferrite Core Inductively Coupled Plasma Radio Frequency Ion Source for High-Current Ion Implanters in Semiconductor Applications
by Jong-Jin Hwang, Hyo-Jun Sim and Seung-Jae Moon
Sensors 2024, 24(15), 5071; https://doi.org/10.3390/s24155071 - 5 Aug 2024
Cited by 2 | Viewed by 1790
Abstract
This study presents the development of a ferrite core inductively coupled plasma (ICP) radio frequency (RF) ion source designed to improve the lifetime of ion sources in commercial ion implanters. Unlike existing DC methods, this novel approach aims to enhance the performance and [...] Read more.
This study presents the development of a ferrite core inductively coupled plasma (ICP) radio frequency (RF) ion source designed to improve the lifetime of ion sources in commercial ion implanters. Unlike existing DC methods, this novel approach aims to enhance the performance and lifetime of the ion source. We constructed a high-vacuum evaluation chamber to thoroughly examine RF ion source characteristics using a Langmuir probe. Comparative experiments assessed the extraction current of two upgraded ferrite core RF ion sources in a commercial ion implanter setting. Additionally, we tested the plasma lifetime of the ICP source and took temperature measurements of various components to verify the operational stability and efficiency of the innovative design. This study confirmed that the ICP RF ion source operated effectively under a high vacuum of 10−5 torr and in a high-voltage environment of 30 kV. We observed that the extraction current increased linearly with RF power. We also confirmed that BF3 gas, which presents challenging conditions, was stably ionized in the ICP RF ion sources. Full article
(This article belongs to the Special Issue Recent Innovations in Plasma Sensing and Diagnosis Technology)
Show Figures

Figure 1

21 pages, 5341 KiB  
Article
A Lithium Battery Health Evaluation Method Based on Considering Disturbance Belief Rule Base
by Xin Zhang, Aosen Gong, Wei He, You Cao and Huafeng He
Batteries 2024, 10(4), 129; https://doi.org/10.3390/batteries10040129 - 13 Apr 2024
Cited by 5 | Viewed by 1745
Abstract
Lithium-ion batteries are widely used in modern society as important energy storage devices due to their high energy density, rechargeable performance, and light weight. However, the capacity and performance of lithium-ion batteries gradually degrade with the number of charge or discharge cycles and [...] Read more.
Lithium-ion batteries are widely used in modern society as important energy storage devices due to their high energy density, rechargeable performance, and light weight. However, the capacity and performance of lithium-ion batteries gradually degrade with the number of charge or discharge cycles and environmental conditions, which can affect the reliability and lifetime of the batteries, so it is necessary to accurately evaluate their health. The belief rule base (BRB) model is an evaluation model constructed based on rules that can handle uncertainties in the operation of lithium-ion batteries. However, lithium-ion batteries may be affected by disturbances from internal or external sources during operation, which may affect the evaluation results. To prevent this problem, this paper proposes a disturbance-considering BRB modeling approach that considers the possible effects of disturbances on the battery in the operating environment and quantifies the disturbance-considering capability of the assessment model in combination with expert knowledge. Second, robustness and interpretability constraints are added in this paper, and an improved optimization algorithm is constructed that maintains or possibly improves the resistance of the model to disturbance. Finally, using the lithium-ion batteries provided by the National Aeronautics and Space Administration (NASA) Prediction Centre of Excellence and the University of Maryland as a case study, this paper verifies that the proposed modeling approach is capable of constructing robust models and demonstrates the effectiveness of the improved optimization algorithm. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

22 pages, 10847 KiB  
Article
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Iterative Transfer Learning and Mogrifier LSTM
by Zihan Li, Fang Bai, Hongfu Zuo and Ying Zhang
Batteries 2023, 9(9), 448; https://doi.org/10.3390/batteries9090448 - 31 Aug 2023
Cited by 12 | Viewed by 3071
Abstract
Lithium-ion battery health and remaining useful life (RUL) are essential indicators for reliable operation. Currently, most of the RUL prediction methods proposed for lithium-ion batteries use data-driven methods, but the length of training data limits data-driven strategies. To solve this problem and improve [...] Read more.
Lithium-ion battery health and remaining useful life (RUL) are essential indicators for reliable operation. Currently, most of the RUL prediction methods proposed for lithium-ion batteries use data-driven methods, but the length of training data limits data-driven strategies. To solve this problem and improve the safety and reliability of lithium-ion batteries, a Li-ion battery RUL prediction method based on iterative transfer learning (ITL) and Mogrifier long and short-term memory network (Mogrifier LSTM) is proposed. Firstly, the capacity degradation data in the source and target domain lithium battery historical lifetime experimental data are extracted, the sparrow search algorithm (SSA) optimizes the variational modal decomposition (VMD) parameters, and several intrinsic mode function (IMF) components are obtained by decomposing the historical capacity degradation data using the optimization-seeking parameters. The highly correlated IMF components are selected using the maximum information factor. Capacity sequence reconstruction is performed as the capacity degradation information of the characterized lithium battery, and the reconstructed capacity degradation information of the source domain battery is iteratively input into the Mogrifier LSTM to obtain the pre-training model; finally, the pre-training model is transferred to the target domain to construct the lithium battery RUL prediction model. The method’s effectiveness is verified using CALCE and NASA Li-ion battery datasets, and the results show that the ITL-Mogrifier LSTM model has higher accuracy and better robustness and stability than other prediction methods. Full article
Show Figures

Figure 1

20 pages, 6706 KiB  
Article
Investigation of Self-Powered IoT Sensor Nodes for Harvesting Hybrid Indoor Ambient Light and Heat Energy
by Heng Xiao, Nanjian Qi, Yajiang Yin, Shijie Yu, Xiangzheng Sun, Guozhe Xuan, Jie Liu, Shanpeng Xiao, Yuan Li and Yizheng Li
Sensors 2023, 23(8), 3796; https://doi.org/10.3390/s23083796 - 7 Apr 2023
Cited by 16 | Viewed by 4901
Abstract
Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, [...] Read more.
Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, and management are expected to provide a new power source for IoT sensor nodes. This research describes an integrated cube-shaped photovoltaic (PV) and thermal hybrid energy-harvesting system that can be utilized to power IoT sensor nodes with active RFID tags. The indoor light energy was harvested using 5-sided PV cells, which could generate 3 times more energy than most current studies using single-sided PV cells. In addition, two vertically stacked thermoelectrical generators (TEG) with a heat sink were utilized to harvest thermal energy. Compared to one TEG, the harvested power was improved by more than 219.48%. In addition, an energy management module with a semi-active configuration was designed to manage the energy stored by the Li-ion battery and supercapacitor (SC). Finally, the system was integrated into a 44 mm × 44 mm × 40 mm cube. The experimental results showed that the system was able to generate a power output of 192.48 µW using indoor ambient light and the heat from a computer adapter. Furthermore, the system was capable of providing stable and continuous power for an IoT sensor node used for monitoring indoor temperature over a prolonged period. Full article
(This article belongs to the Special Issue Energy Harvesting in Environmental Wireless Sensor Networks)
Show Figures

Figure 1

17 pages, 4964 KiB  
Article
Composite CdS/TiO2 Powders for the Selective Reduction of 4-Nitrobenzaldehyde by Visible Light: Relation between Preparation, Morphology and Photocatalytic Activity
by Martina Milani, Michele Mazzanti, Stefano Caramori, Graziano Di Carmine, Giuliana Magnacca and Alessandra Molinari
Catalysts 2023, 13(1), 74; https://doi.org/10.3390/catal13010074 - 30 Dec 2022
Cited by 5 | Viewed by 2602
Abstract
A series of composite CdS/TiO2 powders was obtained by nucleation of TiO2 on CdS nanoseeds. This combination presents the appropriate band edge position for photocatalytic redox reactions: visible light irradiation of CdS allows the injection of electrons into dark TiO2 [...] Read more.
A series of composite CdS/TiO2 powders was obtained by nucleation of TiO2 on CdS nanoseeds. This combination presents the appropriate band edge position for photocatalytic redox reactions: visible light irradiation of CdS allows the injection of electrons into dark TiO2, increasing the lifetimes of separated charges. The electrons have been used for the quantitative photoreduction of 4-nitrobenzaldehyde to 4-aminobenzaldehyde, whose formation was pointed out by 1H NMR and ESI-MS positive ion mode. Concomitant sacrificial oxidation of 2-propanol, which was also the proton source, occurred. The use of characterization techniques (XRD, N2 adsorption-desorption) evidenced the principal factors driving the photocatalytic reaction: the nanometric size of anatase crystalline domains, the presence of dispersed CdS to form an extended active junction CdS/anatase, and the presence of mesopores as nanoreactors. The result is an efficient photocatalytic system that uses visible light. In addition, the presence of TiO2 in combination with CdS improves the stability of the photoactive material, enabling its recyclability. Full article
(This article belongs to the Special Issue Advanced Materials for Application in Catalysis)
Show Figures

Figure 1

12 pages, 2631 KiB  
Article
Revealing Lithiation Kinetics and Battery Degradation Pathway in LiMn2O4-Based Commercial Cathodes via Electrochemical Strain Microscopy
by Denis Alikin, Boris Slautin and Andrei Kholkin
Batteries 2022, 8(11), 220; https://doi.org/10.3390/batteries8110220 - 5 Nov 2022
Cited by 6 | Viewed by 2911
Abstract
The capacity fade during the cycling of lithium batteries is a key factor limiting further progress in the improvement of electric vehicles, wearable electronic devices, alternative energy sources, etc. One of the main reasons for capacity loss is battery cathode degradation, which significantly [...] Read more.
The capacity fade during the cycling of lithium batteries is a key factor limiting further progress in the improvement of electric vehicles, wearable electronic devices, alternative energy sources, etc. One of the main reasons for capacity loss is battery cathode degradation, which significantly influences the battery lifetime. Despite in-depth knowledge of battery degradation at the chemical level, the kinetics of the degradation at the resolution of the individual elements of the cathode are not fully understood. Here, we studied lithiation kinetics in commercial cathodes based on lithium manganese spinel using the electrochemical strain microscopy local method. Supported by the experimental finding, the “viscous fingers” model of lithium ions intercalation–deintercalation in individual particles of the cathode was proposed. The non-linear dynamics of the lithiation front were suggested to be stimulated by the non-uniform stress field and gradient of the chemical potential. Irregularity of the lithiation front causes the formation of the residual lithiated pocket in the delithiated particles, which effectively reduces the volume available for chemical reaction. The obtained results shed further light on the degradation of the lithium battery cathodes and can be applicable for other cathode materials. Full article
(This article belongs to the Section Battery Mechanisms and Fundamental Electrochemistry Aspects)
Show Figures

Figure 1

9 pages, 1741 KiB  
Communication
Heat-Induced Emission Enhancement in a Yb:YAG Crystal-Derived Silica Fiber
by Kai Zou, Jianxiang Wen, Ying Wan, Yan Wu, Fufei Pang and Tingyun Wang
Photonics 2022, 9(10), 706; https://doi.org/10.3390/photonics9100706 - 28 Sep 2022
Cited by 3 | Viewed by 2042
Abstract
We fabricated a Yb:YAG crystal-derived silica fiber (YCDSF) by the melt-in-tube method with a CO2 laser-heated drawing tower and explored the influences of the heat treatment method on fluorescent properties in the YCDSF. After the heat treatment, the intensity of the emission [...] Read more.
We fabricated a Yb:YAG crystal-derived silica fiber (YCDSF) by the melt-in-tube method with a CO2 laser-heated drawing tower and explored the influences of the heat treatment method on fluorescent properties in the YCDSF. After the heat treatment, the intensity of the emission peaks and the fluorescence lifetime of the YCDSFs improved. In particular, after 1350 °C of heat treatment, a series of sharp peaks appeared in the core layer, which may form a new crystalline phase. Moreover, its emission intensity at 1030 nm was significantly enhanced, over 2 times greater than before the heat treatment. Additionally, the fluorescence lifetime of Yb ions was also increased from 129 to 621 μs, indicating the changes in local environments around Yb ions. Then, schematic models were set up to show how the local environments around Yb ions are gradually changing. These results revealed that the assessed YCDSF is of excellent performance; after the heat treatment, it may be a potential material for realizing optical amplification, light sources, fiber lasers, and so on. Full article
(This article belongs to the Topic Optical and Optoelectronic Materials and Applications)
Show Figures

Figure 1

20 pages, 4613 KiB  
Article
Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System
by Mohamed Ali Zdiri, Tawfik Guesmi, Badr M. Alshammari, Khalid Alqunun, Abdulaziz Almalaq, Fatma Ben Salem, Hsan Hadj Abdallah and Ahmed Toumi
Energies 2022, 15(11), 4099; https://doi.org/10.3390/en15114099 - 2 Jun 2022
Cited by 30 | Viewed by 3380
Abstract
Nowadays, the growing integration of renewable energy sources poses several challenges to electrical energy systems. The latter need be controlled by grid rules to ensure their stability and maintain the efficiency of renewable energy consumption. In this context, a novel HESS (hybrid energy [...] Read more.
Nowadays, the growing integration of renewable energy sources poses several challenges to electrical energy systems. The latter need be controlled by grid rules to ensure their stability and maintain the efficiency of renewable energy consumption. In this context, a novel HESS (hybrid energy storage system) control strategy, combining the PV (photovoltaic) generator with FLC (fuzzy logic control), SC (super-capacitor), and lithium-ion battery modules, is advanced. The proposed energy control rests on monitoring of the low-frequency and high-frequency electrical power components of the mismatch between power demand and generation, while applying the error component of the lithium-ion battery current. On accounting for the climatic condition and load variation considerations, the SC undertakes to momentarily absorb the high-frequency power component, while the low-frequency component is diverted to the lithium-ion battery. To improve the storage system’s performance, lifetime, and avoid load total disconnection during sudden variations, we consider equipping the envisioned energy control design with controllers of SM and ANN types. The MATLAB/Simulink based simulation results turn out to testify well the investigated HESS control scheme’s outstanding performance and efficiency in terms of DC bus voltage rapid regulation, thereby enhancing the battery’s lifetime and ensuring the PV system’s continuous flow. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

27 pages, 22558 KiB  
Article
An Effective Control for Lead-Acid Performance Enhancement in a Hybrid Battery-Supercapacitor System Used in Transport Vehicles
by Mpho J. Lencwe, S. P. Daniel Chowdhury and Thomas O. Olwal
Sustainability 2021, 13(24), 13971; https://doi.org/10.3390/su132413971 - 17 Dec 2021
Cited by 18 | Viewed by 4305 | Correction
Abstract
Modern vehicles have increased functioning necessities, including more energy/power, storage for recovering decelerating energy, start/stop criteria, etc. However, lead-acid batteries (LABs) possess a shorter lifetime than lithium-ion and supercapacitors energy storage systems. The use of LABs harms the operation of transport vehicles. Therefore, [...] Read more.
Modern vehicles have increased functioning necessities, including more energy/power, storage for recovering decelerating energy, start/stop criteria, etc. However, lead-acid batteries (LABs) possess a shorter lifetime than lithium-ion and supercapacitors energy storage systems. The use of LABs harms the operation of transport vehicles. Therefore, this research paper pursues to improve the operating performance of LABs in association with their lifetime. Integrated LAB and supercapacitor improve the battery lifetime and efficiently provide for transport vehicles’ operational requirements and implementation. The study adopts an active-parallel topology approach to hybridise LAB and supercapacitor. A fully active-parallel topology structure comprises two DC-to-DC conversion systems. LAB and supercapacitor are connected as inputs to these converters to allow effective and easy control of energy and power. A cascaded proportional integrate-derivative (PID) controller regulates the DC-to-DC converters to manage the charge/release of combined energy storage systems. The PID controls energy share between energy storage systems, hence assisting in enhancing LAB lifetime. The study presents two case studies, including the sole battery application using different capacities, and the second, by combining a battery with a supercapacitor of varying capacity sizes. A simulation software tool, Matlab/Simulink, is used to develop the model and validate the results of the system. The simulation outcomes show that the battery alone cannot serve the typical transport vehicle (TV) requirements. The battery and output voltage of the DC-to-DC conversion systems stabilises at 12 V, which ensures consistent DC bus link voltage. The energy storage (battery) state-of-charge (SoC) is reserved in the range of 90% to 96%, thus increasing its lifespan by 8200 cycles. The battery is kept at the desired voltage to supply all connected loads on the DC bus at rated device voltage. The fully active topology model for hybrid LAB and supercapacitor provides a complete degree of control for individual energy sources, thus allowing the energy storage systems to operate as they prefer. Full article
(This article belongs to the Special Issue Renewable Energy Technologies for Sustainable Development)
Show Figures

Figure 1

12 pages, 3877 KiB  
Article
On the Limitations of Positron Annihilation Spectroscopy in the Investigation of Ion-Implanted FeCr Samples
by Vladimir Slugen, Jarmila Degmova, Stanislav Sojak, Martin Petriska, Pavol Noga and Vladimir Krsjak
Metals 2021, 11(11), 1689; https://doi.org/10.3390/met11111689 - 23 Oct 2021
Cited by 3 | Viewed by 2726
Abstract
New materials for advanced fission/fusion nuclear facilities must inevitably demonstrate resistance to radiation embrittlement. Thermal and radiation ageing accompanied by stress corrosion cracking are dominant effects that limit the operational condition and safe lifetime of the newest nuclear facilities. To study these phenomena [...] Read more.
New materials for advanced fission/fusion nuclear facilities must inevitably demonstrate resistance to radiation embrittlement. Thermal and radiation ageing accompanied by stress corrosion cracking are dominant effects that limit the operational condition and safe lifetime of the newest nuclear facilities. To study these phenomena and improve the current understanding of various aspects of radiation embrittlement, ion bombardment experiments are widely used as a surrogate for neutron irradiation. While avoiding the induced activity, typical for neutron-irradiated samples, is a clear benefit of the ion implantation, the shallow near-surface region of the modified materials may be a complication to the post-irradiation examination (PIE). However, microstructural defects induced by ion implantation can be effectively investigated using various spectroscopic techniques, including slow-positron beam spectroscopy. This method, typically represented by techniques of positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy, enables a unique depth-profile characterisation of the near-surface region affected by ion bombardment or corrosion degradation. One of the best slow-positron beam facilities is available at the pulsed low-energy positron system (PLEPS), operated at FRM-II reactor in Munich (Germany). Bulk studies (such as high energy ion implantation or neutron irradiation experiments) can be, on the other hand, effectively performed using radioisotope positron sources. In this paper, we outline some basics of the two approaches and provide some recommendations to improve the validity of the positron annihilation spectroscopy (PAS) data obtained on ion-irradiated samples using a conventional 22Na positron source. Full article
(This article belongs to the Special Issue Radiation Effects in Steels and Alloys)
Show Figures

Figure 1

20 pages, 6631 KiB  
Article
Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network
by Van Quan Dao, Minh-Chau Dinh, Chang Soon Kim, Minwon Park, Chil-Hoon Doh, Jeong Hyo Bae, Myung-Kwan Lee, Jianyong Liu and Zhiguo Bai
Energies 2021, 14(9), 2634; https://doi.org/10.3390/en14092634 - 4 May 2021
Cited by 58 | Viewed by 5157
Abstract
Currently, Lithium-ion batteries (LiB) are widely applied in energy storage devices in smart grids and electric vehicles. The state of charge (SOC) is an indication of the available battery capacity, and is one of the most important factors that should be monitored to [...] Read more.
Currently, Lithium-ion batteries (LiB) are widely applied in energy storage devices in smart grids and electric vehicles. The state of charge (SOC) is an indication of the available battery capacity, and is one of the most important factors that should be monitored to optimize LiB’s performance and improve its lifetime. However, because the SOC relies on many nonlinear factors, it is difficult to estimate accurately. This paper presented the design of an effective SOC estimation method for a LiB pack Battery Management System (BMS) based on Kalman Filter (KF) and Artificial Neural Network (ANN). First, considering the configuration and specifications of the BMS and LiB pack, an ANN was constructed for the SOC estimation, and then the ANN was trained and tested using the Google TensorFlow open-source library. An SOC estimation model based on the extended KF (EKF) and a Thevenin battery model was developed. Then, we proposed a combined mode EKF-ANN that integrates the estimation of the EKF into the ANN. Both methods were evaluated through experiments conducted on a real LiB pack. As a result, the ANN and KF methods showed maximum errors of 2.6% and 2.8%, but the EKF-ANN method showed better performance with less than 1% error. Full article
(This article belongs to the Special Issue Power Electronics and Energy Management for Battery Storage Systems)
Show Figures

Figure 1

23 pages, 4808 KiB  
Article
Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations
by Fatehy M. Abdel-Haleem, Sonia Mahmoud, Nour Eldin T. Abdel-Ghani, Rasha Mohamed El Nashar, Mikhael Bechelany and Ahmed Barhoum
Sensors 2021, 21(9), 3150; https://doi.org/10.3390/s21093150 - 1 May 2021
Cited by 35 | Viewed by 4708
Abstract
Levofloxacin (LF) is a medically important antibiotic drug that is used to treat a variety of bacterial infections. In this study, three highly sensitive and selective carbon paste electrodes (CPEs) were fabricated for potentiometric determination of the LF drug: (i) CPEs filled with [...] Read more.
Levofloxacin (LF) is a medically important antibiotic drug that is used to treat a variety of bacterial infections. In this study, three highly sensitive and selective carbon paste electrodes (CPEs) were fabricated for potentiometric determination of the LF drug: (i) CPEs filled with carbon paste (referred to as CPE); (ii) CPE coated (drop-casted) with ion-selective PVC membrane (referred to as C-CPE); (iii) CPE filled with carbon paste modified with a plasticizer (PVC/cyclohexanone) (referenced as P-CPE). The CPE was formulated from graphite (Gr, 44.0%) and reduced graphene oxide (rGO, 3.0%) as the carbon source, tricresyl phosphate (TCP, 47.0%) as the plasticizer; sodium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (St-TFPMB, 1.0%) as the ion exchanger; and levofloxacinium-tetraphenylborate (LF-TPB, 5.0%) as the lipophilic ion pair. It showed a sub-Nernstian slope of 49.3 mV decade−1 within the LF concentration range 1.0 × 10−2 M to 1.0 × 10−5 M, with a detection limit of 1.0 × 10−5 M. The PVC coated electrode (C-CPE) showed improved sensitivity (in terms of slope, equal to 50.2 mV decade−1) compared to CPEs. After the incorporation of PVC paste on the modified CPE (P-CPE), the sensitivity increased at 53.5 mV decade−1, indicating such improvement. The selectivity coefficient (log KLF2+,Fe+3pot.) against different interfering species (Na+, K+, NH4+, Ca2+, Al3+, Fe3+, Glycine, Glucose, Maltose, Lactose) were significantly improved by one to three orders of magnitudes in the case of C-CPE and P-CPE, compared to CPEs. The modification with the PVC membrane coating significantly improved the response time and solubility of the LF-TPB within the electrode matrix and increased the lifetime. The constructed sensors were successfully applied for LF determination in pharmaceutical preparation (Levoxin® 500 mg), spiked urine, and serum samples with high accuracy and precision. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

8 pages, 4773 KiB  
Article
Highly Efficient Small Anode Ion Source
by Vadim Dudnikov and Andrei Dudnikov
Plasma 2021, 4(2), 214-221; https://doi.org/10.3390/plasma4020013 - 25 Mar 2021
Viewed by 3177
Abstract
We describe some modifications to a Bernas-type ion source that improve the ion beam production efficiency and source operating lifetime. The ionization efficiency of a Bernas type ion source has been improved by using a small anode that is a thin rod, oriented [...] Read more.
We describe some modifications to a Bernas-type ion source that improve the ion beam production efficiency and source operating lifetime. The ionization efficiency of a Bernas type ion source has been improved by using a small anode that is a thin rod, oriented along the magnetic field. The transverse electric field of the small anode causes the plasma to drift in the crossed ExB field to the emission slit. The cathode material recycling was optimized to increase the operating lifetime, and the wall potential optimized to suppress deposition of material and subsequent flake formation. A three-electrode extraction system was optimized for low energy ion beam production and efficient space charge neutralization. An ion beam with emission current density up to 60 mA/cm2 has been extracted from the modified source running on BF3 gas. Space charge neutralization of positive ion beams was improved by injecting electronegative gases. Full article
(This article belongs to the Special Issue Low Temperature Plasmas for Ion Beam Generation)
Show Figures

Figure 1

Back to TopTop