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Abstract: Nowadays, the growing integration of renewable energy sources poses several challenges
to electrical energy systems. The latter need be controlled by grid rules to ensure their stability and
maintain the efficiency of renewable energy consumption. In this context, a novel HESS (hybrid energy
storage system) control strategy, combining the PV (photovoltaic) generator with FLC (fuzzy logic
control), SC (super-capacitor), and lithium-ion battery modules, is advanced. The proposed energy
control rests on monitoring of the low-frequency and high-frequency electrical power components
of the mismatch between power demand and generation, while applying the error component
of the lithium-ion battery current. On accounting for the climatic condition and load variation
considerations, the SC undertakes to momentarily absorb the high-frequency power component,
while the low-frequency component is diverted to the lithium-ion battery. To improve the storage
system’s performance, lifetime, and avoid load total disconnection during sudden variations, we
consider equipping the envisioned energy control design with controllers of SM and ANN types.
The MATLAB/Simulink based simulation results turn out to testify well the investigated HESS
control scheme’s outstanding performance and efficiency in terms of DC bus voltage rapid regulation,
thereby enhancing the battery’s lifetime and ensuring the PV system’s continuous flow.

Keywords: HESS; FLC; ANN; SM; SC; battery lifespan; PV system continuity

1. Introduction

The global challenges associated with electrical energy along with the related environ-
mental impacts have enhanced the integration of renewable power sources and the launch
of efficient smart micro-grid technologies [1,2]. Additionally, the increasing introduction of
renewable biomass has paved the way for boosting the electrical energy sector [3]. Low-
voltage micro-grids have drawn the interest of several researchers. A microgrid is an
autonomous small-scale power system incorporating several conventional and renewable
energy generating sources, energy storage systems (ESSs), and electrical power convert-
ers. Micro-grids can be operated autonomously or with the help of a utility grid [4–7].
The ability to generate and provide electricity to remote communities without the need
for high-voltage transmission and distribution systems, highly expensive and inefficient
over long distances, is a significant advantage a micro-grid can provide [8,9]. Owing to
its limited capacity and recurrent resource intermittency, however, sustaining a resilient,
high-quality, and dependent standalone microgrid turns out to be a difficult process [10].
With an intermittent profile, standalone electrical systems rely largely on ESSs. Currently,
the battery-reliant storage systems appear to offer a promising potential to reduce the
difficulties of demand-generation oscillations in the greatest real RAPSAs [11–13].
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In this respect, the lead–acid and lithium-ion batteries stand as the most commonly
useful energy storing devices, applied in standalone photovoltaic systems [13]. The energy
storage designed batteries are characterized with a great energy density and low-power
density, resulting in little charge/discharge rates [14]. As for both battery types’ respective
performance, the lead–acid battery associated loss rates are much higher, with loss figures
ranging between 15 and 20%, whereas the lithium-ion battery related losses are generally
inferior, with rates ranging between 2 and 8%. Another disadvantage of lead–acid bat-
teries is that they require a longer charging time than lithium-ion batteries. Inadequate
regular charging of lead–acid batteries, mainly during the winter season, can considerably
reduce the life span of such batteries. Comparatively, however, the SCs have a high power
and low energy density, usually resulting in frequent charge/discharge rates. The rele-
vant literature provides a comparison established between batteries and SCs associated
performance [15,16], as depicted in Table 1, below.

Table 1. The SCs versus batteries related performance.

SC Lead Acid Battery Lithium-Ion Battery

Density of specific energy (Wh/kg) 1–10 10–100 150–200
Density of specific power (W/kg) <10,000 <1000 <2000

Life-cycle >500,000 1000 5000
Charge–discharge efficiency (%) 85–98 70–85 99

Discharge time 0.3–30 s 0.3–3 h 0.3–3 h
Quick charge time 0.3–30 s 1–5 h 0.5–3 h

Several loads, such as the motor, air-conditioner, and refrigerator loads, require a
noticeable current input to start, usually ranging from 7 to 10 times the average operating
current. Moreover, the high current amount required by the load can be satisfied for
only a very short time (a few moments). To cope with this high power demand, battery
sizing, usually upgraded every 3 to 5 years, is usually a costly process. Hence, an ideal
ESS, fit for implementation in a standalone renewable system, seems worth applying,
enabling one to simultaneously maintain a high energy flow and a remarkable power
range capacity, as well as to be able to manage sudden climatic conditions and load
profile-related scenarios. Accordingly, our major purpose lies in combining the benefits
provided by lithium-ion batteries with SCs’ displayed advantages to come up with a novel
ESS architecture whereby both high energy flow and power density features could be
simultaneously maintained. Thus, deploying a special battery-SC design, we consider,
is likely to provide a greater lifetime enhancement process, wherein the size, stress, and
storage costs could be significantly reduced. Noteworthy, also, is that the envisaged
framework is conceived in such a way that ensures a smooth input/output power balance
(i.e., between production and consumption) could be persistently guaranteed.

It is worth recalling that a wide range of SC/battery power-share control algorithms
have so far been published, mainly in [13–26]. Most of these control strategies predomi-
nantly involve neural networks, rule-based and model predictive controls, as well as fuzzy
logic [17]. Actually, a special computation of the battery lifespan improvement associated
with the incorporation of an SC storage device has been provided in [22]. In [13], the
SC provided advantages, incorporated into a battery-based storage system regarding a
wind-based hybrid RAPSA, have been investigated. Accordingly, an EMA involving a
battery and an SC storage system has already been built in order to run both in a pre-
determined way. Special HESS microgrid-related applications were documented in [14].
Research dealing with decreasing battery stress through implementation of an SC has
been conducted in [18]. In [19], it has been proved that the HESS could reduce battery
costs while increasing overall system efficiency. In [20], an ANN was used to construct
and control an electrical-vehicle-devoted HESS. Moreover, a special rule-based control
system fit for adapting and integrating a battery storage system and solar-wind energy
sources has been elaborated on [21]. Still, the already-advanced solutions appear to display
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a number of limitations, relating mainly to the need for vast amounts of data storage
capacity and expensive computation processes. A special MPC, fit for implementation with
a hybrid electrical power source, is provided in [27,28]. The method’s major disadvantage,
however, lies in the complex mathematical processing it requires due to its heavy reliance
on the traditional MPC. In [23], several stand-alone HESS based REPS structures, such
as active, semi-active, and passive HESS, are displayed for the purpose of assessing their
technical and economical features. Similarly, a new topology of passive HESS based on
the PWM signal generation method is investigated in [24]. However, the entirety of these
suggested energy management strategic methods are not without any drawbacks, such as
low robustness against sudden variations of weather conditions and load and the complex
mathematical computation procedures they require. Worth citing, also, is the energy control
investigation study dealing with a PV–battery–diesel hybrid system conducted in [29]. In
the same vein of thought, the viability of a PV–battery–diesel hybrid system’s combined
dispatch control strategy is also investigated in [30], by integrating load following and
cycle charging processes. A special DC electrical microgrid system with improved energy
control strategy that rests on the PV modules, battery, and DC load is treated in [31]. In [32],
an adaptive dynamic-based EMS adapted to a series-parallel hybrid electric vehicle is
put forward. Actually, the strategy has been able to reduce equivalent fuel consumption
even further and helped maintain battery level limitations, while meeting vehicle elec-
trical power needs. Furthermore, an adaptive energy management strategy based on a
wireless sensor network is presented in [33]. Indeed, the energy shortage estimation is
brought out using information fusion. Furthermore, in the electric vehicles’ applications,
an online multi-mode management strategy founded on fuzzy logic control in order to
improve total energy efficiency and reduce battery power fluctuations is proposed in [34].
A new grid-interactive microgrid based on DC/DC multisource converter configuration
is presented in [35], consisting of wind, PV, and hybrid energy storage. The system was
operated in various operating modes using a control structure that was based generally on
a conventional regulator and a power-sharing scheme.

Actually, the basic idea of these strategies lies in the principle that the battery un-
dertakes to temporarily support the low-frequency range power component, while the
SC temporarily supports the high-frequency range power component. Furthermore, the
existing control strategies have drawbacks such as robustness in the worst-case scenario,
complexity, and the need for more mathematical computation. This paper presents an
improved ESS scheme for SCs and lithium-ion batteries. The suggested approach rests on
the principle of decoupling the power components into low and high frequency ranges,
while control of the SC is maintained through the current error component of the lithium-
ion battery. The proposed system is designed as a stand-alone photovoltaic system that
incorporates a PV panel, lithium-ion battery, and SC. As the system utilizes great power and
is liable to sudden weather conditions and load-associated variations, intelligent controllers,
specifically the ANN and SM controllers, are introduced to help overcome the classical con-
troller displayed shortcomings, mainly the switching problems. Indeed, the incorporated
controllers turn out to outperform the classical controllers in several ways, including the
aspect of robustness to sudden variations. Indeed, the SM and ANN controllers are used
in several applications such as an omnidirectional vehicle system, an active power filter,
and a PV system’s MPPT [36–38]. Still, these methods’ robustness implementation fit in the
hybrid renewable energy systems’ control strategy has not been tested, yet. Compared to
several already suggested schemes, the proposed approach exhibits the advantages of easy
implementation, low processing requirements, noticeable storage system performance, and
lifetime enhancement, in addition to helping avoid total disconnection of the load. It is to be
underlined also that the advantages of the proposed control strategy include faster voltage
regulation and reduced current stress levels on the lithium-ion battery. Further noteworthy
is that the present work treats climatic conditions and load profiles observed over 6-hour
to 18-hour time spans or intervals. In this context, a bidirectional converter is utilized to
facilitate the electrical energy flow between the continuous bus and the HESS. Moreover, to
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help extract the maximum electrical power amount from the PV generator to be transmitted
to the resistive load, a boost converter, controlled via an intelligent MPPT algorithm is
applied. Finally, it is important to highlight that the MPPT technique adopted in this study
is the FLC. Accordingly, this article turns out to be organized as follows. Highlights of the
DC electrical grid configuration are depicted in Section 2. Section 3 depicts the proposed
HESS control strategy design outlines. The relevant simulation results are presented in
Section 4. Finally, Section 5 involves a summary of the main ideas along with the major
concluding remarks.

2. DC Electrical Grid Configuration

HESS topologies are categorized into active, semi-active or passive, depending on
how storage elements are linked to a continuous bus. Passive HESS refers to energy storage
elements that are directly connected to the continuous bus, while active HESS occurs when
two energy storage devices are linked via a bidirectional converter to the continuous bus.
Figure 1, below, illustrates a stand-alone photovoltaic system involving a PV panel, lithium-
ion battery, and SC. It represents the PV generator, battery, and super-capacitor voltages,
wherein, Ipv, IB and IS denote, respectively, the PV generator, battery, and supercapacitor
currents, and C designates the filter capacitance. As for Lpv, LB and LS, they refer to the
filter inductance of the boost converter, the battery and the super-capacitor converters,
respectively, while S1, S2, S3, S4, and S5 are the control switches. Bidirectional converters
are used by active HESS to maintain the V0 continuous bus voltage constant. Equation (1)
gives the steady-state transfer function of the SC bidirectional converter:

V0 =
d1

1− d1
VS (1)

where: d1 represents the duty cycle of the SC buck-boost converter.
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The inductance of the SC buck-boost converter is obtained based on Equation (2):

LS =
d1 ∗V0

f ∆Ipv
(2)

where f denotes the frequency. The battery inductance calculation is the same as the SC
inductance.

This buck-boost converter is utilized to enhance electrical energy flow between the
HESS and the DC electrical grid. In the present study, the RAPSA’s total load is introduced
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as an equivalent DC load with resistance R. The PV, lithium-ion battery, and super-capacity
modeling are presented and discussed in several research papers [24,39].

The PV generator is connected to the DC electrical grid through a boost converter,
used to extract the PV generator’s maximum power, as controlled by means of an MPPT
algorithm. Indeed, the PV generator power is obtained through the following equation:

Ppv = Ns ∗ Np ∗Vpv ∗ Ipv (3)

Moreover, the boost converter transfer function is given by:

V0 =
1

1− d2
Vpv (4)

where d2 represents the boost converter duty cycle.
Concerning the boost converter sizing, the inductance, and output capacitor in the

function of the desired ripples amplitudes are given by the following equations: Lpv =
dVpv

f ∆Ipv

C = dI0
f ∆V0

(5)

where I0 represents the load current.
In general, the capacity of a lithium-ion battery is given by:

CB =
∫ t f

ti

IB
3600

dt (6)

where ti and t f represent the initial and final time, respectively.
The SC is nothing more than a simple capacitor with a large capacity for storing

electric charge. In HESS’s validating in PV systems, the SC model is accurate and simple as
presented by the following equation:

VS =
1

CSC

∫ t f

ti
ISdt (7)

where CSC represents the SC capacity.
The FLC is deployed to regulate the PV generator using data knowledge [39,40].

This FLC module involves the fuzzification, decision making, and defuzzification phases.
Figure 2, below, depicts the FLC block structure, wherein, E, CE, and the duty cycle
designate the FLC inputs and output. The following equation depicts the FLC inputs:{

E =
Ppv(k)−Ppv(k−1)
Vpv(k)−Vpv(k−1)

CE = E(k)− E(k− 1)
(8)

where k refers to the sample time.
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The fuzzification, inference and defuzzification stages are further explained below.



Energies 2022, 15, 4099 6 of 20

• Fuzzification: The fuzzification process entails that every variable used to define
the control rules need be described by the fuzzy set notations and linguistic labels.
Figure 3, below, highlights the MFs of the input and output variables. Each MF
comprises five fuzzy sets: SS, BS, ZO, SB, and BB (S and B represent low and high,
respectively).

• Inference: Developing the cartography applying the FLC of a given input to output
is referred to as the inference technique. In this study, a Mamdani fuzzy inference is
used. Table 2 depicts the relevant associated rules.

• Defuzzification: The FLC crisp output is computed throughout the defuzzification
phase. In our context, a defuzzifier of gravity center type is applied.
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Table 2. Table of FLC rules.

CE
E

SS BS ZO SB BB

SS BB BB SB BB BB
BS BB SB SB SB BB
ZO BS BS ZO SB SB
SB SS BS BS BS SS
BB SS SS BS SS SS

3. HESS Control Strategy
3.1. Conventional HESS Control Strategy

The conventional strategy is described through Figure 4 [41]. The major idea of this
management approach consists in enhancing the lithium-ion battery lifetime by reducing
the charging- and discharging-associated stress. In this study, the average voltage value
is compared to the reference voltage (Vre f ), while the error is received by the PI controller.
The PI controller of the ESS generates the entirety of current amount required. The current
Itot−re f is separated into low/high frequency components. The low-frequency component
is depicted through the following expression:

ILFC−re f = fLPF

(
Itot−re f

)
(9)
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where fLPF(.) denotes the function of the low pass filter. At this level, a rate limiter is
applied to the low-frequency component to help regulate the battery charge/discharge
rates, which yields the reference current of the battery as expressed by:

IB−re f = fRL

(
ILFC−re f

)
(10)

where IB−re f = fRL(.) refers to the rate limiter function. The actual battery current IB is
compared to the reference, yielding a current error of IB−err. The duty cycle DB is generated
by the PI controller in accordance with the value of IB−err. The PWM generator provides
the battery-switching pulses (S2 and S3) according to the duty cycle DB.
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Regarding the high-frequency component, it is derived on the basis of the following
expression:

IHFC−re f = Itot−re f − IB−re f (11)

Owing to sluggish dynamics, the battery may not monitor the IB−re f immediately.
Hence, the battery uncompensated electrical power turns out to be expressed as:

PB−uncomp =
(

IHFC−re f + IB−err

)
∗VB (12)

Accordingly, the latter is compensated for by the used SC. Therefore, the super-
capacitor reference current turns out to be expressed as:

IS−re f =
(

IHFC−re f + IB−err

)
∗ VB

VS
(13)

IS−re f is compared to IS, which provides the DS duty cycle in terms of the PI controller.
Thus, the super capacitor switches (S4 and S5) can be generated.

3.2. Proposed HESS Control Strategy

The block diagram of the improved HESS control strategy is presented in Figure 5,
below. The suggested control strategy represents an improved version of the method
put forward in [41]. In effect, the conventional strategy relies heavily on the PI controller
to maintain commutation of the switch. However, the PI controller is not without any
drawbacks, which reside mainly in the high initial overshoot, sensitivity to controller
gains, and slow response to unexpected disturbances. As to our proposed system, it is
designed to maintain a significant power flow and control, and to respond effectively to
sudden climatic condition and load variations. For this reason, we consider incorporating
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intelligent controllers into the proposed strategy to help overcome the classical controllers
encountered problems, mainly those associated with the switching problems.
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Indeed, the idea of the proposed HESS control strategy rests mainly on the ANN
and SM control units. These controllers have several features and tasks to perform, as
compared to the classical ones, such as the robustness aspect that takes into account the
sudden variations, thereby, improving the storage system performance and lifetime, while
avoiding the load’s total disconnection.

3.2.1. The ANN Controller

The ANN controller has recently gained remarkable interest in the energy-management
strategies [39]. The neural network architecture comprises three layers: input, hidden, and
output, with each layer involving a neuron (also known as a node) connecting it to the
multi-layer networks. It is worth highlighting that the ANN controller’s task encloses two
main stages: the training stage and the operational one. The ANN controller modeling
design is illustrated in Figure 6, below. Accordingly, the ANN controller-associated input
and output aspects are the IS−err current and DS duty cycle, respectively. Note that the
IS−err current is the difference between the (IS and IS−re f ) currents.
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The ANN model is established by means of the MATLAB/Simulink environment.
Figure 7, below, illustrates a feedforward NN model with two neurons in the input layer,
ten neurons in the hidden layer, and a single neuron in the output layer. The Levenberg–
Marquardt algorithm has been utilized to train a set of duty cycle DS data points based
on simulation.
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It is also worth underlining that the training performance curve, as appearing in
Figure 8, below, illustrates that the MSE attained error is of the rate of 0.127 after 811 epochs.
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3.2.2. SM Controller

The VSC associated sliding regimes are distinguishable through the control disconti-
nuity dimension, which helps in specifying a desired system’s dynamic (also dubbed SM).
Such dynamics are accomplished by selecting proper variety spaces that provide adequate
switching, resultant from the desired behavior of the closed loop systems. Consider, for
instance, the following state equation structure [39]:

.
Y(t) = FY + BU (14)

where Y stands for the state vector (Y ∈ Rn), and U denotes the control vector (U ∈ Rm).
The relevant sliding mode control action turns out to be:

U = Ueq + ∆U (15)

where Ueq denotes the so-called equivalent control to remain on the sliding surface (S(Y) =
0), and ∆U represents the desired term fit for maintaining a stable hybrid system exterior
to the sliding surface, particularly convenient for poorly modeled electrical systems and
persistent external variations or disturbances.

The S(Y) function must be selected to meet such a condition that when S(Y) = 0, Y
shifts back or reverts to the target state Ŷ. The SM controllers’ essential premise is to entice
the system to reach and remain on the sliding surface, i.e., S(Y) and

.
S(Y) must be equal to

zero, such as:

S(Y) = (
d

dY
+ λ)

j−1(
Ŷ−Y

)
(16)

where: j denotes the number of times necessary to generate the derivative surface to gain
control, and λ represents a constant that is positive.
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Regarding the equivalent control,
.
S(Y) is defined as:

.
S(Y) =

dS
dY

(F(Y) + B(Y)U(t)) = 0 (17)

Based on the matrix regularity dS
dY B(Y), and given:

Ueq = −( dS
dY

B(Y))
−1 dS

dY
F(Y) (18)

The control discontinuous term is provided by:

∆U = −( dS
dY

B(Y))
−1

U0sign(S) (19)

with: U0 standing for a positive diagonal matrix.
Considering the following Lyapunov function:

Vl(x) =
1
2

STS > 0 (20)

The function of time derivative turns out to be:
.

V l(x) = U0|S| < 0 (21)

Hence, the control laws (14, 17 and 18) should help maintain the system’s stabilization
(13) [42,43]. According to these works, the PI controller is substituted with an SM controller.
Consider, for instance, the following sliding function S(Y):

S(Y) =
(

IB−re f − IB

)
+ λ

∫ (
IB−re f − IB

)
dt (22)

The relevant switching state equation is provided by:

U = 1−U0sign(S) (23)

with: U0 designating a positive gain maintained by:{
U = 0; i f S > 0
U = 1; i f S < 0

(24)

4. Simulation Results

The designed HESS control strategy implementation is administered by relying on
MATLAB/Simulink, as depicted in Figure 9, below.

On executing the present work, a PV generator of 5329 W power is applied. The
generator englobes four modules connected in series with four parallel strings. With
reference to Figure 10, the adapted PV array type is the 1Soltech 1STH-215-P. The entirety
of the designed HESS control system’s parameters figure on Table 3.

It is important to note that to testify the advanced architecture’s high performance, the
design is compared to a number of renown conventional strategies, while accounting for
all possible sudden variations. Actually, it is characterized with the ability to account for
any weather condition and load power variations over an enlightened day, as illustrated
through Figure 11.
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Table 3. The proposed HESS parameters.

PV Generator Parameters

Maximum power 5329 W
Voltage at MPP 181.5 V
Current at MPP 39.2 A

PV module series and parallel strings Ns = 5, Np = 5

DC/DC converter and line parameters

DC bus voltage 400 V
S1, S2, S3, S4 and S5 IGBT/Diode
Switching frequency 10 kHz

Capacitor (C) 3300 µF
DC/DC converter inductor Lpv = 5 mH, LB = 2 mH, LS = 1 mH

Super capacitor parameters

Voltage and Capacity 2.7 V, 310 F
Module and array (Nsc = 5, Npc = 2) × 20 series

Battery parameters

Battery model Lithium-ion
Voltage 220 V

Capacity 50 Ah
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Figure 11. Climatic-condition and load-current variations observed over a 6–18 h span. Legend:
(a) irradiation; (b) temperature; and (c) load current.

As for Figure 12, it depicts the PV generator’s power and load power profile. Accord-
ingly, the PV generator emanating power proves to be higher at times, and at other times
lower than the load generated power over time periods or intervals (6–9 h 11 min, 10–10 h
51 min, 12 h 7 min–13 h 30 min, and 13 h 54 min–16 h 12 min) and (9 h 11 min–10 h, 10 h
51 min–12 h 7 min, 13 h 30 min–13 h 54 min, and 16 h 12 min–18 h), respectively.
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Figure 13, below, depicts the PV system as observed under climatic condition as
well as load variations. Judging by Figure 13, and considering the instants t1, t2, and t3
characterized with noticeably high weather condition and load variations, one can well
confirm and testify the investigated method’s robustness in terms of output voltage, which
still proves to be equal to the reference voltage level (400 V), as depicted in Figure 13a.
Noteworthy, also, is that the load’s high and low variations are characterized with a
great increase and decrease in the load current, respectively, as depicted in Figure 13b.
Indeed, the DC voltage peak variations are equal to approximately 1% of the reference
voltage. Accordingly, the level of the continuous bus voltage fluctuations remains relatively
acceptable and does not seem to affect the accuracy of the investigated HESS control
strategy. When demand is unexpectedly reduced, for instance, at the instant t3, the output
voltage turns out to be proportionally increased. Based on Figure 13c,d, however, and for
the sake of maintaining the output voltage at a 400 V level, the super-capacitor undertakes
to momentarily absorb the high-frequency component of excess supply, while the lithium-
ion battery current takes a longer lapse to reach a stable state [44,45]. Indeed, the rate of the
battery’s charging current is very low. It is also worth noting that the lithium-ion battery’s
current stress is still remarkably minimal, meaning that it contributes in enhancing the
battery’s life span, as compared to the other energy-management schemes.

When the demand is unexpectedly increased, for instance at instants t1 and t2, the
output voltage will decrease proportionately. The supercapacitor would provide the surplus
demand for a brief period for a regular voltage level to be maintained at a 400 V level,
and divert the component of the low frequency to the lithium-ion battery, as illustrated in
Figure 13c. Hence, the battery current discharge stress would be very low, thereby boosting
the battery life, as compared to the conventional management strategies.

Figure 14a,b indicate the SOC of the battery and supercapacitor, respectively. Referring
to Figure 14, the battery and supercapacitor charge and discharge are maintained in confor-
mity with the advanced HESS control strategy. It is worth highlighting that to demonstrate
the robustness of the proposed HESS control strategy, a real climatic conditions profile is
necessary to implement with all possible load-variation considerations.
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To compare the proposed method’s performance and that of the conventional method,
irradiation increase and decrease step scenarios are selected, accounting for a temperature
of 25 ◦C, as illustrated in Figure 15a,b, and a load power of 2703 W, as depicted in Figure 16,
wherein the PV tends to vary with variations in climatic conditions.
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Figure 16. The PV generator and load power.

As illustrated through Figure 17, both methods’ DC bus voltage simulation results are
depicted. They illustrate well that the continuous bus voltage tends to increase and decrease
proportionately to the increase and decrease in the PV generator’s power. Actually, the
super-capacitor’s supply and demand surpluses are momentarily absorbed to continuously
maintain the bus voltage at a 400 V level, as illustrated through Figure 17. The low-
frequency component is diverted to the battery, thereby, maintaining current stress at a
noticeably low level. According to the already displayed results, the designed HESS control
strategy appears to offer rather prompt voltage regulation and lower oscillation (zoomed
output voltage) than the conventional HESS control strategy.
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In addition, a step increase and a step decrease in the load power are also observed,
considering the standard climatic conditions (25 ◦C and 1000 W/m2), as illustrated in
Figure 18. Accordingly, the PV generator is set to its maximum power. Figure 19 highlights
the continuous bus-voltage simulation results relevant to both of the conventional and
proposed methods. Accordingly, the DC bus-voltage tends to decrease and increase in
proportion with the increase and decrease in load power. The supercapacitor undertakes to
supply the demand and supply surpluses for a very short time lapse, and gradually returns
the steady-state current to the lithium-ion battery, thus maintaining the battery current
stress to a very low minimal level.
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Actually, it is this very low current stress that helps enhance the battery’s life cycle.
According to the attained simulation results, the suggested strategy proves to demonstrate
a faster DC bus voltage regulation than the conventional strategy, as highlighted through
Figure 19, below (zoomed are). In sum, considering the possibly recurrent climatic condi-
tions and load variations, the SC undertakes to momentarily absorb the high-frequency
component. As regards the low-frequency component, it is diverted to the lithium-ion
battery, thereby decreasing the battery charging and discharging current peaks, and increas-
ing the battery’s life cycle, as compared to the other conventional management strategies.
The load power-supply continuity is ensured, considering the climatic-condition varia-
tions, thanks to the implementation of the super-capacitor. Additionally, the proposed
strategy appears to guarantee a rather swift voltage regulation and lower oscillation levels
in relation to the conventional method.

5. Conclusions

In this paper, the investigated HESS control rests on monitoring the low-frequency and
high-frequency power components of the demand/generation mismatch, while deploying
the battery current error to achieve the targeted results. For the purpose of maintaining
robustness of the investigated HESS control, taking into account the sudden scenarios of
unexpected climatic-condition and load variations, SM and ANN controllers are utilized
to boost the storage system’s performance and lifetime, while avoiding the load’s total
disconnection. Compared to the already-existing schemes, the proposed strategy turns out
to be easier to implement and involves less processing. Considering the climatic-condition
and load variations, the peak variation in continuous bus voltage is approximately equal to
1% of the reference voltage, thus maintaining the continuous bus voltage fluctuation rate at
a relatively acceptable level. It does not affect the accuracy of the investigated HESS control
strategy as compared to the other HESS strategies. Taking into account these variations,
the SC undertakes to momentarily absorb the high-frequency component. As regards the
low-frequency component, it is diverted to the lithium-ion battery, thereby decreasing the
battery charging and discharging current peaks, and increasing the battery’s life cycle,
as compared to the other conventional management strategies. Actually, the preconized
HESS control strategy, jointly associating the PV generator and FLC as well as the SC
and lithium-ion battery modules, has been implemented by means of MATLAB/Simulink.
Finally, the reached simulation results turn out to highlight the investigated HESS control
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strategy’s outperformance, efficiency, and supremacy over the conventional ones in terms
of promptly continuous bus voltage regulation, low oscillations, as well as capability to
boost the battery’s lifetime, and maintain the PV system’s continuity and persistence. The
proposed work can be expanded to other hybrid energy systems using machine and deep
learning in the control strategy in light of future directions.
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Abbreviations

RAPSAs Remote area power system applications
HESS Hybrid energy storage system
PV Photovoltaic
SC Super capacitor
DC Direct current
MPPT Maximum power point tracking
FLC Fuzzy logic controller
EMA Energy management algorithm
MPC Model predictive controller
MF Membership function
ANN Artificial neural network
SM Sliding mode
VSC Variable structure control
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