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Abstract: New materials for advanced fission/fusion nuclear facilities must inevitably demonstrate
resistance to radiation embrittlement. Thermal and radiation ageing accompanied by stress corrosion
cracking are dominant effects that limit the operational condition and safe lifetime of the newest
nuclear facilities. To study these phenomena and improve the current understanding of various
aspects of radiation embrittlement, ion bombardment experiments are widely used as a surrogate
for neutron irradiation. While avoiding the induced activity, typical for neutron-irradiated samples,
is a clear benefit of the ion implantation, the shallow near-surface region of the modified materials
may be a complication to the post-irradiation examination (PIE). However, microstructural defects
induced by ion implantation can be effectively investigated using various spectroscopic techniques,
including slow-positron beam spectroscopy. This method, typically represented by techniques of
positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy, enables a unique
depth-profile characterisation of the near-surface region affected by ion bombardment or corrosion
degradation. One of the best slow-positron beam facilities is available at the pulsed low-energy
positron system (PLEPS), operated at FRM-II reactor in Munich (Germany). Bulk studies (such
as high energy ion implantation or neutron irradiation experiments) can be, on the other hand,
effectively performed using radioisotope positron sources. In this paper, we outline some basics
of the two approaches and provide some recommendations to improve the validity of the positron
annihilation spectroscopy (PAS) data obtained on ion-irradiated samples using a conventional 22Na
positron source.

Keywords: nuclear reactor materials; ion implantation; radiation damage; positron annihilation

1. Introduction

The structural materials for advanced nuclear facilities, including GEN IV reactors,
must be designed to withstand exposure to harsh radiation, thermal, and corrosion envi-
ronments during a long-term operation. Water radiolysis reaction caused due to ionisation
leads to the creation of gaseous hydrogen and oxygen, as well as to the formation of
hydrogen peroxide. This leads to the creation of surface passive films that can be observed
on almost all alloys in the form of chromium oxides, mostly due to Cr(VI) species [1].

Irradiation-induced damage of austenitic alloys foreseen for in-core use is a well-
known generic problem in many nuclear power reactors. Since the mid-1970s, this process
was observed and analysed in highly stressed core components, but only a limited number
of studies reported experiments with exposure to fast neutrons (>1 MeV) over a ‘threshold’
fluence level (5 × 1020 n·cm−2) [1]. Radiation damage was also demonstrated at fluences
lower than 5 × 1020 n·cm−2 mostly in so-called heat-affected zones near-weld welds.
However, in these conditions, the cracking probability may be dominated by other factors
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such as thermal condition, fabrication procedures, coolant purity, levels of fast neutron
flux and/or fluences, residual stresses in welds and closed regions, and a combination
of these factors. Moreover, in-core neutron irradiation of nickel-based alloys leads to the
production of helium, which has a significant impact on radiation-induced defects [2–5].

Long-term development of materials for nuclear power technology (stainless steels or
special alloys) points out that irradiation causes changes in the corrosion potential and can
substantially influence the grain boundary composition. From the nuclear safety point of
view, changes in yield strength have the highest importance. All mentioned changes due to
high radiation flux affect the cracking susceptibility. On the other hand, the changes driven
by high neutron fluences, which can be observed in radiation hardening, segregation, or
transmutation helium production, can limit the designed operation lifetime or its later life-
time prolongation. As reported in [1], the irradiation influence on crack propagation should
consider the following items: (i) corrosion potential and its change with radiation flux;
(ii) irradiation-induced changes in grain boundary composition; (iii) irradiation-induced
hardening; (iv) for displacement-loaded structures, radiation creep stress relaxation.

In some GEN IV concepts (dominantly in supercritical water reactors (SCWR)), the
operating temperatures are higher than at light water-cooled reactors of previous gener-
ations, and corrosion conditions are more severe [6,7]. This predominantly requires the
use of corrosion-resistant materials such as nickel-based alloys. These, however, lead to
a non-negligible production of helium through a two-step reaction (58Ni + n = 59Ni + γ;
59Ni + n = 56Fe + α) involving neutron absorption by a naturally abundant isotope of
nickel 58Ni. The production of helium and its effect on the stabilisation of radiation-induced
vacancy-type defects result in additional radiation embrittlement.

Actually, various spectroscopic techniques are more frequently used in the inves-
tigation of materials changes on the microstructural level with the aim to characterise
radiation-induced defects. In addition to transmission electron microscopy (TEM), atom
probe tomography (APT), focused ion beam/scanning electron microscopy (FIB/SEM),
synchrotron radiation techniques, micro-X-ray diffraction (XRD), small-angle neutron
scattering (SANS), and positron annihilation spectroscopy (PAS) techniques are widely
employed in studies concerning radiation effects on materials. All these techniques have
special abilities to collect unique information about irradiation-induced microstructural
changes and can contribute to the validation of theoretical models. The irradiation accel-
erated stress corrosion cracking (IASCC) in austenitic stainless steels is more significant
above a radiative fluence threshold of about one displacement per atom (dpa). Further,
in nickel-based superalloys, IASCC is sensitive to the presence of impurities such as P, B,
Si, or S. The performance of structural materials, previously used in PWRs or LWRs, in
SCWRs conditions, is being currently tested in various ongoing studies [8]. The details will
depend on precisely how the SCW water chemistry is different.

At significantly elevated temperatures, hydrogen can be released as one of the results
of metal surfaces oxidation processes. It should be noted that in the operating conditions
of SCWR, hydrogen is created as a radiolytic breakdown of water. In addition to conven-
tional mechanical testing techniques (tensile, fracture toughness, etc.) characterising bulk
properties of materials, it is important to investigate the applicability of surface and near-
surface techniques sensitive to regions affected by a combination of corrosion and radiation
degradation. Such a study requires a detailed understanding of the depth-sensitivity of
the used methods and precise control of the damage distribution in accelerated irradiation
experiments with light ions. We considered both these requirements in our long-term
material study focused on the near-surface region of selected alloys foreseen for possible
applications in nuclear installations via experimental radiation simulation via light ions
(hydrogen, helium) implantation using our 6 MV Tandetron [9].

In this work, we address the limits of positron annihilation spectroscopy in the context
of studies aimed at near-surface microstructural characterisation. In particular, we discuss
the feasibility of using conventional unmoderated radioisotope sources in providing certain
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information on the trend of the evolution of radiation-induced changes in ion-implanted
FeCr samples.

2. Application of Positron Annihilation Spectroscopy in Different
Irradiation Experiments

While numerous papers have been published in the past on the PAS characterisation
of accelerated material ageing studies [2,4], only a few studies until now addressed the
question of the efficiency of the positron probing of the particular (e.g., ion-beam-modified)
target volume. This is often a significant problem in the reproducibility of the PAS data,
obtained from very different profiles of displacement damage where a major part of the
signal might come from the undisturbed bulk rather than from the implanted layer. It
is not the purpose of this work to discourage such studies but rather to provide some
practical guidelines for approaching and carrying out some valuable information that can
potentially compare different sets of irradiation experiments data.

Based on our experience with different irradiated nuclear materials [10–12], we aimed
to provide an experimental validation of theoretical simulations of radiation effects us-
ing light ion implantation. Previous studies were mostly oriented on radiation-induced
vacancy-type defects, their volume, and concentrations dependent on different fast neutron
fluxes and fluences at reactor pressure vessel (RPV) steels [13]. Various non-destructive
analyses performed were usually motivated by demand from authorities operating nuclear
facilities to optimise the RPV annealing temperatures and to recover the RPV steels’ me-
chanical properties to achieve a safe and long-term operation. In addition to irradiated
RPV surveillance specimens, we participated in the development and characterisation of
reduced activation ferritic/martensitic (RAFM) steels with improved chemical composition.
In recent years, we use PAS techniques also for research materials foreseen in Generation IV
and thermonuclear fusion, which are expected to face increased displacement damage and
higher operating temperatures. For the experimental simulation of high radiation damage,
we typically use light ion bombardment [14–16].

The neutron embrittlement of nuclear structural materials is a complex topic depend-
ing on the actual type of steel used, neutron spectrum and corresponding transmutation
reactions, and testing temperature, as well as on the availability of bulk samples. Many
complementary spectroscopic methods have been developed to enable relevant investiga-
tion of miniaturised specimens and near-surface regions [17,18] to unravel the complex
microscopic mechanisms responsible for neutron embrittlement of treated materials [19–22].
In reactor pressure vessel steels used in Russian nuclear power plants, it was generally
accepted that irradiation-induced carbides are responsible for strengthening and radiation
embrittlement [23,24]. In western European steels, which contain higher residual levels of
copper and phosphorus, so-called radiation-enhanced diffusion can occur at temperatures
over 300 ◦C. It forms small clusters which contribute to embrittlement. Neutron irradiation,
together with thermal treatment, increase damage in the microstructure via small clusters
formation (<5 nm in diameter). These new obstacles cause an increase of the yield stress as
well as hardness and the ductile–brittle transition temperature.

The neutron embrittlement from the PAS point of view can be registered by changes
in positron lifetimes which increase with radiation-induced vacancy type defects (point
defects, screw, and edge dislocations, as well as small vacancy clusters) [25,26].

We focused our newest effort on ion (mostly H+, He++) implantation, which could
be considered as an experimental simulation of radiation damage induced by neutrons
due to a reasonably low (yet still accelerated) displacement damage rate. Implantation
depth depends on the energies of the accelerated ions and usually ranges up to several
micrometres. This is a near-surface region usually containing a corrosion layer, so the
interpretation of the results is neither easy nor straightforward.

The aim of this paper is to discuss the feasibility of using conventional unmoderated
radioisotope positron sources (particularly the 22Na) for the investigation of radiation-
induced defects in ion-beam-modified samples. While the utilisation of slow-positron beam
techniques to characterise the microstructural damage introduced by ion implantation is
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widely used by material scientists, radioisotope sources are often considered unsuitable for
any charged particle irradiation experiment. In this paper, we demonstrate two different he-
lium implantation experiments and discuss the possibility of using a Kapton-encapsulated
22Na source for the investigation of radiation damage in the microstructure of FeCr steels.

Since the early applications of positron annihilation lifetime spectroscopy (PALS), the
radioisotope—22Na with maximum beta energy of about 545 keV is most frequently used
as the positron source. Due to this energy, positrons can probe a depth in steel samples up
to 100 micrometres. On the other hand, a slow-positron beam system such as the pulsed
low-energy positron system (PLEPS) [27–29] investigates only a region up to 1 micrometre,
using monoenergetic positrons with variable energy up to a few tens of keV. While the
conventional PALS technique can provide primarily the bulk information, slow-positron
beam data must inevitably consider the sample surface as a possible sink for radiation-
induced defects as well as a trap for positrons. Measurement and interpretation of data
obtained on thin multilayer systems and/or specimens with unsteadily distributed defects
is, therefore, often a complicated task.

The implantation profiles of 22Na positrons are generally well known and depend
mostly on materials densities [30–32]. There is, however, a problem with the accuracy of
data for the near-surface region. In our previous studies, we have used positron stopping
profiles either described by a single exponential law based on [31] or by a sum of two
exponential functions based on [32]. We have also estimated the implantation profile by a
simple discretisation of the continuous beta spectrum of 22Na and by theoretical estimation
of mean implantation depth calculated for individual energy intervals.

Based on theoretical and empirical knowledge [33], the mean stopping depth of the
positron into the sample, z, is the penetration depth of mono-energetic positron with energy
E (in our case, we use Emax = 0.545 MeV) and to the density of the positron bombarded
material ρ as follows:

z[cm] =
AE[keV]n

ρ[g·cm−3]
(1)

Generally, A = 40 g·cm−2·keV−n and n = 1.6 are empirically determined constants,
which can be used for most materials. The shape of the positron implantation profile is
connected to the positron implantation energy. The so-called Makhovian distribution can
be calculated according to Equation (2).

P(z, E) =
mzm−1

zm
0

e−(
z

z0
)m

, (2)

where z0 is related to the mean implantation depth by z0 = 2z√
π

, and the shape parameter
m = 2 [33].

In the slow-positron technique, the shape of Makhovian distributions strongly de-
pends on positron energy. The ability of positrons from slow-positron beams to penetrate
into the material is limited and depends on characteristics explained in connection to Equa-
tion (1) but also on the positron energies (see Figure 1). It is important to note, however,
that the range selectivity of the positron as a probe is significantly diminished for energies
above ~10 keV. As can be seen in Figure 1, an approximate FWHM value (full width in half
of the maximum) of 18 keV positron beam in Fe is higher than the actual mean stopping
depth. In other words, the obtained annihilation signal comes roughly from a depth of
400 nm ± 200 nm. In a narrow near-surface implantation profile, this might probe the
whole damage peak with a non-negligible contribution of deeper undisturbed bulk.

In contradiction to the slow-positron stopping profiles, the behaviour of fast (conven-
tional) positrons is different. According to the theoretical considerations and calculations
referred to above, the maximal level of depth of 22Na positrons implanted in Fe is close to
100 µm, with about 95% positrons stopped in 60 µm, and the mean implantation depth is
of about 27 µm. In this paper, we address an ‘extreme’ case of using Kapton-encapsulated
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22Na source for investigation of ion-bombarded Fe-Cr-C alloys with as thin as 1 micrometre
of a severely damaged layer.
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3. Irradiation Experiments and PAS Characterisation

Various irradiation experiments utilising particularly light ions were performed or
are being performed at the ion-beam laboratory of the Slovak University of Technology,
located in Trnava, using the 6 MV Tandetron accelerator [9]. A schematic of this accelerator
with photos of the facility and irradiation chambers is shown in Figure 2.
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The current design of a sample holder at the STU 6 MV Tandetron accelerator for a
helium implantation experiment is shown in Figure 3. Samples of various f/m steels were
mounted so that every sample contained two edges shielded with washers, providing an
unirradiated reference area for various surface investigations (e.g., nanoindentation and
atomic force microscopy).
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accelerator at STU.

To assess the applicability of radioisotope positron sources in studies concerning
low-to-medium energy ion implantations (i.e., a maximum of few tens of micrometres
deep layers), positron stopping profile was experimentally measured and compared with
GEANT4 (CERN, Geneva, Switzerland) simulation using the same-source sandwiched
geometry. In this experiment, a Kapton-encapsulated 22Na positron source was used. This
source was sandwiched in between two stacks of Fe foils backed by either a polyimide
sheet (Grade Upilex; Goodfellow Cambridge Ltd., Huntingdon, UK) or Si monocrystal.
These ‘backing materials’ were used due to their characteristic lifetime 220 ps or 382 ps,
respectively. The Fe foils of thickness ranging from 1 µm were available from a commercial
supplier. To determine the positron absorption in Fe, the source contributions were calcu-
lated for selected thicknesses. Finally, the source contribution varied in range, i.e., 8 and
23% for the 1 µm and 135 µm Fe foil, respectively. Our digital positron lifetime spectrometer
setup was used for scheduled measurements. The timing resolution (FWHM) was stable
at the level of about 167 ps. The lifetime spectra with more than 1 × 106 counts were
measured by use of a conventional 22Na positron source with an activity of about 3.5 MBq.
The spectra were deconvoluted via the LT program [34]. Due to possible microstructural
defects in the investigated Fe foils, produced in the manufacturing process, which could
be potentially mistaken for the ‘backing material’, all measurements were performed with
both, Si and UPILEX backing. Having the lifetime data obtained using both materials,
with substantially different characteristic positron lifetimes (220 ps for Si and 382 ps for
UPILEX), we were able to reliably subtract the source contribution.

The positron stopping profile obtained from the PALS experiments can be seen in
Figure 4, together with the two-exponential approximation from [32]. As can be seen
from Figure 4, the theoretical simulation differs considerably from the experimentally
obtained stopping profile [35], particularly in the range 5–50 µm. A possible reason for
this discrepancy is the difference between the simplified simulation geometry and the real
geometry used in our experiments. It seems that, while the theoretical simulation using
the GEANT4 code provides a reasonable quick estimation of the positron stopping for
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simple models, complex geometries utilising various laboratory-made positron sources
and realistic samples still require an experimental approach. Therefore, in further analysis,
we used the stopping profile described by the exponential fit from Figure 4. For more
details on the experiment using stacking foil samples, readers are referred to [35].
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4. Results and Discussion

To assess the limits of the applicability of the 22Na source in the characterisation of
near-surface displacement damage in ion bombardment experiments, we investigated three
Fe-Cr-C alloys with different amounts of Cr content, implanted by 250 keV helium ions to
five different fluencies. Using our experimental positron stopping profile, we calculated
the mean values of displacement damage levels (dpa) for all ion fluencies. These values
were averaged over the whole positron stopping profile, including the un-implanted zero-
damage values in deeper bulk. As can be seen in Figure 5, they are considerably lower
than the dpa peak values. It is worth noting that the presented correction of displacement
damage values using any positron stopping profile (based on either theoretical simulation
or experimental data) provides more realistic data for further interpretation. As long as
the ion-implantation damage peak is not situated well below the 90% positron range, the
positron stopping profile must be considered in the reporting of the dpa values.

Figure 6 shows the positron mean lifetime (MLT) as a function of dpa. The MLT, as a
statistically most reliable parameter, clearly shows that non-negligible positron trapping
at radiation-induced defects has been observed after the 250 keV He implantation. It is
important to note that the contribution of the positrons trapped at radiation-induced defects
is reduced by helium occupying some of these defects and also by blistering and partial
exfoliation (reaching up to 15% at the highest fluence) of the implanted layer. Although this
experiment did not allow to us perform any quantitative analysis of the radiation defects
in the studied samples, it confirmed that the introduced damage can be distinguished by
positrons from conventional radioisotope positron sources.

It is also important to note that while the dpa values corrected to positron stopping
profile provide a better estimation of displacement damage in the probed region, the num-
ber of displacements per atom is just one of the irradiation parameters to consider. The
irradiation temperature and the helium concentration profile are often the most important
parameters affecting the behaviour of the irradiated material. A detailed discussion on
the effect of the displacement damage and helium production rates on the microstructural
evolution of irradiated f/m steels was published in our previous paper [36]. For compar-
ison, similar damage ~10 dpa but with a much lower concentration (production rate) of
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helium (<2000 appm) led to a positron mean lifetime of 200–220 ps in f/m steel irradiated
in spallation neutron target [37]. Nevertheless, the trend of the evolution of the displaced
microstructure can be reasonably captured by the presented approach.
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Figure 6. Average values of the positron mean lifetime for three Fe-Cr-C alloys implanted to five
different fluencies.

Here, an implantation profile produced in Fe by consequential implantation of He
ions with energies 12.5, 10, and 7.5 MeV is discussed. Considering lattice-binding energy of
40 eV and using the ‘quick Kinchin–Pease’ calculation option, such implantations result in
a production of about 140, 160, and 180 stable vacancies per ion, respectively. The vacancy
production was calculated using the Norgett–Robinson–Torrens (NRT) model [38], which
does not consider the temperature-depending recombination processes. Displacement
damage distribution is similar to Bragg profile, where the maxima of implantation depth
are close to 19, 29, and 40 mm, respectively (Figure 7). These thicknesses can be assigned to
52.2, 64.7, and 74.7% of 22Na positrons probing the region modified by ion implantation.
To provide a more accurate number of produced vacancies with respect to the applied
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PAS technique, the SRIM data were again averaged over distance (depth), reflecting the
shape of the positron stopping profile. Thus, we obtain 3.50, 2.80, and 2.04 stable vacancies
per implanted ion for the 7.5, 10, and 12.5 MeV He ions, respectively. It can be assigned
to ≈1.94%, 1.55%, and 1.20% of the displacement damage which was caused by performed
ion implantation. In the first approach, this sensitivity of the PALS technique seems quite
poor. On the other hand, the contribution to the total displacement damage value obtained
from SRIM is primarily from the Bragg peak region, while the positron annihilation signal
comes mostly from the area in between the narrow peaks. The actual data provided by
PALS characterisation are, in fact, much more realistic in terms of displacement damage,
and the interpretation of the results is more relevant and accurate compared with the
interpretation using direct SRIM data.
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Figure 7. Depth profiles of vacancies distribution according to implantation energies. The weight
function characterising the stopping of positrons from the 22Na source was obtained from the
experiment illustrated in Figure 4 and depicted the logarithmic scale.

When we consider the maximum acceleration energy for He ions, available at the
Tandetron accelerator at STU, we can propose an irradiation experiment inducing damage
layer in steel as much as 70 µm. To obtain a quasi-uniform profile, we simulated an
experiment with consequent implantation of 10 different ion energies, ranging from 4.5 MeV
to 18 MeV, with a total fluence of 5.5× 1017 cm−2. Detailed parameters of such implantation
are listed in Table 1. The number of vacancies was calculated using data provided by
the SRIM output file vacancy.txt file, as well as by using the NRT model using damage
energy Tdam [37]. As can be seen in Table 1, the NRT formula results in higher values (by
about 35%) than the ones obtained from SRIM. Additionally, dpa values were obtained
from the number of generated vacancies and iron atoms. By integrating of displacement
damage profile (black squares in Figure 8), we obtain average displacement damage of
0.204 dpa, produced by the given He implantation. After correcting the dpa value to the
22Na positron stopping profile, we obtain 0.064 dpa (the corresponding profile is in blue
circles in Figure 8), i.e., only about one-third of the actually implanted damage.
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Table 1. Proposed multi-energy He-implantation characteristics.

Implantation 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Energy [keV] 18,000 16,500 15,000 13,500 12,000 10,500 9000 7500 6000 4500

Max. penetration
depth [um] 71.5 62.5 52.5 44.5 37.5 30 24 18 13.5 9.5

Energy loss to
phonons from Ions 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0004 0.0005

Energy loss to
phonons

from Recoils
0.0009 0.001 0.001 0.0011 0.0012 0.0013 0.0014 0.0016 0.0019 0.0024

Vacancies/Ion
from SRIM 146 136.8 133 130.4 124.4 121.4 113.7 106.2 102 94.7

Tdam for NRT
calculations [keV] 19.8 19.8 18 17.55 16.8 16.8 15.3 14.25 13.8 13.05

Number of stable
vacancies

produced—NRT
model

198 198 180 175.5 168 168 153 142.5 138 130.5

Fluence [cm−2] 1 × 1017 9 × 1016 8 × 1016 7 × 1016 6 × 1016 5 × 1016 4 × 1016 3 × 1016 2 × 1016 1 × 1016

Displacement
damage [dpa] 0.033 0.034 0.032 0.033 0.032 0.033 0.030 0.028 0.024 0.016
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Displacement damage–dpa profile as simulated by SRIM (black squares) vs. actual profile as ‘visible’
to positrons from conventional 22Na source (blue circles).

5. Summary

Our work aimed to analyse the application limits of positron annihilation spectroscopy
for the study of defects in nuclear structural materials exposed to charged particle irra-
diation. We discussed the results of conventional PALS experiments obtained on three
different Fe-Cr-C alloys implanted by 250 keV helium ions. Despite a less than 1 µm thin
ion-modified layer, positron mean lifetimes, obtained from implanted samples by using
22Na source, increase over the reference values of unirradiated materials beyond the statis-
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tical error. While no detailed quantitative information on radiation defects can be derived
from this kind of experiment on a single sample, a meaningful indication of the trends of
defects’ behaviour can be obtained using multiple different fluencies, irradiation/annealing
temperatures, corrosion ageing, ion fluxes, etc. In this paper, we further outlined some
details of ongoing helium implantation experiments utilising multiple beam energies up to
18 MeV. This experiment was proposed to maximise the potential of experiments using
the 22Na source, providing a quasi-uniform damage profile and scientifically interesting
displacement damage rates and helium production rates.
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