Composite CdS/TiO2 Powders for the Selective Reduction of 4-Nitrobenzaldehyde by Visible Light: Relation between Preparation, Morphology and Photocatalytic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Characterization
2.1.1. Structural and Textural Properties of CdS/TiO2-(1–4)
2.1.2. Single Photon Time Emission Decays of CdS/TiO2-1 and CdS/TiO2-2
2.1.3. Spectral Properties of CdS/TiO2-(1–4)
2.2. Photocatalytic Properties of CdS/TiO2-(1–4)
2.3. Comparison of the Composites CdS/TiO2-(1–4)
2.4. Stability of Composite CdS/TiO2-2
2.5. Prolonged Irradiation of CdS/TiO2-2
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Colloidal CdS Nanoparticles
3.3. Preparation of Colloidal CdS/TiO2 Composites
3.4. X-ray Diffraction
3.5. (High-Resolution) Transmission Electron Microscopy
3.6. Specific Surface Area and Porosity Measurements
3.7. Single Photon Counting
3.8. DR UV-vis Measurements
3.9. Infrared Measurements
3.10. Photocatalytic Experiments
3.11. ESI MS Spectra
3.12. NMR Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 2007, 33, 3425–3437. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Gangwar, J.; Srivastava, A.K. Multiphase TiO2 nanostructures: A review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 2017, 7, 44199–44224. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Liu, J.; Meeprasert, J.; Namuangruk, S.; Zha, K.; Li, H.; Huang, L.; Shi, L.-Y.; Zhang, D. Facet-activity relationship of TiO2 in Fe2O3/TiO2 nanocatalysts for selective catalytic reduction of NO with NH3: In situ DRIFTs and DFT studies. J. Phys. Chem. C 2017, 121, 4970–4979. [Google Scholar] [CrossRef]
- Li, G.; Huang, J.; Chen, J.; Deng, Z.; Huang, Q.; Liu, Z.; Guo, W.; Cao, R. Highly active photocatalyst of Cu2O/TiO2 octahedron for hydrogen generation. ACS Omega 2019, 4, 3392–3397. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Deng, F.; Min, L.; Luo, S.; Guo, B.; Zeng, G.; Au, C. Facile one-step synthesis of inorganic-framework molecularly imprinted TiO2/WO3 nano-composite and its molecular recognitive photocatalytic degradation of target contaminant. Environ. Sci. Technol. 2013, 47, 7404–7412. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Mahadik, M.A.; Chung, H.S.; Ryu, J.H.; Jang, J.S. Facile hydrothermally synthesized a novel CdS nanoflower/rutile TiO2 nanorod heterojunction photoanode used for photoelectrocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 2017, 5, 7537–7548. [Google Scholar] [CrossRef]
- Gao, X.; Liu, X.; Zhu, Z.; Gao, Y.; Wang, Q.; Zhu, F.; Xie, Z. Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks. Sci. Rep. 2017, 7, 973–982. [Google Scholar] [CrossRef]
- Mazzanti, M.; Milani, M.; Cristino, V.; Boaretto, R.; Molinari, A.; Caramori, S. Visible light reductive photocatalysis of azo-dyes with n–n junctions based on chemically deposited CdS. Molecules 2022, 27, 2924–2939. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, X.; Wang, W.; Wang, X.; Liu, C.; Xie, Q.; Li, Z.; Zhang, Z. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition. Nano Energy 2015, 11, 400–408. [Google Scholar] [CrossRef]
- Xue, Y.; Wu, Z.; He, X.; Yang, X.; Chen, X.; Gao, Z. Constructing a Z- scheme heterojunction of egg-like core@shell CdS@TiO2 photocatalyst via a facile reflux method for enhanced photocatalytic performance. Nanomaterials 2019, 9, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janbandhu, S.Y.; Joshi, A.; Munishwar, S.R.; Gedam, R.S. CdS/TiO2 heterojunction in glass matrix: Synthesis, characterization, and application as an improved photocatalyst. Appl. Surf. Sci. 2019, 497, 143758. [Google Scholar] [CrossRef]
- Shah, L.A.; Haleem, A.; Sayed, M.; Siddiq, M. Synthesis of sensitive hybrid polymer microgels for catalytic reduction of organic pollutants. J. Environ. Chem. Eng. 2016, 4, 3492–3497. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Le, Z.; Xie, Y.; Fang, J.; Xu, J. Studies on facile synthesis and properties of mesoporous CdS/TiO2 composite for photocatalysis applications. J. Alloys Compd. 2017, 692, 170–177. [Google Scholar] [CrossRef]
- Ge, H.; Xu, F.; Cheng, B.; Yu, J.; Ho, W. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 2019, 11, 6301–6309. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, N.; Tang, Z.R.; Xu, Y.J. Synthesis of onedimensional CdS@TiO2 core−shell nanocomposites photocatalyst for selective redox: The dual role of TiO2 shell. ACS Appl. Mater. Interfaces 2012, 4, 6378–6385. [Google Scholar] [CrossRef]
- Li, H.; Eastman, M.; Schaller, R.; Hudson, W.; Jiao, J. Hydrothermal synthesis of CdS nanoparticle-decorated TiO2 nanobelts for solar cell. J. Nanosci. Nanotechnol. 2011, 11, 8517–8521. [Google Scholar] [CrossRef]
- Bessekhouad, Y.; Robert, D.; Weber, J.V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A Chem. 2004, 163, 569–580. [Google Scholar] [CrossRef]
- Hamdi, A.; Ferreira, D.P.; Ferraria, A.M.; Conceição, D.S.; Vieira Ferreira, L.F.; Carapeto, A.P.; Boufi, S.; Bouattour, S.; Botelho do Rego, A.M. TiO2-CdS nanocomposites: Effect of CdS oxidation on the photocatalytic activity. J. Nanomater. 2016, 2016, 6581691. [Google Scholar] [CrossRef]
- Du, Y.-E.; Niu, X.; He, X.; Hou, K.; Liu, H.; Zhang, C. Synthesis and photocatalytic activity of TiO2/CdS nanocomposites with co-exposed anatase highly reactive facets. Molecules 2021, 26, 6031–6047. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Park, J.-W. TiO2/CdS nanocomposite stabilized on a magnetic-cored dendrimer for enhanced photocatalytic activity and reusability. J. Colloid Interface Sci. 2019, 555, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Huang, Y.; Li, Y. Rare earth doped TiO2-CdS and TiO2-CdS composites with improvement of photocatalytic hydrogen evolution under visible light irradiation. Mater. Sci. Semicond. Process. 2013, 16, 62–69. [Google Scholar] [CrossRef]
- Wu, K.; Wu, P.; Zhu, J.; Liu, C.; Dong, X.; Wu, J.; Meng, G.; Xu, K.; Hou, J.; Liu, Z.; et al. Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem. Eng. J. 2019, 360, 221–230. [Google Scholar]
- Xie, J.; Hong, W.; Meng, M.; Tian, M.; Kang, C.; Zhou, Z.; Chen, C.; Tang, Y.; Luo, G. Synthesis and photocatalytic activity of cerium-modified CdS-TiO2 photocatalyst for the formaldehyde degradation at room temperature. Z. Anorg. Allg. Chem. 2018, 644, 1570–1575. [Google Scholar]
- Hu, Z.; Quan, H.; Chen, Z.; Shao, Y.; Li, D. New insight into an efficient visible light-driven photocatalytic organic transformation over CdS/TiO2 photocatalysts. Photochem. Photobiol. Sci. 2018, 17, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Tafesh, A.M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996, 96, 2035–2052. [Google Scholar] [CrossRef]
- Molinari, A.; Maldotti, A.; Amadelli, R. Probing the role of surface energetics of electrons and their accumulation in photoreduction processes on TiO2. Chem. Eur. J. 2014, 20, 7759–7765. [Google Scholar] [CrossRef]
- Molinari, A.; Mazzanti, M.; Fogagnolo, M. Photocatalytic selective reduction by TiO2 of 5-nitrosalicylic acid ethyl ester: A mild route to mesalazine. Catal. Lett. 2020, 150, 1072–1080. [Google Scholar] [CrossRef]
- Ferry, J.L.; Glaze, W.H. Photocatalytic reduction of nitro organics over illuminated titanium dioxide: Role of the TiO2 surface. Langmuir 1998, 14, 3551–3555. [Google Scholar] [CrossRef]
- Imamura, K.; Iwasaki, S.; Maeda, T.; Hashimoto, K.; Ohtani, B.; Kominami, H. Photocatalytic reduction of nitrobenzenes to aminobenzenes in aqueous suspensions of titanium(iv)oxide in the presence of hole scavengers under deaerated and aerated conditions. Phys. Chem. Chem. Phys. 2011, 13, 5114–5119. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Hirakawa, H.; Togawa, Y.; Sugano, Y.; Ichikawa, S.; Hirai, T. Rutile crystallites isolated from degussa (evonik) P25 TiO2: Highly efficient photocatalyst for chemoselective hydrogenation of nitroaromatics. ACS Catal. 2013, 3, 2318–2326. [Google Scholar] [CrossRef]
- Kaur, J.; Pal, B. 100% selective yield of m-nitroaniline by rutile TiO2 and m-phenylenediamine by P25-TiO2 during m-dinitrobenzene photoreduction. Catal. Commun. 2014, 53, 25–28. [Google Scholar] [CrossRef]
- Wang, H.; Yan, J.; Chang, W.; Zhang, Z. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2. Catal. Commun. 2009, 10, 989–994. [Google Scholar] [CrossRef]
- Lu, C.; Yin, Z.; Sun, C.; Chen, C.F.; Wang, F. Photocatalytic reduction of nitroaromatics into anilines using CeO2-TiO2 nanocomposite. Mol. Catal. 2021, 513, 111775–111782. [Google Scholar] [CrossRef]
- Kaur, R.; Pal, B. Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis. Appl. Catal. A Gen. 2015, 491, 28–36. [Google Scholar] [CrossRef]
- Zelekew, O.A.; Kuo, D. Facile synthesis of SiO2@CuxO@TiO2 heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants. Appl. Surf. Sci. 2017, 393, 110–118. [Google Scholar] [CrossRef]
- Molinari, A.; Maldotti, A.; Amadelli, R. Effect of the electrolyte cations on photoinduced charge transfer at TiO2. Catal. Today 2017, 281, 71–77. [Google Scholar] [CrossRef]
- Ibrahim, M.A.M.; Van-Duong, D.; Ahmed, S.Y.; Nasser, A.M.B.; Ho-Suk, C. Design of an efficient photoanode for dye-sensitized solar cells using electrospun one-dimensional GO/N-doped nanocomposite SnO2/TiO2. Appl. Surf. Sci. 2017, 400, 355–364. [Google Scholar]
- Vorokh, A.S.; Kozhevnikova, N.S.; Gorbunova, T.I.; Gyrdasova, O.I.; Baklanova, I.V.; Buldakova, L.Y.; Yanchenko, M.Y.; Murzakaev, A.M.; Shalaeva, E.V.; Enyashin, A.N. Facile, rapid and efficient doping of amorphous TiO2 by presynthesized colloidal CdS quantum dots. J. Alloys Compd. 2017, 706, 205–214. [Google Scholar] [CrossRef]
- Yan, J.; Wu, G.; Guan, N.; Li, L.; Li, Z.; Cao, X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15, 10978–10988. [Google Scholar] [CrossRef] [PubMed]
- Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Makula, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, M.; Caramori, S.; Fogagnolo, M.; Cristino, V.; Molinari, A. Turning waste into useful products by photocatalysis with nanocrystalline TiO2 thin films: Reductive cleavage of azo bond in the presence of aqueous formate. Nanomaterials 2020, 10, 2147–2164. [Google Scholar] [CrossRef] [PubMed]
- Kozhevnikova, N.S.; Vorokh, A.S.; Rempel, A.A. Preparation of stable colloidal solution of cadmium sulfide cds using ethylenediaminetetraacetic acid. Russ. J. Gen. Chem. 2010, 80, 391–394. [Google Scholar] [CrossRef]
CdS/TiO2-1 | CdS/TiO2-2 | CdS/TiO2-3 | CdS/TiO2-4 | |
---|---|---|---|---|
CdS/Ti(OiPr)4 molar ratio in initial solution | 1/16 | 1/16 | 1/16 | 1/8 |
Aging time at 90 °C (h) | 0 | 1 | 3 | 1 |
SSA (m2 g−1) | 446 ± 22 | 205 ± 10 | 210 ± 10 | 210 ± 10 |
Vtot (cm3 g−1) | 0.45 | 0.23 | 0.28 | 0.13 |
Vmeso/macro (>17 Å width, cm3 g−1) | 0.39 | 0.20 | 0.25 | 0.08 |
Vmicro (<17 Å width, cm3 g−1) | 0.06 | 0.03 | 0.03 | 0.05 |
Material | v (10−6) [mol/s] |
---|---|
CdS/TiO2-2 | 3.3 |
CdS/TiO2-3 | 3.0 |
CdS/TiO2-4 | 1.7 |
CdS/TiO2-1 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milani, M.; Mazzanti, M.; Caramori, S.; Di Carmine, G.; Magnacca, G.; Molinari, A. Composite CdS/TiO2 Powders for the Selective Reduction of 4-Nitrobenzaldehyde by Visible Light: Relation between Preparation, Morphology and Photocatalytic Activity. Catalysts 2023, 13, 74. https://doi.org/10.3390/catal13010074
Milani M, Mazzanti M, Caramori S, Di Carmine G, Magnacca G, Molinari A. Composite CdS/TiO2 Powders for the Selective Reduction of 4-Nitrobenzaldehyde by Visible Light: Relation between Preparation, Morphology and Photocatalytic Activity. Catalysts. 2023; 13(1):74. https://doi.org/10.3390/catal13010074
Chicago/Turabian StyleMilani, Martina, Michele Mazzanti, Stefano Caramori, Graziano Di Carmine, Giuliana Magnacca, and Alessandra Molinari. 2023. "Composite CdS/TiO2 Powders for the Selective Reduction of 4-Nitrobenzaldehyde by Visible Light: Relation between Preparation, Morphology and Photocatalytic Activity" Catalysts 13, no. 1: 74. https://doi.org/10.3390/catal13010074