Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (978)

Search Parameters:
Keywords = intrinsic sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1369 KiB  
Article
Recycling Waste Cottonseed Hulls to Biomaterials for Ammonia Adsorption
by Thomas Klasson, Bretlyn Pancio and Allen Torbert
Recycling 2025, 10(4), 158; https://doi.org/10.3390/recycling10040158 - 6 Aug 2025
Abstract
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to [...] Read more.
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to remove ammonia from air. In this study, the efficacy of ammonia removal was observed using cottonseed hull biomaterials pyrolyzed at seven different temperatures: 250, 300, 350, 400, 500, 600, and 700 °C. In this study, ammonia was passed through a column filled with pyrolyzed material, and ammonia in the filtered air was monitored. The results showed that materials pyrolyzed at intermediate temperatures of 350 and 400 °C were the most efficient at ammonia removal and were able to adsorb approximately 3.7 mg NH3/g of material. Despite extensive characterization, ammonia adsorption could not be linked to intrinsic material properties. Evaluation of the materials showed that the carbon in the pyrolyzed materials would be stable over time should the spent material be used as a soil amendment. Full article
Show Figures

Figure 1

19 pages, 451 KiB  
Article
Examining the Structure of Directed Motivational Currents (DMCs) Among Secondary and Tertiary English as a Second Language Learners
by Chuanwei Huo, Lawrence Jun Zhang and Jason M. Stephens
Behav. Sci. 2025, 15(8), 1066; https://doi.org/10.3390/bs15081066 - 6 Aug 2025
Abstract
Motivation remains a central concern in second language (L2) and English as a foreign language (EFL) education, yet its underlying mechanisms are insufficiently understood. This study employs the theory of Directed Motivational Currents (DMCs) to explore periods of intense, sustained L2 motivation among [...] Read more.
Motivation remains a central concern in second language (L2) and English as a foreign language (EFL) education, yet its underlying mechanisms are insufficiently understood. This study employs the theory of Directed Motivational Currents (DMCs) to explore periods of intense, sustained L2 motivation among Chinese adolescent EFL learners across secondary and tertiary levels. Through in-depth interviews with ten participants, this research identified the conditions (e.g., collaborative peer dynamics, vivid goal visualization) that triggered their DMC experiences. The data also highlighted how facilitative elements—such as clear starting points, personalized goal alignment, behavioral routines, and timely feedback—played a crucial role in initiating and sustaining these motivational currents. These findings contribute to DMC theory by revealing how intrinsic and extrinsic factors jointly foster and maintain high levels of motivation over time, offering valuable insights for designing targeted interventions to enhance EFL motivation and learning among Chinese adolescents. Full article
(This article belongs to the Section Educational Psychology)
Show Figures

Figure 1

33 pages, 1619 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 - 1 Aug 2025
Viewed by 281
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
Show Figures

Figure 1

21 pages, 3648 KiB  
Article
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
by Maria Karayianni, Emi Haladjova, Stanislav Rangelov and Stergios Pispas
Polysaccharides 2025, 6(3), 67; https://doi.org/10.3390/polysaccharides6030067 - 1 Aug 2025
Viewed by 223
Abstract
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its [...] Read more.
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its potential use in agriculture for pathogen control is a promising alternative to traditional chemical fertilisers and pesticides, which raise concerns regarding public health, environmental protection, and pesticide resistance. This study focused on the preparation of chitosan nanoparticles (CS-NPs) through cross-linking with organic molecules, such as tannic acid (TA). Various formulations were explored for the development of stable nanoscale particles having encapsulation capabilities towards low compounds of varying polarity and with potential agricultural applications relevant to plant health and growth. The solution properties of the NPs were assessed using dynamic and electrophoretic light scattering (DLS and ELS); their morphology was observed through atomic force microscopy (AFM), while analytical ultracentrifugation (AUC) measurements provided insights into their molar mass. Their properties proved to be primarily influenced by the concentration of CS, which significantly affected its intrinsic conformation. Additional structural insights were obtained via infrared and UV–Vis spectroscopic measurements, while detailed fluorescence analysis with the use of three different probes, as model cargo molecules, provided information regarding the hydrophobic and hydrophilic microdomains within the particles. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

23 pages, 819 KiB  
Article
The Nexus Between Economic Growth and Water Stress in Morocco: Empirical Evidence Based on ARDL Model
by Mariam El Haddadi, Hamida Lahjouji and Mohamed Tabaa
Sustainability 2025, 17(15), 6990; https://doi.org/10.3390/su17156990 (registering DOI) - 1 Aug 2025
Viewed by 262
Abstract
Morocco is facing a situation of alarming water stress, aggravated by climate change, overexploitation of resources, and unequal distribution of water, placing the country among the most vulnerable to water scarcity in the MENA region. This study aims to investigate the dynamic relationship [...] Read more.
Morocco is facing a situation of alarming water stress, aggravated by climate change, overexploitation of resources, and unequal distribution of water, placing the country among the most vulnerable to water scarcity in the MENA region. This study aims to investigate the dynamic relationship between economic growth and water stress in Morocco while highlighting the importance of integrated water management and adaptive economic policies to enhance resilience to water scarcity. A mixed methodology, integrating both qualitative and quantitative methods, was adopted to overview the economic–environmental Moroccan context, and to empirically analyze the GDP (gross domestic product) and water stress in Morocco over the period 1975–2021 using an Autoregressive Distributed Lag (ARDL) approach. The empirical analysis is based on annual data sourced from the World Bank and FAO databases for GDP, agricultural value added, renewable internal freshwater resources, and water productivity. The results suggest that water productivity has a significant positive effect on economic growth, while the impacts of agricultural value added and renewable water resources are less significant and vary depending on the model specification. Diagnostic tests confirm the reliability of the ARDL model; however, the presence of outliers in certain years reflects the influence of exogenous shocks, such as severe droughts or policy changes, on the Moroccan economy. The key contribution of this study lies in the fact that it is the first to analyze the intrinsic link between economic growth and the environmental aspect of water in Morocco. According to our findings, it is imperative to continuously improve water productivity and adopt adaptive management, rooted in science and innovation, in order to ensure water security and support the sustainable economic development of Morocco. Full article
Show Figures

Graphical abstract

24 pages, 2013 KiB  
Article
Can Local Industrial Policy Enhance Urban Land Green Use Efficiency? Evidence from the “Made in China 2025” National Demonstration Zone Policy
by Shoupeng Wang, Haixin Huang and Fenghua Wu
Land 2025, 14(8), 1567; https://doi.org/10.3390/land14081567 - 31 Jul 2025
Viewed by 229
Abstract
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and [...] Read more.
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and ULGUE based on panel data from 286 Chinese cities (2010–2022), employing an integrated methodology that combines the Difference-in-Differences (DID) model, Super-Efficiency Slacks-Based Measure Data Envelopment Analysis model, and ArcGIS spatial analysis techniques. The findings clearly demonstrate that the establishment of the “Made in China 2025” pilot policy significantly improves urban land green use efficiency in pilot cities, a conclusion that endures following a succession of stringent evaluations. Moreover, studying its mechanisms suggests that the pilot policy primarily enhances urban land green use efficiency by promoting industrial upgrading, accelerating technological innovation, and strengthening environmental regulations. Heterogeneity analysis further indicates that the policy effects are more significant in urban areas characterized by high manufacturing agglomeration, non-provincial capital/non-municipal status, high industrial intelligence levels, and less sophisticated industrial structure. This research not only provides valuable policy insights for China to enhance urban land green use efficiency and promote high-quality regional sustainable development but also offers meaningful references for global efforts toward advancing urban sustainability. Full article
Show Figures

Figure 1

41 pages, 11320 KiB  
Review
Electrochemical Biosensors Driving Model Transformation for Food Testing
by Xinxin Wu, Zhecong Yuan, Shujie Gao, Xinai Zhang, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai and Rongjin Xu
Foods 2025, 14(15), 2669; https://doi.org/10.3390/foods14152669 - 29 Jul 2025
Viewed by 360
Abstract
Electrochemical biosensors are revolutionizing food testing by addressing critical limitations of conventional strategies that suffer from cost, complexity, and field-deployment challenges. Emerging fluorescence and Raman techniques, while promising, face intrinsic drawbacks like photobleaching and matrix interference in opaque or heterogeneous samples. In contrast, [...] Read more.
Electrochemical biosensors are revolutionizing food testing by addressing critical limitations of conventional strategies that suffer from cost, complexity, and field-deployment challenges. Emerging fluorescence and Raman techniques, while promising, face intrinsic drawbacks like photobleaching and matrix interference in opaque or heterogeneous samples. In contrast, electrochemical biosensors leverage electrical signals to bypass optical constraints, enabling rapid, cost-effective, and pretreatment-free analysis of turbid food matrices. This review highlights their operational mechanisms, emphasizing nano-enhanced signal amplification (e.g., Au nanoparticles and graphene) and biorecognition elements (antibodies, aptamers, and molecularly imprinted polymers) for ultrasensitive assay of contaminants, additives, and adulterants. By integrating portability, scalability, and real-time capabilities, electrochemical biosensors align with global food safety regulations and sustainability goals. Challenges in standardization, multiplexed analysis, and long-term stability are discussed, alongside future directions toward AI-driven analytics, biodegradable sensors, and blockchain-enabled traceability, ultimately fostering precision-driven, next-generation food safety and quality testing. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 2403 KiB  
Article
Policies for Sustainability Transition in Tourism Destinations—The Case of Lucerne
by Fabian Weber, Yvonne Schuler, Juerg Stettler and Anna Tessa Aul
Sustainability 2025, 17(15), 6807; https://doi.org/10.3390/su17156807 - 26 Jul 2025
Viewed by 400
Abstract
The article analyzes how tourism businesses can be activated for sustainability by destination management organizations and how a destination sustainability program can be used to promote sustainable development. Based on an applied research project in the canton of Lucerne in Switzerland, different approaches [...] Read more.
The article analyzes how tourism businesses can be activated for sustainability by destination management organizations and how a destination sustainability program can be used to promote sustainable development. Based on an applied research project in the canton of Lucerne in Switzerland, different approaches to mobilizing and activating tourism companies for sustainability are analyzed and successful strategies are identified. Experience shows that regular communication via various channels and the involvement of tourism partners are key. Direct contact between the representatives of the destinations or associations and the tourism companies is the most promising way of mobilizing them, although this also involves a great deal of effort. While intrinsically motivated businesses usually hardly need any external incentives, a considerable proportion of businesses only become active when either concrete financial incentives are promised, or they are forced to do so by regulatory requirements. The experience gained from the implementation of various mobilization strategies and their analysis enabled the authors to develop and put up for discussion a typology of motives and associated mobilization strategies. Full article
Show Figures

Figure 1

24 pages, 1990 KiB  
Article
Metabolomic Analysis of Breast Cancer in Colombian Patients: Exploring Molecular Signatures in Different Subtypes and Stages
by Lizeth León-Carreño, Daniel Pardo-Rodriguez, Andrea Del Pilar Hernandez-Rodriguez, Juliana Ramírez-Prieto, Gabriela López-Molina, Ana G. Claros, Daniela Cortes-Guerra, Julian Alberto-Camargo, Wilson Rubiano-Forero, Adrian Sandoval-Hernandez, Mónica P. Cala and Alejandro Ondo-Mendez
Int. J. Mol. Sci. 2025, 26(15), 7230; https://doi.org/10.3390/ijms26157230 - 26 Jul 2025
Viewed by 372
Abstract
Breast cancer (BC) is a neoplasm characterized by high heterogeneity and is influenced by intrinsic molecular subtypes and clinical stage, aspects that remain underexplored in the Colombian population. This study aimed to characterize metabolic alterations associated with subtypes and disease progression in a [...] Read more.
Breast cancer (BC) is a neoplasm characterized by high heterogeneity and is influenced by intrinsic molecular subtypes and clinical stage, aspects that remain underexplored in the Colombian population. This study aimed to characterize metabolic alterations associated with subtypes and disease progression in a group of newly diagnosed, treatment-naive Colombian women using an untargeted metabolomics approach. To improve metabolite coverage, samples were analyzed using LC-QTOF-MS and GC-QTOF-MS, along with amino acid profiling. The Luminal B subtype exhibited elevated levels of long-chain acylcarnitines and higher free fatty acid concentrations than the other subtypes. It also presented elevated levels of carbohydrates and essential glycolytic intermediates, suggesting that this subtype may adopt a hybrid metabolic phenotype characterized by increased glycolytic flux as well as enhanced fatty acid catabolism. Tumor, Node, and Metastasis (TNM) staging analysis revealed progressive metabolic reprogramming of BC. In advanced stages, a sustained increase in phosphatidylcholines and a decrease in lysophosphatidylcholines were observed, reflecting lipid alterations associated with key roles in tumor progression. In early stages (I-II), plasma metabolites with high discriminatory power were identified, such as glutamic acid, ribose, and glycerol, which are associated with dysfunctions in energy and carbohydrate metabolism. These results highlight metabolomics as a promising tool for the early diagnosis, clinical follow-up, and molecular characterization of BC. Full article
(This article belongs to the Special Issue Molecular Crosstalk in Breast Cancer Progression and Therapies)
Show Figures

Graphical abstract

26 pages, 1272 KiB  
Article
The Silver-Hair Economy in the New Era: Political Economy Perspectives on Its Dilemmas and Solutions
by Xiangru Li, Jinjing Xie, Junyao Luo and Aihua Yang
Sustainability 2025, 17(15), 6760; https://doi.org/10.3390/su17156760 - 24 Jul 2025
Viewed by 379
Abstract
The rapid rise of the silver economy in the new era has become a new driving force for socio-economic development. From the perspective of Marxist political economy theory, this paper analyzes the intrinsic logic of the silver economy’s development through three dimensions: surplus [...] Read more.
The rapid rise of the silver economy in the new era has become a new driving force for socio-economic development. From the perspective of Marxist political economy theory, this paper analyzes the intrinsic logic of the silver economy’s development through three dimensions: surplus value, labor market, and capital. The study finds that the silver economy in the new era faces challenges such as insufficient supply of high-quality elderly care services, simultaneous shortages in both total talent quantity and structural imbalances, and contradictions between capital’s profit-seeking nature and social welfare. By introducing the multiple streams model, the paper elucidates the coupling process of these three streams and the timing of policy window openings. It proposes targeted strategies, including strengthening technological innovation, deepening labor market reforms, and optimizing capital allocation, to promote the robust development of China’s silver economy and inject strong momentum into sustainable and high-quality economic growth. Full article
Show Figures

Figure 1

25 pages, 500 KiB  
Article
Unlocking Tomorrow’s Classrooms: Attitudes and Motivation Toward Data-Based Decision-Making in Teacher Education
by Iris Decabooter, Ariadne Warmoes, Roos Van Gasse, Els Consuegra and Katrien Struyven
Educ. Sci. 2025, 15(8), 951; https://doi.org/10.3390/educsci15080951 - 24 Jul 2025
Viewed by 287
Abstract
In today’s increasingly data-driven educational landscape, teachers are expected to use data to inform instructional decisions. However, effective data use depends not only on statistical competence but also on motivation, attitudes, and academic self-concept. This study examines how these factors influence student teachers’ [...] Read more.
In today’s increasingly data-driven educational landscape, teachers are expected to use data to inform instructional decisions. However, effective data use depends not only on statistical competence but also on motivation, attitudes, and academic self-concept. This study examines how these factors influence student teachers’ readiness to engage with standardized assessment data. A survey of 164 Flemish primary education student teachers assessed their motivation, attitudes toward data use, and academic self-concept. Cluster analysis identified four distinct profiles, ranging from highly competent yet disengaged users to low-performing but externally motivated individuals, highlighting significant variability in data engagement. A pre- and post-test study design involving an e-course on basic statistical concepts demonstrated that targeted instruction can enhance perceived competence, particularly in areas such as box plot interpretation. Findings suggest that technical training alone is insufficient to promote sustained data use; fostering intrinsic motivation, positive attitudes, and a strong academic self-concept is essential for long-term engagement with data. Full article
Show Figures

Figure 1

29 pages, 2105 KiB  
Article
The Impact of Rural Digital Economy Development on Agricultural Carbon Emission Efficiency: A Study of the N-Shaped Relationship
by Yong Feng, Shuokai Wang and Fangping Cao
Agriculture 2025, 15(15), 1583; https://doi.org/10.3390/agriculture15151583 - 23 Jul 2025
Viewed by 251
Abstract
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based [...] Read more.
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based on provincial-level panel data from China spanning 2011 to 2022, this study examines the relationship between the rural digital economy and agricultural carbon emission efficiency, along with its underlying mechanisms, using bidirectional fixed effects models, mediation effect analysis, and Spatial Durbin Models. The results indicate the following: (1) A significant N-shaped-curve relationship exists between rural digital economy development and agricultural carbon emission efficiency. Specifically, agricultural carbon emission efficiency exhibits a three-phase trajectory of “increase, decrease, and renewed increase” as the rural digital economy advances, ultimately driving a sustained improvement in efficiency. (2) Industrial integration acts as a critical mediating mechanism. Rural digital economy development accelerates the formation of the N-shaped curve by promoting the integration between agriculture and other sectors. (3) Spatial spillover effects significantly influence agricultural carbon emission efficiency. Due to geographical proximity, regional diffusion, learning, and demonstration effects, local agricultural carbon emission efficiency fluctuates with changes in neighboring regions’ digital economy development levels. (4) The relationship between rural digital economy development and agricultural carbon emission efficiency exhibits a significant inverted N-shaped pattern in regions with higher marketization levels, planting-dominated areas of southeast China, and digital economy demonstration zones. Further analysis reveals that within rural digital economy development, production digitalization and circulation digitalization demonstrate a more pronounced inverted N-shaped relationship with agricultural carbon emission efficiency. This study proposes strategic recommendations to maximize the positive impact of the rural digital economy on agricultural carbon emission efficiency, unlock its spatially differentiated contribution potential, identify and leverage inflection points of the N-shaped relationship between digital economy development and emission efficiency, and implement tailored policy portfolios—ultimately facilitating agriculture’s green and low-carbon transition. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

15 pages, 4368 KiB  
Article
Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface
by Mariusz Winiecki, Magdalena Stepczyńska, Maciej Walczak, Ewelina Soszczyńska, Magdalena Twarużek, Dorota Bociaga, Marek Trzcinski, Marta Michalska-Sionkowska and Krzysztof Moraczewski
Int. J. Mol. Sci. 2025, 26(15), 7051; https://doi.org/10.3390/ijms26157051 - 22 Jul 2025
Viewed by 448
Abstract
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing [...] Read more.
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing antimicrobial coatings on Ti implants is therefore a promising strategy. In this study, tannic acid (TA) coatings were deposited by immersing Ti alloy surfaces—beforehand activated by low-temperature oxygen plasma—in TA solutions at 2, 5, and 8 wt%. Coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and Folin–Ciocalteu release assays, and their cytocompatibility and antimicrobial performance were assessed in vitro. Surface characterization confirmed the formation of uniform TA layers, and WCA measurements indicated enhanced hydrophilicity relative to unmodified Ti (82.0° ± 3.6°), with values decreasing as TA concentration increased (from 35.2° ± 3.2° for 2% TA to 26.6° ± 2.8° for 8% TA). TA release profiles exhibited an initial burst followed by sustained diffusion, with 5% and 8% coatings releasing significantly more TA than 2% coatings. Coatings containing ≥ 5% TA demonstrated bactericidal activity—achieving > 2-log10 reductions—against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and also showed inhibitory effects against Candida albicans. Importantly, all coatings remained cytocompatible with NIH/3T3 fibroblasts, and the released tannic acid hydrolysis products (particularly gallic acid) enhanced their proliferation. These findings indicate that plasma-activated titanium surfaces coated with ≥5 wt% tannic acid impart broad-spectrum antimicrobial efficacy and hold potential to reduce implant-associated infections and improve long-term outcomes in orthopedic and dental applications. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

13 pages, 2087 KiB  
Article
Liposome-Loaded Mesenchymal Stem Cells Enhance Tumor Accumulation and Anti-Tumor Efficacy of Doxorubicin in Mouse Tumor Models of Melanoma
by Yusuke Kono, Himi Kanbara, Saki Danjo, Aiga Yoshikawa, Yoshihiro Iwayama and Ken-ichi Ogawara
Pharmaceutics 2025, 17(8), 947; https://doi.org/10.3390/pharmaceutics17080947 - 22 Jul 2025
Viewed by 323
Abstract
Background: Mesenchymal stem cells (MSCs) possess an intrinsic tumor-tropic ability, and therefore, MSCs may potentially be used as biomimetic carriers for active drug delivery systems targeting tumors. We previously developed a method to efficiently load liposomes onto the surface of MSCs via [...] Read more.
Background: Mesenchymal stem cells (MSCs) possess an intrinsic tumor-tropic ability, and therefore, MSCs may potentially be used as biomimetic carriers for active drug delivery systems targeting tumors. We previously developed a method to efficiently load liposomes onto the surface of MSCs via electrostatic interactions. The prepared liposome-loaded MSCs (Lip-MSCs) spontaneously accumulated in solid melanoma tumors with low vascular permeability while stably carrying liposomes. Methods: To explore Lip-MSC applications in cancer chemotherapy, doxorubicin (DOX)-encapsulated liposomes (DOX-Lip) were prepared and loaded onto MSCs. The cell viability, DOX-releasing properties, tumor-homing capacity, and anti-tumor efficacy of DOX-Lip-MSCs were analyzed. Results: Small liposomes (100 nm) retained DOX, whereas significant leakage of DOX was observed from 600 nm-sized liposomes. Based on this result, we used 100 nm DOX-Lip for the preparation of DOX-Lip-MSCs. Compared with MSCs loaded with DOX by incubation with DOX solution, DOX-Lip-MSCs could load a larger amount of DOX with minimal cytotoxicity. DOX-Lip-MSCs also showed sustained DOX release. DOX-Lip-MSCs efficiently migrated toward the conditioned medium of B16/BL6 melanoma cells in vitro and accumulated in B16/BL6 tumors in vivo, leading to a significant inhibitory effect on tumor growth. Conclusions: Lip-MSCs can serve as an efficient carrier to deliver anti-cancer drugs into solid tumors. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Graphical abstract

31 pages, 4179 KiB  
Review
Plant-Derived Vesicle-like Nanoparticles: Pioneering Sustainable and Effective Approaches for Tissue Repair and Regeneration
by Qinjing Wang, Zhijie Huang, Jiming Guo, Weixing Chen, Min Wang, Yue Ming, Hongyu Liu, Mingshu Huang, Yisheng Huang, Zhengming Tang and Bo Jia
Biomolecules 2025, 15(8), 1055; https://doi.org/10.3390/biom15081055 - 22 Jul 2025
Viewed by 478
Abstract
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, [...] Read more.
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, and compositional diversity, emphasizing their roles in promoting essential regenerative processes—cell proliferation, differentiation, migration, immune modulation, and angiogenesis. We explore their therapeutic applications across multiple tissue types, including skin, bone, neural, liver, gastrointestinal, cardiovascular, and dental tissues, using both natural and engineered PDVLNs in various disease models. Compared to mammalian exosomes, PDVLNs offer advantages such as reduced immune rejection and ethical concerns, enhancing their sustainability and appeal for regenerative medicine. However, challenges in clinical translation, including scalability, standardization, and safety remain. This paper consolidates current knowledge on PDVLNs, highlighting their versatility and providing insights into engineering strategies to optimize efficacy, ultimately outlining future research directions to advance their clinical potential. Plant vesicle-like nanoparticles (PDVLNs) may become a new avenue for the treatment of tissue injury, promoting tissue repair and regeneration through their intrinsic bioactivity or as drug delivery carriers. In addition, PDVLNs can be engineered and modified to achieve better results. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

Back to TopTop