Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = intrinsic optical parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4782 KB  
Article
Comprehensive Structural and Interfacial Characterization of Laser-Sliced SiC Wafers
by Hong Chen, Seul Lee, Minseung Kang, Hye Seon Youn, Seongwon Go, Eunsook Kang and Chae-Ryong Cho
Materials 2025, 18(24), 5615; https://doi.org/10.3390/ma18245615 - 14 Dec 2025
Abstract
Laser slicing has emerged as a promising low-kerf and low-damage technique for SiC wafer fabrication; however, its effects on the crystal integrity, near-surface modification, and charge-transport properties require further clarification. Here, a heavily N-doped 4° off-axis 4H-SiC wafer was sliced using an ultraviolet [...] Read more.
Laser slicing has emerged as a promising low-kerf and low-damage technique for SiC wafer fabrication; however, its effects on the crystal integrity, near-surface modification, and charge-transport properties require further clarification. Here, a heavily N-doped 4° off-axis 4H-SiC wafer was sliced using an ultraviolet (UV) picosecond laser, and both laser-irradiated and laser-sliced surfaces were comprehensively characterized. X-ray diffraction and pole figure measurements confirmed that the 4H stacking sequence and macroscopic crystal orientation were preserved after slicing. Raman spectroscopy, including analysis of the folded transverse-optical and longitudinal-optical phonon–plasmon coupled modes, enabled dielectric function fitting and determination of the plasmon frequency, yielding a free-carrier concentration of ~3.1 × 1018 cm−3. Hall measurements provided consistent carrier density, mobility, and resistivity, demonstrating that the laser slicing process did not degrade bulk electrical properties. Multi-scale Atomic Force Microscopy (AFM), Angle-Resolved X-Ray Photoelectron Spectroscopy (ARXPS), Secondary Ion Mass Spectrometry (SIMS), and Transmission Electron Microscopy (TEM)/Selected Area Electron Diffraction (SAED) analyses revealed the formation of a near-surface thin amorphous/polycrystalline modified layer and an oxygen-rich region, with significantly increased roughness and thicker modified layers on the hilly regions of the sliced surface. These results indicate that UV laser slicing maintains the intrinsic crystalline and electrical properties of 4H-SiC while introducing localized nanoscale surface damage that must be minimized by optimizing the slicing parameters and the subsequent surface-finishing processes. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 1631 KB  
Article
Diversity of Optical Soliton Solutions of Akbota Models in the Application of Heisenberg Ferromagnet
by Nida Raees, Ali. H. Tedjani, Irfan Mahmood and Ejaz Hussain
Symmetry 2025, 17(12), 2149; https://doi.org/10.3390/sym17122149 - 13 Dec 2025
Viewed by 35
Abstract
This paper explores the integrability of the Akbota equation with various types of solitary wave solutions. This equation belongs to a class of Heisenberg ferromagnet-type models. The model captures the dynamics of interactions between atomic magnetic moments, as governed by Heisenberg ferromagnetism. To [...] Read more.
This paper explores the integrability of the Akbota equation with various types of solitary wave solutions. This equation belongs to a class of Heisenberg ferromagnet-type models. The model captures the dynamics of interactions between atomic magnetic moments, as governed by Heisenberg ferromagnetism. To reveal its further physical importance, we calculate more solutions with the applications of the logarithmic transformation, the M-shaped rational solution method, the periodic cross-rational solution technique, and the periodic cross-kink wave solution approach. These methods allow us to derive new analytical families of soliton solutions, highlighting the interplay of discrete and continuous symmetries that govern soliton formation and stability in Heisenberg-type systems. In contrast to earlier studies, our findings present notable advancements. These results hold potential significance for further exploration of similar frameworks in addressing nonlinear problems across applied sciences. The results highlight the intrinsic role of symmetry in the underlying nonlinear structure of the Akbota equation, where integrability and soliton formation are governed by continuous and discrete symmetry transformations. The derived solutions provide original insights into how symmetry-breaking parameters control soliton dynamics, and their novelty is verified through analytical and computational checks. The interplay between these symmetries and the magnetic spin dynamics of the Heisenberg ferromagnet demonstrates how symmetry-breaking parameters control the diversity and stability of optical solitons. Additionally, the outcomes contribute to a deeper understanding of fluid propagation and incompressible fluid behavior. The solutions obtained for the Akbota equation are original and, to the best of our knowledge, have not been previously reported. Several of these solutions are illustrated through 3-D, contour, and 2-D plots by using Mathematica software. The validity and accuracy of all solutions we present here are thoroughly verified. Full article
20 pages, 2955 KB  
Article
Design and Simulation of Thermally Stable Lead-Free BaHfSe3 Perovskite Solar Cells: Role of Interface Barrier Height and Temperature
by Moumita Mahanti, Sutirtha Mukherjee, Naoto Shirahata and Batu Ghosh
Eng 2025, 6(12), 345; https://doi.org/10.3390/eng6120345 - 1 Dec 2025
Viewed by 281
Abstract
Lead-free chalcogenide perovskites are emerging as promising alternatives to hybrid halide perovskites due to their superior thermal stability, non-toxicity, and strong optical absorption. In this study, the photovoltaic performance of single-junction BaHfSe3-based perovskite solar cells (PSCs) with the TCO/TiO2/BaHfSe [...] Read more.
Lead-free chalcogenide perovskites are emerging as promising alternatives to hybrid halide perovskites due to their superior thermal stability, non-toxicity, and strong optical absorption. In this study, the photovoltaic performance of single-junction BaHfSe3-based perovskite solar cells (PSCs) with the TCO/TiO2/BaHfSe3/Cu2O/Au configuration is systematically investigated using SCAPS-1D simulations. Device optimization identifies TiO2 and Cu2O as suitable ETL and HTL materials, respectively. The optimized structure—TCO/TiO2 (50 nm)/BaHfSe3 (500 nm)/Cu2O (100 nm)/Au—achieves a power conversion efficiency (PCE) of 24.47% under standard conditions. Simulation results reveal that device efficiency is influenced by absorber thickness and trap density. A detailed temperature-dependent study highlights that photovoltaic parameter efficiency is governed by the barrier alignment at the TCO/ETL interface. For lower TCO (Transparent Conducting Oxide) work functions (3.97–4.07 eV), PCE decreases monotonically with temperature, attributed to the increase in reverse saturation current resulting from a higher intrinsic carrier concentration. By contrast, higher TCO work functions (4.47–4.8 eV) yield an initial increase in efficiency with temperature, driven by reduced barrier height and favorable Fermi level shifts before efficiency declines at further elevated temperatures. These insights underscore the promise of BaHfSe3 as a lead-free, environmentally robust perovskite absorber for next-generation PSCs, and highlight the critical importance of interface engineering for achieving optimal thermal and operational performance. Full article
Show Figures

Figure 1

16 pages, 1519 KB  
Article
Single-Path Spatial Polarization Modulation for Vector Transmission Matrix Measurement and Polarization Control in Scattering Media
by Edvard Grigoryan, Aram Sargsyan, Tatevik Sarukhanyan and Mushegh Rafayelyan
Photonics 2025, 12(11), 1145; https://doi.org/10.3390/photonics12111145 - 20 Nov 2025
Viewed by 514
Abstract
Controlling light’s polarization through disordered media is crucial for advanced optical applications but remains challenging due to scattering and depolarization. Most existing approaches either require interferometric or multi-path measurements, or they recover only part of the polarization response. We present a comprehensive approach [...] Read more.
Controlling light’s polarization through disordered media is crucial for advanced optical applications but remains challenging due to scattering and depolarization. Most existing approaches either require interferometric or multi-path measurements, or they recover only part of the polarization response. We present a comprehensive approach for spatially resolved polarization control by accurately retrieving the vector transmission matrix (VTM) of a scattering system from intensity-only, full-Stokes polarimetric measurements. Using a simple single-path setup comprising a liquid-crystal spatial light modulator (SLM) with a tunable retarder after it, we achieve spatial polarization modulation at the input, thereby enabling probing of the medium’s polarization–scattering characteristics. The VTM is retrieved with an adapted Gerchberg–Saxton procedure that enforces not only the measured output amplitudes but also the relative phase between the two orthogonal output polarization components obtained from the Stokes parameters. We show that a single retarder setting results in inter-block correlations in the retrieved VTM due to input coupling, while two linearly independent retarder settings decouple the intrinsic blocks and recover the full VTM. In our experiment, for a 16×16 set of input–output spatial modes, the VTM is retrieved with about 90% accuracy, enabling polarization-resolved focusing with up to 10× enhancement for horizontal, vertical, arbitrary linear, and circular states. This work offers a compact framework for active polarization shaping and for polarimetric characterization of complex media, advancing our understanding of vectorial light–matter interactions. Full article
Show Figures

Figure 1

20 pages, 3879 KB  
Article
Optical Camera-Based Integrated Sensing and Communication for V2X Applications: Model and Optimization
by Ke Dong, Wenying Cao and Mingjun Wang
Sensors 2025, 25(22), 7061; https://doi.org/10.3390/s25227061 - 19 Nov 2025
Viewed by 323
Abstract
An optical camera-based integrated sensing and communication (OC-ISAC) system model is proposed to address the intrinsic requirements of vehicular-to-everything (V2X) applications in complex outdoor environments. The model enables the coexistence and potential mutual enhancement of environmental sensing and data transmission within the visible [...] Read more.
An optical camera-based integrated sensing and communication (OC-ISAC) system model is proposed to address the intrinsic requirements of vehicular-to-everything (V2X) applications in complex outdoor environments. The model enables the coexistence and potential mutual enhancement of environmental sensing and data transmission within the visible light spectrum. It characterizes the OC-ISAC channel by modeling how light, either actively emitted for communication or passively reflected from the environment, originating from any voxel in three-dimensional space, propagates to the image sensor and contributes to the observed pixel values. This framework is leveraged to systematically analyze the impact of camera imaging parameters, particularly exposure time, on the joint performance of sensing and communication. To address the resulting trade-off, we develop an analytically tractable suboptimal algorithm that determines a near-optimal exposure time in closed form. Compared with the exhaustive numerical search for the global optimum, the suboptimal algorithm reduces computational complexity from O(N) to O(1), while introducing only a modest average normalized deviation of 5.71%. Both theoretical analysis and experimental results confirm that, in high-speed communication or mobile sensing scenarios, careful selection of exposure time and explicit compensation for the camera’s low-pass filtering effect in receiver design are essential to achieving optimal dual-functional performance. Full article
Show Figures

Figure 1

20 pages, 13277 KB  
Article
Dielectric Properties of Co-Doped TiO2 with Mg and Nb for Energy Storage Applications
by L. Ferchaud, J. P. F. Carvalho, S. R. Gavinho, F. Amaral, L. I. Toderascu, G. Socol, L. C. Costa, R. Benzerga and S. Soreto Teixeira
Nanomaterials 2025, 15(21), 1632; https://doi.org/10.3390/nano15211632 - 26 Oct 2025
Viewed by 648
Abstract
Titanium dioxide is attractive for energy storage due to its abundance, stability, non-toxicity, low cost, and favorable electronic/optical properties. Colossal permittivity (CP) in co-doped TiO2 is mainly linked to defect structures rather than intrinsic bulk behavior. This work studies the dielectric properties [...] Read more.
Titanium dioxide is attractive for energy storage due to its abundance, stability, non-toxicity, low cost, and favorable electronic/optical properties. Colossal permittivity (CP) in co-doped TiO2 is mainly linked to defect structures rather than intrinsic bulk behavior. This work studies the dielectric properties of TiO2 co-doped with niobium and magnesium, synthesized by solid-state reaction. Grain size effects were examined by varying ball milling parameters of (½Mg½Nb)0.05Ti0.95O2 and then were correlated with structure, morphology, and dielectric response. X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy (IS) (40 Hz–106 Hz, 150–370 K) were employed for structural, morphological, and electrical characterization. XRD confirmed the rutile phase. For co-doped samples, larger grains yielded higher dielectric constants, reaching high permittivity (ε′ = 429, T = 300 K, f = 10 kHz at 500 rpm for 2 h). Lower loss tangent (tan δ = 0.11, T = 300 K, f = 10 kHz at 200 rpm for 2 h) is linked to Mg segregation at grain boundaries. The most conductive sample showed the highest dielectric constant, suggesting an IBLC polarization mechanism driven by grain boundary effects. XPS confirmed Nb and Mg incorporation, with Ti4+ dominant and minor Ti3+ from oxygen vacancies and surface hydroxylation/defects. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

15 pages, 1007 KB  
Article
Optimization of Convex Transmissive Volume Bragg Grating for Hyperspectral Imaging Applications
by Yueying Li, Jiazhu Duan, Xiangjie Zhao, Yingnan Peng, Yongquan Luo, Dayong Zhang and Yibo Chen
Optics 2025, 6(4), 49; https://doi.org/10.3390/opt6040049 - 7 Oct 2025
Viewed by 569
Abstract
The Volume Bragg Grating (VBG) imaging technique provides a novel approach to gaze-type hyperspectral imaging. However, collimation constraints of the incident beam during narrow-band filtering and high-spatial-resolution imaging introduce system complexity, hindering miniaturization and modularization of the optical system. To address these limitations, [...] Read more.
The Volume Bragg Grating (VBG) imaging technique provides a novel approach to gaze-type hyperspectral imaging. However, collimation constraints of the incident beam during narrow-band filtering and high-spatial-resolution imaging introduce system complexity, hindering miniaturization and modularization of the optical system. To address these limitations, this paper proposes a convex transmissive VBG structure with tunable design parameters to enhance the field of view (FOV), relax collimation requirements, improve imaging quality, narrow filter spectral bandwidth, and simplify the optical system design. For the precise analysis and optimization of convex VBG performance, we established a physical model for filtered imaging using a convex transmissive VBG with polychromatic extended sources. An evaluation metric termed the “Maximal Splitting Angle (MSA)” was introduced to quantify the dispersion extent of image spots. This approach was employed to investigate the intrinsic correlations between structural parameters (such as the radius of curvature, vector tilt angle, grating period, and thickness) and key system performance indicators (spatial resolution and spectral resolution). The necessity of optimizing these parameters was rigorously demonstrated. Theoretical analysis confirms that convex transmissive VBG achieves superior spatial and spectral resolution over planar VBG under reduced collimation constraints. The experimental results show a 58.5% enhancement in spatial resolution and a 63.6% improvement in spectral bandwidth for the convex transmissive VBG system. Crucially, while planar transmissive VBG suffers from stray fringe interference during wavelength tuning, its convex counterpart remains unaffected. This study proposes a novel device structure, offering new perspectives for optimizing VBG-filtered spectral imaging systems. Full article
(This article belongs to the Topic Color Image Processing: Models and Methods (CIP: MM))
Show Figures

Figure 1

13 pages, 1889 KB  
Article
Dimension Tailoring of Quasi-2D Perovskite Films Based on Atmosphere Control Toward Enhanced Amplified Spontaneous Emission
by Zijia Wang, Xuexuan Huang, Zixuan Song, Chiyu Guo, Liang Tao, Shibo Wei, Ke Ren, Yuze Wu, Xuejiao Sun and Chenghao Bi
Materials 2025, 18(19), 4628; https://doi.org/10.3390/ma18194628 - 7 Oct 2025
Viewed by 604
Abstract
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing [...] Read more.
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing to their superior ambient stability and enhanced photon confinement capabilities. However, the mixed-phase distribution within Q2D films constitutes a critical determinant of their optical properties, exhibiting pronounced sensitivity to specific fabrication protocols and processing parameters, including annealing temperature, duration, antisolvent volume, injection timing, and dosing rate. These factors frequently lead to broad phase distribution in Q2D perovskite films, thereby inducing incomplete exciton energy transfer and multiple emission peaks, while simultaneously making the fabrication processes intricate and reducing reproducibility. Here, we report a novel annealing-free and antisolvent-free method for the preparation of Q2D perovskite films fabricated in ambient atmosphere. By constructing a tailored mixed-solvent vapor atmosphere and systematically investigating its regulatory effects on the nucleation and growth processes of film via in situ photoluminescence spectra, we successfully achieved the fabrication of Q2D perovskite films with large n narrow phase distribution characteristics. Due to the reduced content of small n domains, the incomplete energy transfer from small n to large n phases and the carriers’ accumulation in small n can be greatly suppressed, thereby suppressing the trap-assistant nonradiative recombination and Auger recombination. Ultimately, the Q2D perovskite film showed a single emission peak at 519 nm with the narrow full width at half maximum (FWHM) of 21.5 nm and high photoluminescence quantum yield (PLQY) of 83%. And based on the optimized Q2D film, we achieved an amplified spontaneous emission (ASE) with a low threshold of 29 μJ·cm−2, which was approximately 60% lower than the 69 μJ·cm−2 of the control film. Full article
Show Figures

Figure 1

10 pages, 1620 KB  
Communication
Observation of Excitonic Doublet Structure, Biexcitons and Their Temperature Dependence in High-Quality β-InSe Single Crystals
by Tran Thi Thu Huong, Long V. Le, Nguyen Thu Loan, Man Hoai Nam, Tien-Thanh Nguyen, Thi Thuong Huyen Tran, Ung Thi Dieu Thuy, Thi Huong Nguyen and Tae Jung Kim
Materials 2025, 18(19), 4451; https://doi.org/10.3390/ma18194451 - 23 Sep 2025
Viewed by 669
Abstract
We present a systematic study of the fundamental optical properties of indium selenide (InSe) single crystals over a temperature range of 17 K to 300 K. The high structural quality of the β-polytype crystals was confirmed through X-ray diffraction, Raman spectroscopy, and high-resolution [...] Read more.
We present a systematic study of the fundamental optical properties of indium selenide (InSe) single crystals over a temperature range of 17 K to 300 K. The high structural quality of the β-polytype crystals was confirmed through X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy, demonstrating excellent crystallinity and a nearly stoichiometric In:Se ratio. The temperature-dependent absorption and photoluminescence (PL) spectra are characterized by a prominent free exciton (FX) resonance. At 17 K, the photoluminescence spectrum exhibits a distinct fine-structure splitting of the Wannier–Mott exciton, yielding a triplet state at 1.333 eV and a singlet state at 1.336 eV. Additionally, a biexciton (XX) is localized at an energy of 1.322 eV as confirmed by the nonlinear dependence of intensity on excitation power density. At low temperatures, the absorption spectrum exhibits the free exciton ground state (n = 1) at 1.338 eV together with the first excited state (n = 2) at 1.350 eV. We systematically tracked and analyzed the temperature evolution of these quasiparticle energies. These findings enhance our understanding of the intrinsic many-body interactions in high-quality InSe, providing essential parameters for advancing its applications in innovative optoelectronic and quantum light-emitting devices. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

76 pages, 13574 KB  
Review
Luminescence Properties of Defects in GaN: Solved and Unsolved Problems
by Michael A. Reshchikov
Solids 2025, 6(3), 52; https://doi.org/10.3390/solids6030052 - 10 Sep 2025
Viewed by 3490
Abstract
Gallium Nitride (GaN) is a wide-bandgap semiconductor that has revolutionized optoelectronic applications, enabling blue/white light-emitting devices and high-power electronics. Point defects in GaN strongly influence its optical and electronic properties, producing both beneficial and detrimental effects. This review provides a comprehensive update on [...] Read more.
Gallium Nitride (GaN) is a wide-bandgap semiconductor that has revolutionized optoelectronic applications, enabling blue/white light-emitting devices and high-power electronics. Point defects in GaN strongly influence its optical and electronic properties, producing both beneficial and detrimental effects. This review provides a comprehensive update on the current understanding of point defects in GaN and their impact on photoluminescence (PL). Since our earlier review (Reshchikov and Morkoç, J. Appl. Phys. 2005, 97, 061301), substantial progress has been made in this field. PL bands associated with major intrinsic and extrinsic defects in GaN are now much better understood, and several defects in undoped GaN (arising from unintentional impurities or specific growth conditions) have been identified. Notably, the long-debated origin of the yellow luminescence band in GaN has been resolved, and the roles of Ga and N vacancies in the optical properties of GaN have been revised. Zero-phonon lines have been discovered for several defects. Key parameters, such as electron- and hole-capture coefficients, phonon energies, electron–phonon coupling strength, thermodynamic charge transition levels, and the presence of excited states, have been determined or refined. Despite these advances, several puzzles associated with PL remain unsolved, highlighting areas for future investigation. Full article
Show Figures

Graphical abstract

21 pages, 3182 KB  
Article
High-Resolution Chaos Maps for Optically Injected Lasers
by Gerardo Antonio Castañón Ávila, Alejandro Aragón-Zavala, Ivan Aldaya and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(17), 9724; https://doi.org/10.3390/app15179724 - 4 Sep 2025
Viewed by 745
Abstract
Deterministic chaos in optically injected semiconductor lasers (OILs) has attracted significant attention due to its relevance in secure communications, entropy generation, and photonic applications. However, existing studies often rely on low-resolution parameter sweeps or include noise contributions that obscure the intrinsic nonlinear dynamics. [...] Read more.
Deterministic chaos in optically injected semiconductor lasers (OILs) has attracted significant attention due to its relevance in secure communications, entropy generation, and photonic applications. However, existing studies often rely on low-resolution parameter sweeps or include noise contributions that obscure the intrinsic nonlinear dynamics. To address this gap, we investigate a noise-free OIL model and construct high-resolution chaos maps across the injection strength and frequency detuning parameter space. Chaos is characterized using two complementary approaches for computing the largest Lyapunov exponent: the Rosenstein time-series method and the exact variational method. This dual approach provides reliable and reproducible detection of deterministic chaotic regimes and reveals a rich attractor landscape with alternating bands of periodicity, quasi-periodicity, and chaos. The novelty of this work lies in combining high-resolution mapping with rigorous chaos indicators, enabling fine-grained identification of dynamical transitions. The results not only deepen the fundamental understanding of nonlinear laser dynamics but also provide actionable guidelines for exploiting or avoiding chaos in photonic devices, with potential applications in random chaos-based communications, number generation, and optical security systems. Full article
(This article belongs to the Special Issue Optical Communications Systems and Optical Sensing)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
Preparation of Infrared Anti-Reflection Surfaces Based on Microcone Structures of Silicon Carbide
by Ruirui Li, Xiaozheng Ji, Sijia Chang, Haoyu Tian, Zihong Zhao and Chengqun Chu
Materials 2025, 18(17), 4054; https://doi.org/10.3390/ma18174054 - 29 Aug 2025
Viewed by 897
Abstract
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. [...] Read more.
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. To overcome these limitations, direct nanostructuring of SiC substrates has emerged as a promising alternative solution. This work introduces an innovative graded-index microcone array design fabricated on SiC substrates, achieving superior broadband anti-reflection performance. Our two-step fabrication methodology comprises plasma-induced formation of tunable nanofiber etch masks through controlled argon bombardment parameters, followed by precision reactive ion etching (RIE) for microcone array formation. By systematically varying plasma exposure duration, we demonstrate precise control over nanofiber mask morphology, which in turn enables the fabrication of height-optimized SiC microcone arrays. The resulting structures exhibit exceptional optical performance, achieving an ultra-low average reflectivity of 2.25% across the spectral range of 2.5–8 μm. This breakthrough fabrication technique not only extends the available toolbox for SiC micro/nanofabrication but also provides a robust platform for next-generation optical applications. Unlike conventional thin-film approaches, our nanostructuring method preserves the intrinsic mechanical and environmental durability of the SiC substrate while delivering a favorable optical performance. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

10 pages, 2877 KB  
Communication
Localized Surface Phonon Polaritons and Infrared Optical Absorption of ScAlN Nanoresonators
by Huanhuan Zhao, Tao Cheng, Xinlei Duan, Mingxin Lv, Jia-Yue Yang and Linhua Liu
Materials 2025, 18(16), 3906; https://doi.org/10.3390/ma18163906 - 21 Aug 2025
Viewed by 1249
Abstract
Alloying AlN with ScN provides a robust strategy for engineering its intrinsic bandgap, phonons and dielectric functions, and ScAlN alloys have demonstrated great promise in applications including the 5G mobile network, surface acoustic wave devices and nanophotonics. Sc doping has been shown to [...] Read more.
Alloying AlN with ScN provides a robust strategy for engineering its intrinsic bandgap, phonons and dielectric functions, and ScAlN alloys have demonstrated great promise in applications including the 5G mobile network, surface acoustic wave devices and nanophotonics. Sc doping has been shown to greatly influence the phonons and infrared dielectric functions of AlN, yet few studies have focused on its influence on surface phonon polaritons, which are crucial to modulating the radiative properties of ScAlN metasurfaces. Herein, we combined first-principles and finite element method (FEM) simulations to fully investigate the effects of Sc incorporation on the phonon dispersion relation, propagation and localization of SPhPs and the modulated radiative properties of ScAlN nanoresonators. As the Sc doping concentration increases, the highest optical phonon frequencies are reduced and are largely directly related to enlarged lattice parameters. Consequently, the coupling strength among incident photons and phonons decreases, which leads to a reduced absorption peak in the infrared dielectric functions. Moreover, the propagation length of the SPhPs in ScAlN is largely reduced, and localized resonance modes gradually disappear at a higher Sc doping concentration. This work provides physical insights into the spectra tuning mechanisms of ScAlN nanoresonators via Sc doping and facilitates their applications in nanophotonic devices. Full article
(This article belongs to the Special Issue Research Progress of Advanced Crystals: Growth and Doping)
Show Figures

Figure 1

25 pages, 25022 KB  
Article
Research on Underwater Laser Communication Channel Attenuation Model Analysis and Calibration Device
by Wenyu Cai, Hengmei Wang, Meiyan Zhang and Yu Wang
J. Mar. Sci. Eng. 2025, 13(8), 1483; https://doi.org/10.3390/jmse13081483 - 31 Jul 2025
Viewed by 830
Abstract
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, [...] Read more.
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, so as to explore the transmission influence mechanism under typical water quality environments. On this basis, a system of in situ measurements for underwater laser channel attenuation is designed and constructed, and several sets of experiments are carried out to verify the rationality and applicability of the model. The collected experimental data are denoised by the fusion of wavelet analysis and adaptive Kalman filtering (DWT-AKF in short) algorithm, and compared with the data measured by an underwater hyperspectral Absorption Coefficient Spectrophotometer (ACS in short), which shows that the channel attenuation coefficients of the model inversion and the measured values are in high agreement. The research results provide a reliable theoretical basis and experimental support for the performance optimization and engineering design of the underwater laser communication system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 3200 KB  
Article
Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio
by Bo Wang, Taiqi Wu, Weidong Gao, Gang Hu and Changjun Wang
Coatings 2025, 15(7), 848; https://doi.org/10.3390/coatings15070848 - 19 Jul 2025
Viewed by 1508
Abstract
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of [...] Read more.
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of multilayer film stress a critical factor in enhancing optical surface figure accuracy. In this study, which addresses the process constraints and substrate damage risks associated with conventional annealing-based stress compensation for large-aperture optical components, we introduce an active stress engineering strategy rooted in in situ deposition process optimization. By systematically tailoring film deposition parameters and adjusting the thickness modulation ratio of TiO2 and SiO2, we achieve dynamic compensation of residual stress in multilayer structures. This approach demonstrates broad applicability across diverse optical coatings, where it effectively mitigates stress-induced surface distortions. Unlike annealing methods, this intrinsic stress polarity manipulation strategy obviates the need for high-temperature post-processing, eliminating risks of material decomposition or substrate degradation. By enabling precise nanoscale stress regulation in large-aperture films through controlled process parameters, it provides essential technical support for manufacturing ultra-precision optical devices, such as next-generation laser systems and space-based stress wave detection instruments, where minimal stress-induced deformation is paramount to functional performance. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Back to TopTop