Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,532)

Search Parameters:
Keywords = intense rainfall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1908 KB  
Article
Research on Real-Time Rainfall Intensity Monitoring Methods Based on Deep Learning and Audio Signals in the Semi-Arid Region of Northwest China
by Yishu Wang, Hongtao Jiang, Guangtong Liu, Qiangqiang Chen and Mengping Ni
Atmosphere 2026, 17(2), 131; https://doi.org/10.3390/atmos17020131 - 26 Jan 2026
Abstract
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low [...] Read more.
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low resolution, and monitoring gaps. This study proposes a novel real-time rainfall intensity monitoring method based on deep learning and audio signal processing, using acoustic features from rainfall to predict intensity. Conducted in the semi-arid region of Northwest China, the study employed a custom-designed sound collection device to capture acoustic signals from raindrop-surface interactions. The method, combining multi-feature extraction and regression modeling, accurately predicted rainfall intensity. Experimental results revealed a strong linear relationship between sound pressure and rainfall intensity (r = 0.916, R2 = 0.838), with clear nonlinear enhancement of acoustic energy during heavy rainfall. Compared to traditional methods like CML and radio link techniques, the acoustic approach offers advantages in cost, high-density deployment, and adaptability to complex terrain. Despite some limitations, including regional and seasonal biases, the study lays the foundation for future improvements, such as expanding sample coverage, optimizing sensor design, and incorporating multi-source data. This method holds significant potential for applications in urban drainage, agricultural irrigation, and disaster early warning. Full article
Show Figures

Figure 1

22 pages, 13386 KB  
Article
Overview of the Korean Precipitation Observation Program (KPOP) in the Seoul Metropolitan Area
by Jae-Young Byon, Minseong Park, HyangSuk Park and GyuWon Lee
Atmosphere 2026, 17(2), 130; https://doi.org/10.3390/atmos17020130 - 26 Jan 2026
Abstract
Recent studies have reported a rapid increase in short-duration, high-intensity rainfall over the Seoul Metropolitan Area (SMA), primarily associated with mesoscale convective systems (MCSs), highlighting the need for high-resolution and multi-platform observations for accurate forecasting. To address this challenge, the Korea Meteorological Administration [...] Read more.
Recent studies have reported a rapid increase in short-duration, high-intensity rainfall over the Seoul Metropolitan Area (SMA), primarily associated with mesoscale convective systems (MCSs), highlighting the need for high-resolution and multi-platform observations for accurate forecasting. To address this challenge, the Korea Meteorological Administration (KMA) established the Korean Precipitation Observation Program (KPOP), an intensive observation network integrating radar, wind lidar, wind profiler, and storm tracker measurements. This study introduces the design and implementation of the KPOP network and evaluates its observational and forecasting value through a heavy rainfall event that occurred on 17 July 2024. Wind lidar data and weather charts reveal that a strong low-level southwesterly jet and enhanced moisture transport from the Yellow Sea played a key role in sustaining a quasi-stationary, line-shaped rainband over the metropolitan region, leading to extreme short-duration rainfall exceeding 100 mm h−1. To investigate the impact of KPOP observations on numerical prediction, preliminary data assimilation experiments were conducted using the Korean Integrated Model-Regional Data Assimilation and Prediction System (KIM-RDAPS) with WRF-3DVAR. The results demonstrate that assimilating wind lidar observations most effectively improved the representation of low-level moisture convergence and spatial structure of the rainband, leading to more accurate simulation of rainfall intensity and timing compared to experiments assimilating storm tracker data alone. These findings confirm that intensive, high-resolution wind observations are critical for improving initial analyses and enhancing the predictability of extreme rainfall events in densely urbanized regions such as the SMA. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 13195 KB  
Article
Temporal Transferability of Satellite Rainfall Bias Correction Methods in a Data-Limited Tropical Basin
by Elgin Joy N. Bonalos, Elizabeth Edan M. Albiento, Johniel E. Babiera, Hilly Ann Roa-Quiaoit, Corazon V. Ligaray, Melgie A. Alas, Mark June Aporador and Peter D. Suson
Atmosphere 2026, 17(2), 121; https://doi.org/10.3390/atmos17020121 - 23 Jan 2026
Viewed by 108
Abstract
The Philippines experiences intense rainfall but has limited ground-based monitoring infrastructure for flood prediction. Satellite rainfall products provide broad coverage but contain systematic biases that reduce operational usefulness. This study evaluated whether three correction methods—Quantile Mapping (QM), Random Forest (RF), and Hybrid Ensemble—maintain [...] Read more.
The Philippines experiences intense rainfall but has limited ground-based monitoring infrastructure for flood prediction. Satellite rainfall products provide broad coverage but contain systematic biases that reduce operational usefulness. This study evaluated whether three correction methods—Quantile Mapping (QM), Random Forest (RF), and Hybrid Ensemble—maintain accuracy when applied to future periods with substantially different rainfall characteristics. Using the Cagayan de Oro River Basin in Northern Mindanao as a case study, models were trained on 2019–2020 data and tested on an independent 2021 period exhibiting 120% higher mean rainfall and 33% increased rainy-day frequency. During training, Random Forest and Hybrid Ensemble substantially outperformed Quantile Mapping (R2 = 0.71 and 0.76 versus R2 = 0.25 for QM). However, when tested under realistic operational constraints using seasonally incomplete calibration data (January–April only), performance rankings reversed completely. Quantile Mapping maintained operational reliability (R2 = 0.53, RMSE = 5.23 mm), while Random Forest and Hybrid Ensemble failed dramatically (R2 dropping to 0.46 and 0.41, respectively). This demonstrates that training accuracy poorly predicts operational reliability under changing rainfall regimes. Quantile Mapping’s percentile-based correction naturally adapts when rainfall patterns shift without requiring recalibration, while machine learning methods learned magnitude-specific patterns that failed when conditions changed. For flood early warning in data-limited basins with equipment failures and variable rainfall, only Quantile Mapping proved operationally reliable. This has practical implications for disaster risk reduction across the Philippines and similar tropical regions where standard validation approaches may systematically mislead model selection by measuring calibration performance rather than operational transferability. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 6511 KB  
Article
Evaluation of the CHIRPS Database in Association with Major Hurricanes in Mexico
by José P. Vega-Camarena, Luis Brito-Castillo, Luis M. Farfán, David Avalos-Cueva, Emilio Palacios-Hernández and Cesar O. Monzón
Atmosphere 2026, 17(2), 118; https://doi.org/10.3390/atmos17020118 - 23 Jan 2026
Viewed by 258
Abstract
Due to the lack of in situ observations in mountainous locations, the use of remote sensing data is an alternative to analyze rainfall distribution patterns during the passage of major hurricanes. In this work, gridded precipitation data from the CHIRPS database are evaluated [...] Read more.
Due to the lack of in situ observations in mountainous locations, the use of remote sensing data is an alternative to analyze rainfall distribution patterns during the passage of major hurricanes. In this work, gridded precipitation data from the CHIRPS database are evaluated by comparing with observations from weather stations during the passage of category 3–5 hurricanes for the period 1980–2024. The comparison between estimated and observed values is performed by regression analysis and the use of K and K0 coefficients. An advantage of using K-ratio and K0-ratio is the identification of overestimated or underestimated precipitation in the pixel records. The distribution of daily precipitation helped in a more concise way to better understand how well CHIRPS reproduced the observed rainfall patterns. Results show that correlations between observations and database estimates are in the range of 0.40–0.76, for eastern Pacific hurricanes, and 0.49–0.78 for Atlantic hurricanes, all of which are statistically significant; however, these results do not imply congruence between observations and estimates since CHIRPS fails to adequately reproduce the position of the highest precipitation core. In the initial stages of a tropical cyclone, near-zero correlations between observations and estimates indicate that CHIRPS is not able to reproduce the observed rainfall. It is recommended to use CHIRPS with caution when the focus is on analyzing rainfall patterns during the development of intense tropical cyclones. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

29 pages, 6210 KB  
Article
Assessing Economic Vulnerability from Urban Flooding: A Case Study of Catu, a Commerce-Based City in Brazil
by Lais Das Neves Santana, Alarcon Matos de Oliveira, Lusanira Nogueira Aragão de Oliveira and Fabricio Ribeiro Garcia
Water 2026, 18(2), 282; https://doi.org/10.3390/w18020282 - 22 Jan 2026
Viewed by 132
Abstract
Flooding is a recurrent problem in many Brazilian cities, resulting in significant losses that affect health, assets, finance, and the environment. The uncertainty regarding extreme rainfall events due to climate change makes this challenge even more severe, compounded by inadequate urban planning and [...] Read more.
Flooding is a recurrent problem in many Brazilian cities, resulting in significant losses that affect health, assets, finance, and the environment. The uncertainty regarding extreme rainfall events due to climate change makes this challenge even more severe, compounded by inadequate urban planning and the occupation of risk areas, particularly for the municipality of Catu, in the state of Bahia, which also suffers from recurrent floods. Critical hotspots include the Santa Rita neighborhood and its surroundings, the main supply center, and the city center—the municipality’s commercial hub. The focus of this research is the unprecedented quantification of the socioeconomic impact of these floods on the low-income population and the region’s informal sector (street vendors). This research focused on analyzing and modeling the destructive potential of intense rainfall in the Santa Rita region (Supply Center) of Catu, Bahia, and its effects on the local economy across different recurrence intervals. A hydrological simulation software suite based on computational and geoprocessing technologies—specifically HEC-RAS 6.4, HEC-HMS 4.11, and QGIS— 3.16 was utilized. Two-dimensional (2D) modeling was applied to assess the flood-prone areas. For the socioeconomic impact assessment, a loss procedure based on linear regression was developed, which correlated the different return periods of extreme events with the potential losses. This methodology, which utilizes validated, indirect data, establishes a replicable framework adaptable to other regions facing similar socioeconomic and drainage challenges. The results revealed that the area becomes impassable during flood events, preventing commercial activities and causing significant economic losses, particularly for local market vendors. The total financial damage for the 100-year extreme event is approximately US $30,000, with the loss model achieving an R2 of 0.98. The research concludes that urgent measures are necessary to mitigate flood impacts, particularly as climate change reduces the return period of extreme events. The implementation of adequate infrastructure, informed by the presented risk modeling, and public awareness are essential for reducing vulnerability. Full article
(This article belongs to the Special Issue Water-Soil-Vegetation Interactions in Changing Climate)
Show Figures

Figure 1

29 pages, 15635 KB  
Article
Flood Susceptibility and Risk Assessment in Myanmar Using Multi-Source Remote Sensing and Interpretable Ensemble Machine Learning Model
by Zhixiang Lu, Zongshun Tian, Hanwei Zhang, Yuefeng Lu and Xiuchun Chen
ISPRS Int. J. Geo-Inf. 2026, 15(1), 45; https://doi.org/10.3390/ijgi15010045 - 19 Jan 2026
Viewed by 273
Abstract
This observation-based and explainable approach demonstrates the applicability of multi-source remote sensing for flood assessment in data-scarce regions, offering a robust scientific basis for flood management and spatial planning in monsoon-affected areas. Floods are among the most frequent and devastating natural hazards, particularly [...] Read more.
This observation-based and explainable approach demonstrates the applicability of multi-source remote sensing for flood assessment in data-scarce regions, offering a robust scientific basis for flood management and spatial planning in monsoon-affected areas. Floods are among the most frequent and devastating natural hazards, particularly in developing countries such as Myanmar, where monsoon-driven rainfall and inadequate flood-control infrastructure exacerbate disaster impacts. This study presents a satellite-driven and interpretable framework for high-resolution flood susceptibility and risk assessment by integrating multi-source remote sensing and geospatial data with ensemble machine-learning models—Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM)—implemented on the Google Earth Engine (GEE) platform. Eleven satellite- and GIS-derived predictors were used, including the Digital Elevation Model (DEM), slope, curvature, precipitation frequency, the Normalized Difference Vegetation Index (NDVI), land-use type, and distance to rivers, to develop flood susceptibility models. The Jenks natural breaks method was applied to classify flood susceptibility into five categories across Myanmar. Both models achieved excellent predictive performance, with area under the receiver operating characteristic curve (AUC) values of 0.943 for XGBoost and 0.936 for LightGBM, effectively distinguishing flood-prone from non-prone areas. XGBoost estimated that 26.1% of Myanmar’s territory falls within medium- to high-susceptibility zones, while LightGBM yielded a similar estimate of 25.3%. High-susceptibility regions were concentrated in the Ayeyarwady Delta, Rakhine coastal plains, and the Yangon region. SHapley Additive exPlanations (SHAP) analysis identified precipitation frequency, NDVI, and DEM as dominant factors, highlighting the ability of satellite-observed environmental indicators to capture flood-relevant surface processes. To incorporate exposure, population density and nighttime-light intensity were integrated with the susceptibility results to construct a natural–social flood risk framework. This observation-based and explainable approach demonstrates the applicability of multi-source remote sensing for flood assessment in data-scarce regions, offering a robust scientific basis for flood management and spatial planning in monsoon-affected areas. Full article
Show Figures

Figure 1

24 pages, 4238 KB  
Article
Multi-Scale Simulation of Urban Underpass Inundation During Extreme Rainfalls: A 2.8 km Long Tunnel in Shanghai
by Li Teng, Yu Chi, Xiaomin Wan, Dong Cheng, Xi Tu and Hui Wang
Buildings 2026, 16(2), 414; https://doi.org/10.3390/buildings16020414 - 19 Jan 2026
Viewed by 89
Abstract
Urban underpasses are critical flood-prone hotspots during extreme rainfall, posing significant threats to urban resilience and infrastructure safety. However, a scale gap persists between catchment-scale hydrological models, which often oversimplify local geometry, and high-fidelity hydrodynamic models, which typically lack realistic boundary conditions. To [...] Read more.
Urban underpasses are critical flood-prone hotspots during extreme rainfall, posing significant threats to urban resilience and infrastructure safety. However, a scale gap persists between catchment-scale hydrological models, which often oversimplify local geometry, and high-fidelity hydrodynamic models, which typically lack realistic boundary conditions. To bridge this gap, this study develops a multi-scale framework that integrates the Storm Water Management Model (SWMM) with 3D Computational Fluid Dynamics (CFD). The framework employs a unidirectional integration (one-way forcing), utilizing SWMM-simulated runoff hydrographs as dynamic inlet boundaries for a detailed CFD model of a 2.8 km underpass in Shanghai. Simulations across six design rainfall events (2- to 50-year return periods) revealed two distinct flooding mechanisms: a systemic response at the hydraulic low point, governed by cumulative inflow; and a localized response at entrance concavities, where water depth is rapidly capped by micro-topography. Informed by these mechanisms, an intensity-graded drainage strategy was developed. Simulation results show significant differences between different drainage strategies. Through this framework and optimized drainage system design, significant water accumulation within the underpass can be prevented, enhancing its flood resistance and reducing the severity of disasters. This integrated framework provides a robust tool for enhancing the flood resilience of urban underpasses and offers a basis for the design of proactive disaster mitigation systems. Full article
Show Figures

Figure 1

29 pages, 19190 KB  
Article
Addressing the Advance and Delay in the Onset of the Rainy Seasons in the Tropical Andes Using Harmonic Analysis and Climate Change Indices
by Sheila Serrano-Vincenti, Jonathan González-Chuqui, Mariana Luna-Cadena and León A. Escobar
Atmosphere 2026, 17(1), 98; https://doi.org/10.3390/atmos17010098 - 17 Jan 2026
Viewed by 160
Abstract
The advance and delay of the rainy season is among the most frequently cited effects of climate change in the central Ecuadorian Andes. However, its assessment is not feasible using the indicators recommended by the standardized indices of the Expert Team on Climate [...] Read more.
The advance and delay of the rainy season is among the most frequently cited effects of climate change in the central Ecuadorian Andes. However, its assessment is not feasible using the indicators recommended by the standardized indices of the Expert Team on Climate Change Detection and Indices (ETCCDI), designed to detect changes in intensity, frequency, or duration of intense events. This study aims to analyze such advances and delays through harmonic analysis in Tungurahua, a predominantly agricultural province in the Tropical Central Andes, where in situ data are scarce. Daily in situ data from five meteorological stations were used, including precipitation, maximum, and minimum temperature records spanning 39 to 68 years. The study involved an analysis of the region’s climatology, climate change indices, and harmonic analysis using Cross-Wavelet Transform (XWT) and Wavelet Coherence Transform (WCT) to identify seasonal patterns and their variability (advance or delay) by comparing historical and recent time series, and Krigging for regionalization. The year 2000 was used as a study point for comparing past and present trends. Results show a generalized increase in both minimum and maximum temperatures. In the case of extreme rainfall events, no significant changes were detected. Harmonic analysis was found to be fruitful despite of the missing data. Furthermore, the observed advances and delays in seasonality were not statistically significant and appeared to be more closely related to the geographic location of the stations than to temporal shifts. Full article
(This article belongs to the Special Issue Hydrometeorological Simulation and Prediction in a Changing Climate)
Show Figures

Figure 1

23 pages, 5602 KB  
Article
Effects of Soil Structure Degradation and Rainfall Patterns on Red Clay Slope Stability: Insights from a Combined Field-Laboratory-Numerical Study in Yunnan Province
by Jianbo Xu, Shibing Huang, Jiawei Zhai, Yanzi Sun, Hao Li, Jianjun Song, Ping Jiang and Yi Luo
Buildings 2026, 16(2), 389; https://doi.org/10.3390/buildings16020389 - 17 Jan 2026
Viewed by 219
Abstract
Rainfall-induced failures in red clay slopes are common, yet the coupled influence of soil structure degradation and rainfall temporal patterns on slope hydromechanical behavior remains poorly understood. This study advances the understanding by investigating a cut slope failure in Yunnan through integrated field [...] Read more.
Rainfall-induced failures in red clay slopes are common, yet the coupled influence of soil structure degradation and rainfall temporal patterns on slope hydromechanical behavior remains poorly understood. This study advances the understanding by investigating a cut slope failure in Yunnan through integrated field monitoring, laboratory testing, and numerical modeling. Key advancements include: (1) elucidating the coupled effect of structure degradation on both shear strength reduction and hydraulic conductivity alteration; (2) systematically quantifying the impact of rainfall temporal patterns beyond total rainfall; and (3) providing a mechanistic explanation for the critical role of early-peak rainfall. Mechanical and hydrological parameters were obtained from intact and remolded samples, with soil-water retention estimated via pedotransfer functions. A hydro-mechanical finite element model of the slope was constructed and calibrated using recorded rainfall, displacement data and failure surface. Six simulation scenarios were designed by combining three strength conditions (intact at natural water content, intact at saturation, remolded at natural water content) with two hydraulic conductivity values (intact vs. remolded). Additionally, four synthetic rainfall patterns, including uniform, peak-increasing, peak-decaying and bell-shaped rainfall, were simulated to evaluate their influence on pore water pressure development and slope stability. Results show remolding reduced hydraulic conductivity 4.7-fold, slowing wetting front advance and increasing shallow pore water pressure. Intact soil facilitated deeper drainage, elevating pressure near the soil-rock interface. Strength reduction induced by structure degradation (water saturating and remolding) enlarged the slope deformation zone by 1.5 times under same hydraulic conductivity. Simulations using saturated intact strength best matched field observations. The results from this specific slope indicate that strength parameters primarily control stability, while permeability affects deformation depth. Simulations considering different rainfall patterns indicate that slope stability depends more critically on the temporal distribution of rainfall intensity than on the total amount. Overall, peak-decaying rainfall led to the most rapid rise in pore water pressure, earliest instability and lowest failure rainfall threshold, whereas peak-increasing rainfall showed the opposite trends. Our findings outline a practical framework for assessing red clay slope stability during rainfall. This framework recommends using saturated intact strength parameters in stability analysis. It highlights the important influence of rainfall temporal patterns, especially those with an early peak, on failure timing and rainfall threshold. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 5500 KB  
Article
Spatiotemporal Differentiation Characteristics and Meteorological Driving Mechanisms of Soil Moisture in Soil–Rock Combination Controlled by Microtopography in Hilly and Gully Regions
by Linfu Liu, Xiaoyu Dong, Fucang Qin and Yan Sheng
Sustainability 2026, 18(2), 959; https://doi.org/10.3390/su18020959 - 17 Jan 2026
Viewed by 248
Abstract
Soil erosion in the hilly and gully region of the middle reaches of the Yellow River is severe, threatening regional ecological security and the water–sediment balance of the Yellow River. The area features fragmented topography and significant spatial heterogeneity in soil thickness, forming [...] Read more.
Soil erosion in the hilly and gully region of the middle reaches of the Yellow River is severe, threatening regional ecological security and the water–sediment balance of the Yellow River. The area features fragmented topography and significant spatial heterogeneity in soil thickness, forming a unique binary “soil–rock” structural system. The soil in the study area is characterized by silt-based loess, and the underlying bedrock is an interbedded Jurassic-Cretaceous sandstone and sandy shale. It has strong weathering, well-developed fissures, and good permeability, rather than dense impermeable rock layers. However, the spatiotemporal differentiation mechanism of soil moisture in this system remains unclear. This study focuses on the typical hilly and gully region—the Geqiugou watershed. Through field investigations, soil thickness sampling, multi-scale soil moisture monitoring, and analysis of meteorological data, it systematically examines the cascade relationships among microtopography, soil–rock combinations, soil moisture, and meteorological drivers. The results show that: (1) Based on the field survey of 323 sampling points in the study area, it was found that soil samples with a thickness of less than 50 cm accounted for 85%, which constituted the main structure of soil thickness in the region. Macrotopographic units control the spatial differentiation of soil thickness, forming a complete thickness gradient from erosional units (e.g., Gully and Furrow) to depositional units (e.g., Gently sloped terrace). Based on this, five typical soil–rock combination types with soil thicknesses of 10 cm, 30 cm, 50 cm, 70 cm, and 90 cm were identified. (2) Soil–rock combination structures regulate the vertical distribution and seasonal dynamics of soil moisture. In thin-layer combinations, soil moisture is primarily retained within the shallow soil profile with higher dynamics, whereas in thick-layer combinations, under conditions of substantial rainfall, moisture can percolate deeply and become notably stored within the fractured bedrock, sometimes exceeding the moisture content in the overlying soil. (3) The response of soil moisture to precipitation is hierarchical: light rain events only affect the surface layer, whereas heavy rainfall can infiltrate to depths below 70 cm. Under intense rainfall, the soil–rock interface acts as a rapid infiltration pathway. (4) The influence of meteorological drivers on soil moisture exhibits vertical differentiation and is significantly modulated by soil–rock combination types. This study reveals the critical role of microtopography-controlled soil–rock combination structures in the spatiotemporal differentiation of soil moisture, providing a scientific basis for the precise implementation of soil and water conservation measures and ecological restoration in the region. Full article
Show Figures

Figure 1

34 pages, 2968 KB  
Article
Emergency Regulation Method Based on Multi-Load Aggregation in Rainstorm
by Hong Fan, Feng You and Haiyu Liao
Appl. Sci. 2026, 16(2), 952; https://doi.org/10.3390/app16020952 - 16 Jan 2026
Viewed by 124
Abstract
With the rapid development of the Internet of Things (IOT), 5G, and modern power systems, demand-side loads are becoming increasingly observable and remotely controllable, which enables demand-side flexibility to participate more actively in grid dispatch and emergency support. Under extreme rainstorm conditions, however, [...] Read more.
With the rapid development of the Internet of Things (IOT), 5G, and modern power systems, demand-side loads are becoming increasingly observable and remotely controllable, which enables demand-side flexibility to participate more actively in grid dispatch and emergency support. Under extreme rainstorm conditions, however, component failure risk rises and the availability and dispatchability of demand-side flexibility can change rapidly. This paper proposes a risk-aware emergency regulation framework that translates rainstorm information into actionable multi-load aggregation decisions for urban power systems. First, demand-side resources are quantified using four response attributes, including response speed, response capacity, maximum response duration, and response reliability, to enable a consistent characterization of heterogeneous flexibility. Second, a backpropagation (BP) neural network is trained on long-term real-world meteorological observations and corresponding reliability outcomes to estimate regional- or line-level fault probabilities from four rainstorm drivers: wind speed, rainfall intensity, lightning warning level, and ambient temperature. The inferred probabilities are mapped onto the IEEE 30-bus benchmark to identify high-risk areas or lines and define spatial priorities for emergency response. Third, guided by these risk signals, a two-level coordination model is formulated for a load aggregator (LA) to schedule building air conditioning loads, distributed photovoltaics, and electric vehicles through incentive-based participation, and the resulting optimization problem is solved using an adaptive genetic algorithm. Case studies verify that the proposed strategy can coordinate heterogeneous resources to meet emergency regulation requirements and improve the aggregator–user economic trade-off compared with single-resource participation. The proposed method provides a practical pathway for risk-informed emergency regulation under rainstorm conditions. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 3366 KB  
Article
Observed Change in Precipitation and Extreme Precipitation Months in the High Mountain Regions of Bulgaria
by Nina Nikolova, Kalina Radeva, Simeon Matev and Martin Gera
Atmosphere 2026, 17(1), 93; https://doi.org/10.3390/atmos17010093 - 16 Jan 2026
Viewed by 162
Abstract
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The [...] Read more.
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The present study aims to give new information about precipitation variability in high mountain regions of Bulgaria (Musala, Botev Peak, and Cherni Vrah) and to assess the role of large-scale atmospheric circulation patterns for the occurrence of extreme precipitation months. The study period is 1937–2024, and the classification of extreme precipitation months is based on the 10th and 90th percentiles of precipitation distribution. The temporal distribution of extreme precipitation months was analyzed by comparison of two periods (1937–1980 and 1981–2024). The impact of atmospheric circulation was evaluated by correlation between the number of extreme precipitation months and indices for the North Atlantic Oscillation (NAO) and Western Mediterranean Oscillation (WeMO). Results show a statistically significant decrease in winter and spring precipitation at Musala and Cherni Vrah, and a persistent drying tendency at Cherni Vrah across all seasons. The frequency of extremely wet months in winter and autumn has sharply declined since 1981, whereas extremely dry months have become more common, particularly during the cold season. Precipitation erosivity also exhibits station-specific responses, with Musala and Cherni Vrah showing reduced monthly concentration, while Botev Peak retains pronounced warm-season erosive rainfall. Circulation analysis indicates that positive NAOI phases favor dry extremes, while positive WeMOI phases enhance wet extremes. These findings reveal a shift toward drier and more seasonally uneven conditions in Bulgaria’s alpine zone, increasing hydrological risks related to drought, water scarcity, and soil erosion. The identified shifts in precipitation seasonality and intensity offer essential guidance for forecasting hydrological risks and mitigating soil erosion in vulnerable mountain ecosystems. The study underscores the need for adaptive water-resource strategies and enhanced monitoring in high-mountain areas. Full article
Show Figures

Figure 1

17 pages, 5416 KB  
Article
Dynamic Ocean–Atmosphere Processes of Typhoon Chan-Hom and Their Impact on Intensity, Rainfall and SST Cooling
by Guiting Song, Venkata Subrahmanyam Mantravadi, Chen Wang, Xiaoqing Liao, Yanmei Li and Shahriyor Nurulloyev
Atmosphere 2026, 17(1), 91; https://doi.org/10.3390/atmos17010091 - 16 Jan 2026
Viewed by 267
Abstract
This study aims to investigate the effects of Chan-Hom (2015) typhoon-induced variations in enthalpy flux (EF) and moisture flux (MF) on intensity variations and rainfall. Chan-Hom (2015) made landfall at Zhoushan, then changed its direction and moved towards Korea. This analysis used ERA5 [...] Read more.
This study aims to investigate the effects of Chan-Hom (2015) typhoon-induced variations in enthalpy flux (EF) and moisture flux (MF) on intensity variations and rainfall. Chan-Hom (2015) made landfall at Zhoushan, then changed its direction and moved towards Korea. This analysis used ERA5 reanalyzed data, encompassing daily surface latent and sensible heat flux, along with wind measurements at a height of 10 m. Furthermore, wind components and specific humidity data from the 1000–200 hPa level in ERA5 were utilized to compute the MF and MF convergence, in accordance with the equations outlined in the methodology. This study examines the correlation among typhoon intensity, precipitation, MF, and EF. The mechanism by which Typhoon Chan-Hom has caused a decline in sea surface temperature (SST) was analyzed. Typhoons need a higher EF that can affect them before landfall to maintain their intensity. The highest LHF was observed (340 W/m2) prior to typhoon landfall, indicating that LHF responds to intensity-induced wind during Chan-Hom. Typhoon-induced rainfall is mainly controlled by the MF convergence, rather than the typhoon intensity. The spatial and temporal distributions of MF and MF convergence (MFC) during typhoon formation to landfall reveal that the symmetric MFC is dominated by typhoon intensity; a symmetrical structure is observed when the intensity is high. MFC includes wind convergence and moisture advection. Wind convergence dominates the MFC during typhoons, but moisture advection forms at the eyewall. MF during the typhoon’s landfall can relate to the amount of rainfall that occurred over the land. However, the rainfall pattern changed after landfall, and the typhoon changed its direction. SST cooling observed in the study area is mainly due to the upwelling process with strong cyclonic winds. Full article
Show Figures

Figure 1

22 pages, 6124 KB  
Article
High-Resolution Monitoring of Badland Erosion Dynamics: Spatiotemporal Changes and Topographic Controls via UAV Structure-from-Motion
by Yi-Chin Chen
Water 2026, 18(2), 234; https://doi.org/10.3390/w18020234 - 15 Jan 2026
Viewed by 323
Abstract
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in [...] Read more.
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in southwestern Taiwan over a 22-month period. Five UAV surveys conducted between 2017 and 2018 were processed using Structure-from-Motion photogrammetry to generate time-series digital surface models (DSMs). Topographic changes were quantified using DSMs of Difference (DoD). The results reveal intense surface lowering, with a mean erosion depth of 34.2 cm, equivalent to an average erosion rate of 18.7 cm yr−1. Erosion is governed by a synergistic regime in which diffuse rain splash acts as the dominant background process, accounting for approximately 53% of total erosion, while concentrated flow drives localized gully incision. Morphometric analysis shows that erosion depth increases nonlinearly with slope, consistent with threshold hillslope behavior, but exhibits little dependence on the contributing area. Plan and profile curvature further influence the spatial distribution of erosion, with enhanced erosion on both strongly concave and convex surfaces relative to near-linear slopes. The gully network also exhibits rapid channel adjustment, including downstream meander migration and associated lateral bank erosion. These findings highlight the complex interactions among hillslope processes, gully dynamics, and base-level controls that govern badland landscape evolution and have important implications for erosion modeling and watershed management in high-intensity rainfall environments. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

23 pages, 6344 KB  
Article
Exploring the Lagged Effect of Rainfall on Urban Rail Transit Passenger Flow: A Case Study of Guangzhou
by Binbin Li, Sirui Li, Zhefan Ye, Shasha Liu, Qingru Zou and Xinhao Wang
Eng 2026, 7(1), 47; https://doi.org/10.3390/eng7010047 - 15 Jan 2026
Viewed by 206
Abstract
With the increasing frequency of precipitation events under global warming, understanding rainfall-induced disruptions to urban mobility has become increasingly important. While prior studies primarily focus on road traffic, the lagged and threshold effects of rainfall on urban rail transit (URT) passenger flow remain [...] Read more.
With the increasing frequency of precipitation events under global warming, understanding rainfall-induced disruptions to urban mobility has become increasingly important. While prior studies primarily focus on road traffic, the lagged and threshold effects of rainfall on urban rail transit (URT) passenger flow remain insufficiently explored. This study analyzes 109 days of automatic fare collection data from Tianhe District, Guangzhou, in combination with hourly meteorological records and station-level built environment attributes. A rainfall threshold-aware gradient boosting framework is proposed to capture nonlinear response regimes, and an explainable learning approach is used to quantify the relative importance of rainfall, temporal factors, and built environment characteristics. The proposed framework outperforms the baseline model, with the root mean squared error (RMSE) and mean absolute error (MAE) reduced by over 5.38% and 5.93%, respectively. Results further indicate that lagged rainfall intensity exerts the strongest influence on passenger flow variation, with impact magnitudes varying systematically across station types. These findings enhance understanding of the nonlinear, time-dependent effects of rainfall on URT demand and provide practical guidance for passenger flow management and operational planning under rainfall conditions. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

Back to TopTop