water-logo

Journal Browser

Journal Browser

Water-Soil-Vegetation Interactions in Changing Climate

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water and Climate Change".

Deadline for manuscript submissions: 20 June 2026 | Viewed by 231

Special Issue Editor


E-Mail Website
Guest Editor
Pacific Northwest National Laboratory, Richland, WA, USA
Interests: hydrology & hydraulics; water scarcity; water-ecosystems; water-food; water-energy

Special Issue Information

Dear Colleagues,

The interplay between water, soil, and vegetation is fundamental to ecosystem stability, hydrological cycles, and agricultural productivity. However, global environmental change is altering these interactions, thus affecting water availability, soil health, and vegetation dynamics. This Special Issue explores the complex relationships among these components under changing environmental conditions, addressing both theoretical and applied aspects. The key components of this Special Issue include the following:

  • Impacts of global environmental change on soil moisture and hydrological processes;
  • Vegetation responses to shifting precipitation patterns and temperature regimes;
  • Soil degradation and erosion and their impacts on the carbon cycle;
  • Sustainable land management strategies to enhance ecosystem resilience;
  • Remote sensing and modeling approaches for monitoring changes in water–soil–vegetation systems.

This collection aims to advance our understanding of the intricate water–soil–vegetation nexus, providing critical insights into how these systems respond to global environmental change. By integrating diverse perspectives, cutting-edge research, and innovative methodologies, it seeks to inform sustainable management strategies that promote ecosystem resilience, preserve water resources, and mitigate the impacts of global environmental change.

Dr. Mingjie Shi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • water–soil–vegetation nexus
  • carbon and water cycles
  • global environmental change
  • ecosystem resilience
  • sustainable management strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 6210 KB  
Article
Assessing Economic Vulnerability from Urban Flooding: A Case Study of Catu, a Commerce-Based City in Brazil
by Lais Das Neves Santana, Alarcon Matos de Oliveira, Lusanira Nogueira Aragão de Oliveira and Fabricio Ribeiro Garcia
Water 2026, 18(2), 282; https://doi.org/10.3390/w18020282 - 22 Jan 2026
Abstract
Flooding is a recurrent problem in many Brazilian cities, resulting in significant losses that affect health, assets, finance, and the environment. The uncertainty regarding extreme rainfall events due to climate change makes this challenge even more severe, compounded by inadequate urban planning and [...] Read more.
Flooding is a recurrent problem in many Brazilian cities, resulting in significant losses that affect health, assets, finance, and the environment. The uncertainty regarding extreme rainfall events due to climate change makes this challenge even more severe, compounded by inadequate urban planning and the occupation of risk areas, particularly for the municipality of Catu, in the state of Bahia, which also suffers from recurrent floods. Critical hotspots include the Santa Rita neighborhood and its surroundings, the main supply center, and the city center—the municipality’s commercial hub. The focus of this research is the unprecedented quantification of the socioeconomic impact of these floods on the low-income population and the region’s informal sector (street vendors). This research focused on analyzing and modeling the destructive potential of intense rainfall in the Santa Rita region (Supply Center) of Catu, Bahia, and its effects on the local economy across different recurrence intervals. A hydrological simulation software suite based on computational and geoprocessing technologies—specifically HEC-RAS 6.4, HEC-HMS 4.11, and QGIS— 3.16 was utilized. Two-dimensional (2D) modeling was applied to assess the flood-prone areas. For the socioeconomic impact assessment, a loss procedure based on linear regression was developed, which correlated the different return periods of extreme events with the potential losses. This methodology, which utilizes validated, indirect data, establishes a replicable framework adaptable to other regions facing similar socioeconomic and drainage challenges. The results revealed that the area becomes impassable during flood events, preventing commercial activities and causing significant economic losses, particularly for local market vendors. The total financial damage for the 100-year extreme event is approximately US $30,000, with the loss model achieving an R2 of 0.98. The research concludes that urgent measures are necessary to mitigate flood impacts, particularly as climate change reduces the return period of extreme events. The implementation of adequate infrastructure, informed by the presented risk modeling, and public awareness are essential for reducing vulnerability. Full article
(This article belongs to the Special Issue Water-Soil-Vegetation Interactions in Changing Climate)
Show Figures

Figure 1

Back to TopTop