Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (196)

Search Parameters:
Keywords = insulation diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5031 KiB  
Article
Insulation Condition Assessment of High-Voltage Single-Core Cables Via Zero-Crossing Frequency Analysis of Impedance Phase Angle
by Fang Wang, Zeyang Tang, Zaixin Song, Enci Zhou, Mingzhen Li and Xinsong Zhang
Energies 2025, 18(15), 3985; https://doi.org/10.3390/en18153985 - 25 Jul 2025
Viewed by 176
Abstract
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core [...] Read more.
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core cables under different aging conditions has been established. The initial classification of insulation condition is achieved based on the impedance phase deviation between the test cable and the reference cable. Under localized aging conditions, the impedance phase spectroscopy is more than twice as sensitive to dielectric changes as the amplitude spectroscopy. Leveraging this advantage, a multi-parameter diagnostic framework is developed that integrates key spectral features such as the first phase angle zero-crossing frequency, initial phase, and resonance peak amplitude. The proposed method enables quantitative estimation of aging severity, spatial extent, and location. This technique offers a non-invasive, high-resolution solution for advanced cable health diagnostics and provides a foundation for practical deployment of power system asset management. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 4034 KiB  
Article
Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
by Yongjie Nie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu and Shengtao Li
Appl. Sci. 2025, 15(14), 7965; https://doi.org/10.3390/app15147965 - 17 Jul 2025
Viewed by 246
Abstract
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric [...] Read more.
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric field distribution-based techniques require complex instrumentation, limiting its applications in scenes of complex structures and atop tower climbing. To address these challenges, this study proposes an electroluminescent sensing strategy for zero-value insulator identification based on the electroluminescence of ZnS:Cu. Based on the stimulation of electrical stress, real-time monitoring of the health status of insulators was achieved by applying the composite of epoxy and ZnS:Cu onto the connection area between the insulator steel cap and the shed. Experimental results demonstrate that healthy insulators exhibit characteristic luminescence, whereas zero-value insulators show no luminescence due to a reduced drop in electrical potential. Compared with conventional detection methods requiring access of electric signals, such non-contact optical detection method offers high fault-recognition accuracy and real-time response capability within milliseconds. This work establishes a novel intelligent sensing paradigm for visualized condition monitoring of electrical equipment, demonstrating significant potential for fault diagnosis in advanced power systems. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

25 pages, 9813 KiB  
Article
Digital Twin Approach for Fault Diagnosis in Photovoltaic Plant DC–DC Converters
by Pablo José Hueros-Barrios, Francisco Javier Rodríguez Sánchez, Pedro Martín Sánchez, Carlos Santos-Pérez, Ariya Sangwongwanich, Mateja Novak and Frede Blaabjerg
Sensors 2025, 25(14), 4323; https://doi.org/10.3390/s25144323 - 10 Jul 2025
Viewed by 376
Abstract
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar [...] Read more.
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar transistors (IGBTs) and diodes and sensor-level false data injection attacks (FDIAs). A five-dimensional DT architecture is employed, where a virtual entity implemented using FMI-compliant FMUs interacts with a real-time emulated physical plant. Fault detection is performed by comparing the real-time system behaviour with DT predictions, using dynamic thresholds based on power, voltage, and current sensors errors. Once a discrepancy is flagged, a second step classifier processes normalized time-series windows to identify the specific fault type. Synthetic training data are generated using emulation models under normal and faulty conditions, and feature vectors are constructed using a compact, interpretable set of statistical and spectral descriptors. The model was validated using OPAL-RT Hardware in the Loop emulations. The results show high classification accuracy, robustness to environmental fluctuations, and transferability across system configurations. The framework also demonstrates compatibility with low-cost deployment hardware, confirming its practical applicability for fault diagnosis in real-world PV systems. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

15 pages, 6304 KiB  
Article
Thermal and Electrical Fault Diagnosis in Oil–Paper Insulation System: A Comparative Study of Natural Esters and Mineral Oil
by Youssouf Brahami, Samson Okikiola Oparanti, Issouf Fofana and Meghnefi Fethi
Appl. Sci. 2025, 15(14), 7676; https://doi.org/10.3390/app15147676 - 9 Jul 2025
Viewed by 237
Abstract
Power transformer insulation systems, composed of liquid and solid insulators, are continuously exposed to thermal and electrical stresses that degrade their performance over time and may lead to premature failure. Since these stresses are unavoidable during operation, selecting effective insulating materials is critical [...] Read more.
Power transformer insulation systems, composed of liquid and solid insulators, are continuously exposed to thermal and electrical stresses that degrade their performance over time and may lead to premature failure. Since these stresses are unavoidable during operation, selecting effective insulating materials is critical for long-term reliability. In this study, Kraft insulation paper was used as the solid insulator and impregnated with three different liquids: mineral oil and two natural esters (NE1204 and NE1215), to evaluate their stability under simultaneous thermal and electrical stress. The degradation behavior of the oil-impregnated papers was assessed using frequency-domain dielectric spectroscopy (FDS) and Fourier-transform infrared spectroscopy (FTIR), enabling early fault detection. Comparative analyses were conducted to evaluate the withstand capability of each liquid type during operation. Results revealed strong correlations between FTIR indicators (e.g., oxidation and hydroxyl group loss) and dielectric parameters (permittivity and loss factor), confirming the effectiveness of this combined diagnostic approach. Post-aging breakdown analysis showed that natural esters, particularly NE1215, offered superior preservation of insulation integrity compared to mineral oil. Differences between the two esters also highlight the role of chemical composition in insulation performance. This study reinforces the potential of natural esters as viable, eco-friendly alternatives in thermally and electrically stressed applications. Full article
(This article belongs to the Special Issue Novel Advances in High Voltage Insulation)
Show Figures

Figure 1

30 pages, 5474 KiB  
Article
Multiclass Fault Diagnosis in Power Transformers Using Dissolved Gas Analysis and Grid Search-Optimized Machine Learning
by Andrew Adewunmi Adekunle, Issouf Fofana, Patrick Picher, Esperanza Mariela Rodriguez-Celis, Oscar Henry Arroyo-Fernandez, Hugo Simard and Marc-André Lavoie
Energies 2025, 18(13), 3535; https://doi.org/10.3390/en18133535 - 4 Jul 2025
Viewed by 441
Abstract
Dissolved gas analysis remains the most widely utilized non-intrusive diagnostic method for detecting incipient faults in insulating liquid-immersed transformers. Despite their prevalence, conventional ratio-based methods often suffer from ambiguity and limited potential for automation applicrations. To address these limitations, this study proposes a [...] Read more.
Dissolved gas analysis remains the most widely utilized non-intrusive diagnostic method for detecting incipient faults in insulating liquid-immersed transformers. Despite their prevalence, conventional ratio-based methods often suffer from ambiguity and limited potential for automation applicrations. To address these limitations, this study proposes a unified multiclass classification model that integrates traditional gas ratio features with supervised machine learning algorithms to enhance fault diagnosis accuracy. The performance of six machine learning classifiers was systematically evaluated using training and testing data generated through four widely recognized gas ratio schemes. Grid search optimization was employed to fine-tune the hyperparameters of each model, while model evaluation was conducted using 10-fold cross-validation and six performance metrics. Across all the diagnostic approaches, ensemble models, namely random forest, XGBoost, and LightGBM, consistently outperformed non-ensemble models. Notably, random forest and LightGBM classifiers demonstrated the most robust and superior performance across all schemes, achieving accuracy, precision, recall, and F1 scores between 0.99 and 1, along with Matthew correlation coefficient values exceeding 0.98 in all cases. This robustness suggests that ensemble models are effective at capturing complex decision boundaries and relationships among gas ratio features. Furthermore, beyond numerical classification, the integration of physicochemical and dielectric properties in this study revealed degradation signatures that strongly correlate with thermal fault indicators. Particularly, the CIGRÉ-based classification using a random forest classifier demonstrated high sensitivity in detecting thermally stressed units, corroborating trends observed in chemical deterioration parameters such as interfacial tension and CO2/CO ratios. Access to over 80 years of operational data provides a rare and invaluable perspective on the long-term performance and degradation of power equipment. This extended dataset enables a more accurate assessment of ageing trends, enhances the reliability of predictive maintenance models, and supports informed decision-making for asset management in legacy power systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 7379 KiB  
Article
Identification of Dielectric Response Parameters of Pumped Storage Generator-Motor Stator Winding Insulation Based on Sparsity-Enhanced Dynamic Decomposition of Depolarization Current
by Guangya Zhu, Shiyu Ma, Shuai Yang, Yue Zhang, Bingyan Wang and Kai Zhou
Energies 2025, 18(13), 3382; https://doi.org/10.3390/en18133382 - 27 Jun 2025
Viewed by 273
Abstract
Accurate diagnosis of the insulation condition of stator windings in pumped storage generator-motor units is crucial for ensuring the safe and stable operation of power systems. Time domain dielectric response testing is an effective method for rapidly diagnosing the insulation condition of capacitive [...] Read more.
Accurate diagnosis of the insulation condition of stator windings in pumped storage generator-motor units is crucial for ensuring the safe and stable operation of power systems. Time domain dielectric response testing is an effective method for rapidly diagnosing the insulation condition of capacitive devices, such as those in pumped storage generator-motors. To precisely identify the conductivity and relaxation process parameters of the insulating medium and accurately diagnose the insulation condition of the stator windings, this paper proposes a method for identifying the insulation dielectric response parameters of stator windings based on sparsity-enhanced dynamic mode decomposition of the depolarization current. First, the measured depolarization current time series is processed through dynamic mode decomposition (DMD). An iterative reweighted L1 (IRL1)-based method is proposed to formulate a reconstruction error minimization problem, which is solved using the ADMM algorithm. Based on the computed modal amplitudes, the dominant modes—representing the main insulation relaxation characteristics—are separated from spurious modes caused by noise. The parameters of the extended Debye model (EDM) are then calculated from the dominant modes, enabling precise identification of the relaxation characteristic parameters. Finally, the accuracy and feasibility of the proposed method are verified through a combination of simulation experiments and laboratory tests. Full article
(This article belongs to the Special Issue Electrical Equipment State Measurement and Intelligent Calculation)
Show Figures

Figure 1

21 pages, 4725 KiB  
Article
A Novel Open Circuit Fault Diagnosis for a Modular Multilevel Converter with Modal Time-Frequency Diagram and FFT-CNN-BIGRU Attention
by Ziyuan Zhai, Ning Wang, Siran Lu, Bo Zhou and Lei Guo
Machines 2025, 13(6), 533; https://doi.org/10.3390/machines13060533 - 19 Jun 2025
Viewed by 271
Abstract
Fault diagnosis is one of the most important issues for a modular multilevel converter (MMC). However, conventional solutions are deficient in two aspects. Firstly, they lack the necessary feature information. Secondly, they are incapable of performing open-circuit fault diagnosis of the modular multilevel [...] Read more.
Fault diagnosis is one of the most important issues for a modular multilevel converter (MMC). However, conventional solutions are deficient in two aspects. Firstly, they lack the necessary feature information. Secondly, they are incapable of performing open-circuit fault diagnosis of the modular multilevel converter with the requisite degree of accuracy. To solve this problem, an intelligent diagnosis method is proposed to integrate the modal time–frequency diagram and FFT-CNN-BiGRU-Attention. By selecting the phase current and bridge arm voltage as the core fault parameters, the particle swarm algorithm is used to optimize the Variational Modal Decomposition parameters, and the fault signal is decomposed and reconstructed into sensitive feature components. The reconstructed signals are further transformed into modal time–frequency diagrams via continuous wavelet transform to fully retain the time–frequency domain features. In the model construction stage, the frequency–domain features are first extracted using the fast Fourier transform (FFT), and the local patterns are captured through a combination with a convolutional neural network; subsequently, the timing correlations are analyzed using bidirectional gated loop cells, and the Attention Mechanism is introduced to strengthen the key features. Simulations show that the proposed method achieves 98.63% accuracy in locating faulty insulated gate bipolar transistors (IGBTs) in the sub-module, with second-level real-time response capability. Compared with the recently published scheme, it maintains stable performance under complex working conditions such as noise interference and data imbalances, showing stronger robustness and practical value. This study provides a new idea for the intelligent operation and maintenance of power electronic devices, which can be extended to the fault diagnosis of other power equipment in the future. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

17 pages, 6068 KiB  
Article
Self-Supervised Asynchronous Federated Learning for Diagnosing Partial Discharge in Gas-Insulated Switchgear
by Van Nghia Ha, Young-Woo Youn, Hyeon-Soo Choi, Hong Nhung-Nguyen and Yong-Hwa Kim
Energies 2025, 18(12), 3078; https://doi.org/10.3390/en18123078 - 11 Jun 2025
Viewed by 412
Abstract
Deep learning-based models have achieved considerable success in partial discharge (PD) fault diagnosis for power systems, enhancing grid asset safety and improving reliability. However, traditional approaches often rely on centralized training, which demands significant resources and fails to account for the impact of [...] Read more.
Deep learning-based models have achieved considerable success in partial discharge (PD) fault diagnosis for power systems, enhancing grid asset safety and improving reliability. However, traditional approaches often rely on centralized training, which demands significant resources and fails to account for the impact of noisy operating conditions on Intelligent Electronic Devices (IEDs). In a gas-insulated switchgear (GIS), PD measurement data collected in noisy environments exhibit diverse feature distributions and a wide range of class representations, posing significant challenges for trained models under complex conditions. To address these challenges, we propose a Self-Supervised Asynchronous Federated Learning (SSAFL) approach for PD diagnosis in noisy IED environments. The proposed technique integrates asynchronous federated learning with self-supervised learning, enabling IEDs to learn robust pattern representations while preserving local data privacy and mitigating the effects of resource heterogeneity among IEDs. Experimental results demonstrate that the proposed SSAFL framework achieves overall accuracies of 98% and 95% on the training and testing datasets, respectively. Additionally, for the floating class in IED 1, SSAFL improves the F1-score by 5% compared to Self-Supervised Federated Learning (SSFL). These results indicate that the proposed SSAFL method offers greater adaptability to real-world scenarios. In particular, it effectively addresses the scarcity of labeled data, ensures data privacy, and efficiently utilizes heterogeneous local resources. Full article
Show Figures

Figure 1

35 pages, 10924 KiB  
Article
Winding Fault Detection in Power Transformers Based on Support Vector Machine and Discrete Wavelet Transform Approach
by Bonginkosi A. Thango
Technologies 2025, 13(5), 200; https://doi.org/10.3390/technologies13050200 - 14 May 2025
Cited by 1 | Viewed by 631
Abstract
Transformer winding faults (TWFs) can lead to insulation breakdown, internal short circuits, and catastrophic transformer failure. Due to their low current magnitude—particularly at early stages such as inter-turn short circuits, axial or radial displacement, or winding looseness—TWFs often induce minimal impedance changes and [...] Read more.
Transformer winding faults (TWFs) can lead to insulation breakdown, internal short circuits, and catastrophic transformer failure. Due to their low current magnitude—particularly at early stages such as inter-turn short circuits, axial or radial displacement, or winding looseness—TWFs often induce minimal impedance changes and generate fault currents that remain within normal operating thresholds. As a result, conventional protection schemes like overcurrent relays, which are tuned for high-magnitude faults, fail to detect such internal anomalies. Moreover, frequency response deviations caused by TWFs often resemble those introduced by routine phenomena such as tap changer operations, load variation, or core saturation, making accurate diagnosis difficult using traditional FRA interpretation techniques. This paper presents a novel diagnostic framework combining Discrete Wavelet Transform (DWT) and Support Vector Machine (SVM) classification to improve the detection of TWFs. The proposed system employs region-based statistical deviation labeling to enhance interpretability across five well-defined frequency bands. It is validated on five real FRA datasets obtained from operating transformers in Gauteng Province, South Africa, covering a range of MVA ratings and configurations, thereby confirming model transferability. The system supports post-processing but is lightweight enough for near real-time diagnostic use, with average execution time under 12 s per case on standard hardware. A custom graphical user interface (GUI), developed in MATLAB R2022a, automates the diagnostic workflow—including region identification, wavelet-based decomposition visualization, and PDF report generation. The complete framework is released as an open-access toolbox for transformer condition monitoring and predictive maintenance. Full article
Show Figures

Figure 1

19 pages, 7047 KiB  
Article
Insulation Defect Diagnosis Using a Random Forest Algorithm with Optimized Feature Selection in a Gas-Insulated Line Breaker
by Gyeong-Yeol Lee and Gyung-Suk Kil
Electronics 2025, 14(10), 1940; https://doi.org/10.3390/electronics14101940 - 9 May 2025
Viewed by 466
Abstract
Fault diagnosis based on the partial discharge (PD) recognition has been widely applied on a gas-insulated line breaker (GILB) and gas-insulated switchgear (GIS) as a reliable online condition monitoring method. This paper dealt with insulation defect diagnosis based on a Random Forest (RF) [...] Read more.
Fault diagnosis based on the partial discharge (PD) recognition has been widely applied on a gas-insulated line breaker (GILB) and gas-insulated switchgear (GIS) as a reliable online condition monitoring method. This paper dealt with insulation defect diagnosis based on a Random Forest (RF) algorithm with an optimized feature selection method. Four different types of insulation defect models, such as the free-moving particle (FMP) defect, the protrusion-on-conductor (POC) defect, the protrusion-on-enclosure (POE) defect, and the delamination defect, were prepared to simulate representative PD single pulses and PRPD patterns generated from the GILB. The PD signals generated from defect models were detected using the PRPD sensor which can detect phase-synchronized PD signals with the applied high-voltage (HV) signals without the need for additional equipment. Various statistical PD features were extracted from PD single pulses and PRPD patterns according to four kinds of PD defect models, and optimized features were selected with respect to variance importance analysis. Two kinds of PD datasets were established using all statistical features and top-ranked features. From the experimental results, the RF algorithm achieved accuracy rates exceeding 92%, and the PD datasets using only half of the statistical PD features could reduce the computational times while maintaining the accuracy rates. Full article
(This article belongs to the Special Issue Fault Detection Technology Based on Deep Learning)
Show Figures

Figure 1

15 pages, 4071 KiB  
Article
Moisture Localization and Diagnosis Method for Power Distribution Cables Based on Dynamic Frequency Domain Reflectometry
by Hongzhou Zhang, Kai Zhou, Xiang Ren and Yefei Xu
Energies 2025, 18(10), 2430; https://doi.org/10.3390/en18102430 - 9 May 2025
Viewed by 402
Abstract
Moisture ingress in power distribution cable bodies can lead to insulation degradation, jeopardizing the operational safety of power grids. However, current cable maintenance technologies lack effective diagnostic methods for identifying moisture defects in cable bodies. To address this gap, this paper proposes a [...] Read more.
Moisture ingress in power distribution cable bodies can lead to insulation degradation, jeopardizing the operational safety of power grids. However, current cable maintenance technologies lack effective diagnostic methods for identifying moisture defects in cable bodies. To address this gap, this paper proposes a dynamic frequency domain reflectometry (D-FDR) method for moisture localization and diagnosis in power distribution cables. Leveraging the temperature-sensitive nature of moisture defects—in contrast to the temperature-insensitive characteristics of other defects—the method involves the application of thermal excitation to induce differential dynamic changes in the distributed capacitance of moisture-affected cable segments compared to normal segments, enabling the precise identification and diagnosis of moisture ingress. Simulations and experiments confirm that moisture ingress in cable bodies increases the distributed capacitance, generating reflection peaks at corresponding distances on frequency domain localization plots. Under thermal excitation, the reflection peak amplitude of moisture defects exhibits a temperature-dependent decrease, distinct from the behavior of intact cables (amplitude increase) and copper shielding layer damage (negligible variation). By utilizing the dynamic characteristics of reflection peak amplitudes as diagnostic criteria, this method is able to accurately localize and diagnose moisture defects in cable bodies. Full article
(This article belongs to the Section F4: Critical Energy Infrastructure)
Show Figures

Figure 1

23 pages, 7777 KiB  
Article
Research on GIS Circuit Breaker Fault Diagnosis Based on Closing Transient Vibration Signals
by Yue Yu and Hongyan Zhao
Machines 2025, 13(4), 335; https://doi.org/10.3390/machines13040335 - 18 Apr 2025
Viewed by 504
Abstract
GIS circuit breakers play a critical role in maintaining the reliability of modern power systems. However, mechanical failures, such as spring fatigue, transmission rod jamming, and loosening of structural components, can significantly impact their performance. Traditional diagnostic methods struggle to identify these issues [...] Read more.
GIS circuit breakers play a critical role in maintaining the reliability of modern power systems. However, mechanical failures, such as spring fatigue, transmission rod jamming, and loosening of structural components, can significantly impact their performance. Traditional diagnostic methods struggle to identify these issues effectively due to the enclosed nature of GIS equipment. This study explores the use of vibration signal analysis, specifically during the closing transient phase of the GIS circuit breaker. The proposed method combines wavelet packet decomposition, rough set theory for feature extraction and dimensionality reduction, and the S_Kohonen neural network for fault type identification. Experimental results demonstrate the robustness and accuracy of the method, achieving a diagnostic accuracy of 96.7% in identifying mechanical faults. Compared with traditional methods, this approach offers improved efficiency and accuracy in diagnosing GIS circuit breaker faults. The proposed method is highly applicable for predictive maintenance and fault diagnosis in power grid systems, contributing to enhanced operational safety and reliability. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

25 pages, 5295 KiB  
Article
Interpretation of Partial-Discharge-Activated Frequency Response Analysis for Transformer Diagnostics
by Bonginkosi A. Thango
Machines 2025, 13(4), 300; https://doi.org/10.3390/machines13040300 - 4 Apr 2025
Viewed by 606
Abstract
This paper introduces a novel diagnostic approach called partial-discharge-activated impulse frequency response analysis (PD-IFRA), developed to overcome the limitations of conventional frequency response analysis (FRA) in detecting partial discharges (PDs) in power transformers. While traditional FRA with low-impulse-voltage excitation (LIVE) effectively identifies mechanical [...] Read more.
This paper introduces a novel diagnostic approach called partial-discharge-activated impulse frequency response analysis (PD-IFRA), developed to overcome the limitations of conventional frequency response analysis (FRA) in detecting partial discharges (PDs) in power transformers. While traditional FRA with low-impulse-voltage excitation (LIVE) effectively identifies mechanical deformations, inter-turn shorts, and insulation faults, it fails to detect incipient PD activity since PD phenomena require excitation beyond the PD inception voltage (PDIV) to initiate. This study proposes, for the first time, the extension of IFRA to moderate impulse voltage levels—without exceeding insulation limits—enabling the early and non-destructive detection of PDs. Experimental validation on a 315 kVA, 11 kV/420 V Dyn11 transformer shows that PD-IFRA effectively identifies PD-related impedance deviations within the 10 kHz–2 MHz frequency range, especially for PD sources associated with floating metal parts. Furthermore, the comparative analysis between normal, short-circuited, and PD-induced conditions demonstrates that PD-IFRA significantly enhances the precursory diagnosis of PDs where conventional FRA fails. This contribution advances transformer condition assessment by integrating PD sensitivity into FRA-based methods without compromising equipment safety. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

21 pages, 5289 KiB  
Article
Research on the Transformer Failure Diagnosis Method Based on Fluorescence Spectroscopy Analysis and SBOA Optimized BPNN
by Xueqing Chen, Dacheng Li and Anjing Wang
Sensors 2025, 25(7), 2296; https://doi.org/10.3390/s25072296 - 4 Apr 2025
Viewed by 481
Abstract
The representative dissolved gases analysis (DGA) method for transformer fault detection faces many shortcomings in early fault diagnosis, which restricts the application and development of fault detection technology in the field of transformers. In order to diagnose early failure in time, fluorescence analysis [...] Read more.
The representative dissolved gases analysis (DGA) method for transformer fault detection faces many shortcomings in early fault diagnosis, which restricts the application and development of fault detection technology in the field of transformers. In order to diagnose early failure in time, fluorescence analysis technology has recently been used for the research of transformer failure diagnosis, which makes up for the shortcomings of DGA. However, most of the existing fluorescence analyses of insulating oil studies combined with intelligent algorithms are a qualitative diagnosis of fault types; the quantitative fault diagnosis of the same oil sample has not been reported. In this study, a typical fault simulation experiment of the interval discharge of insulating oil was carried out with the new Xinjiang Karamay oil, and the fluorescence spectroscopy data of insulating oil under different discharge durations were collected. In order to eliminate the influence of noise factors on the spectral analysis and boost the accuracy of the diagnosis, a variety of spectral preprocessing algorithms, such as Savitzky–Golay (SG), moving median, moving mean, gaussian, locally weighted linear regression smoothing (Lowess), locally weighted quadratic regression smoothing (Loess), and robust (RLowess) and (Rloess), are used to smooth denoise the collected spectral data. Then, the dimensionality reduction techniques of principal component analysis (PCA), kernel principal component analysis (KPCA), and multi-dimensional scale (MDS) are used for further processing. Based on various preprocessed and dimensionally reduced data, transformer failure diagnosis models based on the particle swarm optimization algorithm (PSO) and the secretary bird optimization algorithm (SBOA) optimized BPNN are established to quantitatively analyze the state of insulating oil and predict the durations of transformer failure. By using the mathematical evaluation methods to comprehensively evaluate and compare the effects of various algorithm models, it was found that the Loess-MDS-SBOA-BP model has the best performance, with its determination coefficient (R2) increasing to 99.711%, the root mean square error (RMSE) being only 0.27144, and the other evaluation indicators also being optimal. The experimental results show that the failure diagnosis model finally proposed in this paper can perform an accurate diagnosis of the failure time; the predicted time is closest to the true value, which lays a foundation for the further development of the field of transformer failure diagnosis. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

14 pages, 4290 KiB  
Article
Acoustic Identification Method of Partial Discharge in GIS Based on Improved MFCC and DBO-RF
by Xueqiong Zhu, Chengbo Hu, Jinggang Yang, Ziquan Liu, Zhen Wang, Zheng Liu and Yiming Zang
Energies 2025, 18(7), 1619; https://doi.org/10.3390/en18071619 - 24 Mar 2025
Viewed by 2360
Abstract
Gas Insulated Switchgear (GIS) is a type of critical substation equipment in the power system, and its safe and stable operation is of great significance for ensuring the reliability of power system operation. To accurately identify partial discharge in GIS, this paper proposes [...] Read more.
Gas Insulated Switchgear (GIS) is a type of critical substation equipment in the power system, and its safe and stable operation is of great significance for ensuring the reliability of power system operation. To accurately identify partial discharge in GIS, this paper proposes an acoustic identification method based on improved mel frequency cepstral coefficients (MFCC) and dung beetle algorithm optimized random forest (DBO-RF) based on the ultrasonic detection method. Firstly, three types of typical GIS partial discharge defects, namely free metal particles, suspended potential, and surface discharge, were designed and constructed. Secondly, wavelet denoising was used to weaken the influence of noise on ultrasonic signals, and conventional, first-order, and second-order differential MFCC feature parameters were extracted, followed by principal component analysis for dimensionality reduction optimization. Finally, the feature parameters after dimensionality reduction optimization were input into the DBO-RF model for fault identification. The results show that this method can accurately identify partial discharge of typical GIS defects, with a recognition accuracy reaching 92.2%. The research results can provide a basis for GIS insulation fault detection and diagnosis. Full article
Show Figures

Figure 1

Back to TopTop