Research on GIS Circuit Breaker Fault Diagnosis Based on Closing Transient Vibration Signals
Abstract
1. Introduction
2. GIS Vibration Characteristics Analysis
2.1. Normal Vibration Mechanism Analysis of GIS
2.2. GIS Circuit Breaker Operating Mechanism Force and Energy Analysis
2.2.1. Force Analysis of GIS Circuit Breaker Operating Mechanism
2.2.2. Energy Analysis of GIS Circuit Breaker Actuator Closing State
3. Experimental Study of GIS Fault Diagnosis
3.1. Experimental Platform Setup
3.2. GIS Circuit Breaker Typical Faults Artificial Simulation
4. GIS Circuit Breaker Fault Study Based on Closing Transient Vibration Signals
4.1. Time–Domain Waveform Analysis of Closing Transient Vibration Signals
4.2. Feature Volume Extraction Based on Wavelet Packet and Rough Set Approximation
4.3. GIS Circuit Breaker Fault Type Identification Based on the S_Kohonen Network
4.3.1. Kohonen Network
4.3.2. Improvement of the Kohonen Network
4.3.3. Identify GIS Circuit Breaker Fault Types Based on S_Kohonen Networks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, F.; Liu, H.; Wang, J. Research and Analysis on Fault Diagnosis of Gas Insulated Switchgear. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 301–305. [Google Scholar]
- Velásquez, R.M.A.; Lara, J.V.M. Root cause analysis methodology for circuit breaker associated to GIS. Eng. Fail. Anal. 2020, 115, 104680. [Google Scholar] [CrossRef]
- Dolkun, D.; Gong, D.; Du, J.; Zhan, Z. Analysis of an electric breakdown fault of circuit breaker in 220 kV GIS equipment. In Proceedings of the 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 10–12 December 2021; pp. 1644–1647. [Google Scholar]
- Liu, S.; Liu, J.; Wang, X. An analysis method of GIS equipment fault causes based on online monitoring and joint diagnosis. In Proceedings of the 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 29–31 July 2022; pp. 98–101. [Google Scholar]
- Zhou, D.; Ren, A.; He, Y.; Liu, F.; Yao, X.; Xue, Z.; Zhang, J. Defect detection technology of gas insulated switchgear based on ultra-high frequency method and ultrasonic method after earthquake. In Proceedings of the 13th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2023), Kunming, China, 26–29 July 2023; pp. 408–413. [Google Scholar]
- He, L.; Yang, J.; Zhang, Z.; Li, Z.; Ding, D.; Yuan, M.; Li, R.; Chen, M. Research on mechanical defect detection and diagnosis method for GIS equipment based on vibration signal. Energies 2021, 14, 5507. [Google Scholar] [CrossRef]
- Zhong, Y.; Hao, J.; Ding, Y.; Liao, R.; Xu, H.; Li, X. Novel GIS mechanical defect simulation and detection method based on large current excitation with variable frequency. IEEE Trans. Instrum. Meas. 2022, 71, 1–15. [Google Scholar] [CrossRef]
- Xiping, J.; Huadong, P.; Jie, L.; Yingkai, L.; Wei, Q.; Yao, Z.; Jian, H. Operation GIS Equipment Mechanical Vibration Law and Defect Development Trend Analysis. In Proceedings of the 2023 IEEE International Conference on Power Science and Technology (ICPST), Kunming, China, 5–7 May 2023; pp. 199–202. [Google Scholar]
- Honggang, C.; Mingyue, X.; Chenzhao, F.; Renjie, S.; Zhe, L. Mechanical fault diagnosis of GIS based on MFCCs of sound signals. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020; pp. 1487–1491. [Google Scholar]
- Zhao, J.; Xiong, Q.; Zhang, C.; Guo, Z.; Zhu, L.; Liang, Z.; Tian, J.; Chen, S. Mechanical State Detection of GIS Circuit BreakerBased on Vibration Characteristics. In Proceedings of the 2020 8th international conference on condition monitoring and diagnosis (CMD), Phuket, Thailand, 25–28 October 2020; pp. 166–169. [Google Scholar]
- Zhong, Y.; Gong, R.L.; Su, S.; Hao, J.; Wang, Q.; Jiang, X. Identification method of abnormal contact defect on GIS conductor base and disconnector contact based on ensemble empirical mode decomposition. In Proceedings of the 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD), Phuket, Thailand, 25–28 October 2020; pp. 118–121. [Google Scholar]
- Baiquan, C.; Bangfa, C.; Pengyang, W.; Xuan, G.; Qiang, L. Research on electrical contact fault characteristics of GIS circuit breaker based on vibration signal. In Proceedings of the 2021 Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2021), Hybrid Conference, 28–30 December 2021; pp. 110–115. [Google Scholar]
- Ma, Z.; Liu, B.; Tang, R. GIS mechanical fault diagnosis and test analysis based on S transform-SVM-AlexNet model. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020; pp. 1–5. [Google Scholar]
- Qu, B.; Wang, Y.; Zhou, L.; Wang, K.; Wang, Z.; Wang, J.; Chen, H. GIS vibration test method and characteristic signal recognition. Proc. J. Phys. Conf. Ser. 2021, 1865, 032021. [Google Scholar] [CrossRef]
- Zhao, W.; Wen, F.; Wu, S.; Chu, Z.; Sheng, Z.; Ji, K. Fault diagnosis of GIS disconnector based on BP neural network. In Proceedings of the 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 1–3 July 2021; pp. 1–5. [Google Scholar]
- Ding, R.; Zhao, K.; Teng, Y.; Zhuang, T.; Liu, J.; Yang, J. Detection and analysis of GIS discharge defects based on deep learninng method. In Proceedings of the 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 25–28 March 2022; pp. 706–711. [Google Scholar]
- Jiuye, Z.; Yubo, Z.; Haoli, L.; Jing, X.; Shaoqing, P.; Liang, W. Research on key technologies of digital sensing and fault warning of isolation switch in GIS. Proc. J. Phys. Conf. Ser. 2024, 2806, 012007. [Google Scholar] [CrossRef]
- Yongxiang, L.; Ming, Z.; Jie, M.; Yongka, Q.; Kejian, Z.; Ming, F.; Dexin, N.; Zhixiang, L. Gas-insulated switchgear (GIS) equipment mechanical fault detection based on feature learning of vibration signal images. In Proceedings of the 2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO), Beijing, China, 15–17 October 2021; pp. 1–4. [Google Scholar]
- Alsumaidaee, Y.A.M.; Yaw, C.T.; Koh, S.P.; Tiong, S.K.; Chen, C.P.; Ali, K. Review of medium-voltage switchgear fault detection in a condition-based monitoring system by using deep learning. Energies 2022, 15, 6762. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, M.; Lin, R.; Hong, L.; Lu, G.; Li, Z. GIS mechanical fault diagnosis method based on middle time Mel cepstrum coefficient. Proc. J. Phys. Conf. Ser. 2020, 1659, 012055. [Google Scholar] [CrossRef]
- Zheng, X.; Li, J.; Yang, Q.; Li, C.; Kuang, S. Prediction method of mechanical state of high-voltage circuit breakers based on LSTM-SVM. Electr. Power Syst. Res. 2023, 218, 109224. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Wang, J.; Sun, Y.; Tan, R.; Sun, D.; Zhang, N. GIS Fault Diagnosis Method Based on Multi-Source Feature Dual Decision Hybrid Classification Network. In Proceedings of the 2024 9th Asia Conference on Power and Electrical Engineering (ACPEE), Shanghai, China, 11–13 April 2024; pp. 2077–2082. [Google Scholar]
- Sang, Z.; Gu, X.; Wang, Y.; Jiang, W.; Cheng, W. Waveform Correlation Analysis Method for Mechanical Characteristics of Circuit Breaker in Intelligent GIS Equipment. Proc. J. Phys. Conf. Ser. 2022, 2218, 012054. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Liu, H.; Xu, J.; Peng, S.; Wang, L. Research on fault diagnosis method of GIS isolation switch. In Proceedings of the 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), Chengdu, China, 17–19 May 2024; pp. 1507–1510. [Google Scholar]
- Ma, H.; Liu, B.; Xu, H.; Chen, B.; Ju, P.; Zhang, L.; Qu, B. GIS mechanical state identification and defect diagnosis technology based on self-excited vibration of assembled circuit breaker. IET Sci. Meas. Technol. 2020, 14, 56–63. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L. Fault diagnosis system based on rough set theory and support vector machine. In Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, Changsha, China, 27–29 August 2005; pp. 980–988. [Google Scholar]
- Sánchez, R.-V.; Macancela, J.C.; Ortega, L.-R.; Cabrera, D.; García Márquez, F.P.; Cerrada, M. Evaluation of hand-crafted feature extraction for fault diagnosis in rotating machinery: A survey. Sensors 2024, 24, 5400. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huang, H.; Liu, Y. A Fault Diagnosis Approach for Rolling Bearing Based on Wavelet Packet Decomposition and GMM-HMM. Int. J. Acoust. Vib. 2019, 24, 199–209. [Google Scholar] [CrossRef]
- Li, C.; Sánchez, R.-V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors 2016, 16, 895. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ning, F.; Jiang, X.; Yi, Y. Feature extraction of ship radiation signals based on wavelet packet decomposition and energy entropy. Math. Probl. Eng. 2022, 2022, 8092706. [Google Scholar] [CrossRef]
- Bay, O. Kohonen network based fault diagnosis and condition monitoring of pre-engaged starter motors. Int. J. Automot. Technol. 2005, 6, 341–350. [Google Scholar]
- Chowdhury, B.H.; Wang, K. Fault classification using Kohonen feature mapping. In Proceedings of the International Conference on Intelligent System Application to Power Systems, Orlando, FL, USA, 28 January–2 February 1996; pp. 194–198. [Google Scholar]
- Wu, G.-n.; Xu, C.; Du, F.; Zhu, W.-d. A modified time reversal method for guided wave detection of bolt loosening in simulated thermal protection system panels. Complexity 2018, 2018, 8210817. [Google Scholar] [CrossRef]
Sensitivity | Repeatability | Range | Resonant Frequency |
---|---|---|---|
100 mV/g | 1 (%F. S.) | 50 g | 30 kHz |
Causality | Definition | Encoding | Definition | Encoding | Definition | Encoding |
---|---|---|---|---|---|---|
(0.500, 0.650) | 0 | (0.400, 0.500) | 1 | (0.300, 0.400) | 2 | |
(0.087, 0.129) | 0 | (0.130, 0.182) | 1 | (0.228, 0.273) | 2 | |
(0.050, 0.072) | 0 | (0.020, 0.035) | 1 | (0.083, 0.134) | 2 | |
(0.180, 0.238) | 0 | (0.236, 0.281) | 1 | (0.295, 0.328) | 2 | |
(0.0005, 0.0010) | 0 | (0.0004, 0.0006) | 1 | (0.0002, 0.0005) | 2 | |
(0.0028, 0.0040) | 0 | (0.0050, 0.0060) | 1 | (0.0037, 0.0040) | 2 | |
(0.007, 0.028) | 0 | (0.0032, 0.0080) | 1 | / | ||
(0.0158, 0.3037) | 0 | / | (0.0083, 0.0187) | 2 |
Number | Genre | |||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 1 | |
0 | 1 | 2 | 0 | 0 | 1 | |
0 | 1 | 1 | 1 | 1 | 2 | |
1 | 1 | 2 | 0 | 0 | 3 | |
2 | 2 | 1 | 2 | 1 | 4 | |
1 | 0 | 1 | 1 | 1 | 2 | |
0 | 1 | 2 | 1 | 0 | 3 | |
1 | 2 | 1 | 1 | 1 | 4 |
Sample Number | Input Feature Vector | Fault Type | ||||
---|---|---|---|---|---|---|
0.5770 | 0.1010 | 0.0648 | 0.2290 | 0.0133 | 1 | |
0.5782 | 0.1008 | 0.0657 | 0.2205 | 0.0128 | 1 | |
0.5779 | 0.1012 | 0.0652 | 0.2167 | 0.0118 | 1 | |
0.5679 | 0.1103 | 0.0600 | 0.2212 | 0.0097 | 1 | |
0.5791 | 0.1022 | 0.0583 | 0.2208 | 0.0127 | 1 | |
0.5287 | 0.1559 | 0.0371 | 0.2566 | 0.0058 | 2 | |
0.5183 | 0.1562 | 0.0358 | 0.2479 | 0.0060 | 2 | |
0.5337 | 0.1573 | 0.0342 | 0.2607 | 0.0053 | 2 | |
0.5282 | 0.1683 | 0.0388 | 0.2615 | 0.0067 | 2 | |
0.5290 | 0.1593 | 0.0299 | 0.2483 | 0.0058 | 2 | |
0.4762 | 0.1768 | 0.1021 | 0.2067 | 0.0206 | 3 | |
0.4806 | 0.1752 | 0.1137 | 0.2053 | 0.0211 | 3 | |
0.4796 | 0.1688 | 0.1107 | 0.2006 | 0.0197 | 3 | |
0.4788 | 0.1739 | 0.1203 | 0.1987 | 0.0211 | 3 | |
0.4813 | 0.1683 | 0.1217 | 0.1965 | 0.0203 | 3 | |
0.3793 | 0.2500 | 0.0367 | 0.3062 | 0.0079 | 4 | |
0.3816 | 0.2476 | 0.0285 | 0.3112 | 0.0063 | 4 | |
0.3822 | 0.2387 | 0.0354 | 0.2988 | 0.0070 | 4 | |
0.3765 | 0.2583 | 0.0332 | 0.3108 | 0.0059 | 4 | |
0.3762 | 0.2556 | 0.0296 | 0.3203 | 0.0061 | 4 |
Sample Number | Input Feature Vector | Fault Type | ||||
---|---|---|---|---|---|---|
0.5728 | 0.1263 | 0.0487 | 0.2313 | 0.0108 | 1 | |
0.5652 | 0.1183 | 0.0591 | 0.2301 | 0.0183 | 1 | |
0.5197 | 0.1662 | 0.0289 | 0.2644 | 0.0032 | 2 | |
0.5323 | 0.1587 | 0.0376 | 0.2610 | 0.0007 | 2 | |
0.4693 | 0.1832 | 0.1186 | 0.2002 | 0.0096 | 3 | |
0.4933 | 0.1695 | 0.0988 | 0.1899 | 0.0134 | 3 | |
0.3683 | 0.2700 | 0.0377 | 0.3201 | 0.0016 | 4 | |
0.3725 | 0.2582 | 0.0501 | 0.2903 | 0.0033 | 4 |
Actual Types | Normal Condition | Drive Rod Jams | Spring Fatigue Loosening | Loose Drive Arm Screws | |
---|---|---|---|---|---|
Fault Types | |||||
Normal condition | 29 | 1 | 0 | 0 | |
Drive rod jams | 0 | 28 | 0 | 2 | |
Spring fatigue loosening | 1 | 0 | 29 | 0 | |
Loose drive arm screws | 0 | 0 | 0 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhao, H. Research on GIS Circuit Breaker Fault Diagnosis Based on Closing Transient Vibration Signals. Machines 2025, 13, 335. https://doi.org/10.3390/machines13040335
Yu Y, Zhao H. Research on GIS Circuit Breaker Fault Diagnosis Based on Closing Transient Vibration Signals. Machines. 2025; 13(4):335. https://doi.org/10.3390/machines13040335
Chicago/Turabian StyleYu, Yue, and Hongyan Zhao. 2025. "Research on GIS Circuit Breaker Fault Diagnosis Based on Closing Transient Vibration Signals" Machines 13, no. 4: 335. https://doi.org/10.3390/machines13040335
APA StyleYu, Y., & Zhao, H. (2025). Research on GIS Circuit Breaker Fault Diagnosis Based on Closing Transient Vibration Signals. Machines, 13(4), 335. https://doi.org/10.3390/machines13040335