Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = inorganic–organic hybrid membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2632 KiB  
Article
Treatment of Dairy Wastewater Retentate After Microfiltration: Evaluation of the Performance of the System Based on Activated Sludge and Activated Carbon
by Maciej Życki, Wioletta Barszcz and Monika Łożyńska
Membranes 2025, 15(8), 237; https://doi.org/10.3390/membranes15080237 - 6 Aug 2025
Abstract
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential [...] Read more.
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential batch reactor (SBR) and adsorption on activated carbon. The first stage involved cross-flow microfiltration using a 0.2 µm PVDF membrane at 0.5 bar, resulting in reductions of 99% in turbidity and 79% in chemical oxygen demand (COD), as well as a partial reduction in conductivity. The second stage involved 24-h biological treatment in a sequential batch reactor (SBR) with activated sludge (activated sludge index: 80 cm3/g, MLSS 2500 mg/dm3), resulting in further reductions in COD (62%) and TOC (30%), as well as the removal of 46% of total phosphorus (TP) and 35% of total nitrogen (TN). In the third stage, the decantate underwent adsorption in a column containing powdered activated carbon (PAC; 1 g; S_(BET) = 969 m2 g−1), reducing the concentrations of key indicators to the following levels: COD 84%, TOC 70%, TN 77%, TP 87% and suspended solids 97%. Total pollutant retention ranged from 24.6% to 97.0%. These results confirm that the MF–SBR–PAC system is an effective, compact solution that significantly reduces the load of organic and biogenic pollutants in MF retentates, paving the way for their reuse or safe discharge into the environment. Full article
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

14 pages, 1279 KiB  
Review
Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications
by Tianyi Wang, Jiangyan Hou, Yao Wang, Xinhao Feng and Xinyou Liu
Polymers 2025, 17(11), 1500; https://doi.org/10.3390/polym17111500 - 28 May 2025
Viewed by 666
Abstract
Urushiol, the principal bioactive component of natural lacquer, has emerged as a promising candidate for developing eco-friendly antimicrobial coatings due to its unique catechol structure and long alkyl chains. This review systematically elucidates the molecular mechanisms underpinning urushiol’s broad-spectrum antimicrobial activity, including membrane [...] Read more.
Urushiol, the principal bioactive component of natural lacquer, has emerged as a promising candidate for developing eco-friendly antimicrobial coatings due to its unique catechol structure and long alkyl chains. This review systematically elucidates the molecular mechanisms underpinning urushiol’s broad-spectrum antimicrobial activity, including membrane disruption via hydrophobic interactions, oxidative stress induction through redox-active phenolic groups, and enzyme inhibition via hydrogen bonding. Recent advances in urushiol-based composite systems—such as metal coordination networks, organic–inorganic hybrids, and stimuli-responsive platforms—are critically analyzed, highlighting their enhanced antibacterial performance, environmental durability, and self-healing capabilities. Case studies demonstrate that urushiol derivatives achieve >99% inhibition against both Gram-positive and Gram-negative pathogens, outperforming conventional agents like silver ions and quaternary ammonium salts. Despite progress, challenges persist in balancing antimicrobial efficacy, mechanical stability, and biosafety for real-world applications. Future research directions emphasize precision molecular engineering, synergistic multi-target strategies, and lifecycle toxicity assessments to advance urushiol coatings in medical devices, marine antifouling, and antiviral surfaces. This work provides a comprehensive framework for harnessing natural phenolic compounds in next-generation sustainable antimicrobial materials. Full article
Show Figures

Figure 1

21 pages, 3840 KiB  
Article
Newly Designed Organic-Inorganic Nanocomposite Membrane for Simultaneous Cr and Mn Speciation in Waters
by Penka Vasileva and Irina Karadjova
Gels 2025, 11(3), 205; https://doi.org/10.3390/gels11030205 - 15 Mar 2025
Cited by 1 | Viewed by 743
Abstract
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor [...] Read more.
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor for the inorganic silica polymer. AuNPs were synthesized using D-glucose as a reducing agent and starch as a capping agent. A mixture of PVA, PEO, pre-hydrolyzed TEOS, and AuNP dispersions was cast and dried at 50 °C to obtain the hybrid hydrogel membrane. The structure, morphology, and optical properties of the nanocomposite membrane were analyzed using TEM, SEM, XRD, and UV-Vis spectroscopy. The newly designed hybrid hydrogel membrane was utilized as an efficient sorbent for the simultaneous speciation analysis of valence species of chromium and manganese in water samples via solid-phase extraction. This study revealed that Cr(III) and Mn(II) could be simultaneously adsorbed onto the PVA/PEO/SiO2/AuNP membrane at pH 9 while Cr(VI) and Mn(VII) remained in solution due to their inability to bind under these conditions. Under optimized parameters, detection limits and relative standard deviations were determined for chromium and manganese species. The developed analytical method was successfully applied for the simultaneous speciation analysis of chromium and manganese in drinking water and wastewater samples. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

45 pages, 18357 KiB  
Review
Advances in the Application of Sulfonated Poly(Ether Ether Ketone) (SPEEK) and Its Organic Composite Membranes for Proton Exchange Membrane Fuel Cells (PEMFCs)
by Xiang Li, Tengling Ye, Xuan Meng, Dongqing He, Lu Li, Kai Song, Jinhai Jiang and Chuanyu Sun
Polymers 2024, 16(19), 2840; https://doi.org/10.3390/polym16192840 - 8 Oct 2024
Cited by 34 | Viewed by 6414
Abstract
This review discusses the progress of research on sulfonated poly(ether ether ketone) (SPEEK) and its composite membranes in proton exchange membrane fuel cells (PEMFCs). SPEEK is a promising material for replacing traditional perfluorosulfonic acid membranes due to its excellent thermal stability, mechanical property, [...] Read more.
This review discusses the progress of research on sulfonated poly(ether ether ketone) (SPEEK) and its composite membranes in proton exchange membrane fuel cells (PEMFCs). SPEEK is a promising material for replacing traditional perfluorosulfonic acid membranes due to its excellent thermal stability, mechanical property, and tunable proton conductivity. By adjusting the degree of sulfonation (DS) of SPEEK, the hydrophilicity and proton conductivity of the membrane can be controlled, while also balancing its mechanical, thermal, and chemical stability. Researchers have developed various composite membranes by combining SPEEK with a range of organic and inorganic materials, such as polybenzimidazole (PBI), fluoropolymers, and silica, to enhance the mechanical, chemical, and thermal stability of the membranes, while reducing fuel permeability and improving the overall performance of the fuel cell. Despite the significant potential of SPEEK and its composite membranes in PEMFCs, there are still challenges and room for improvement, including proton conductivity, chemical stability, cost-effectiveness, and environmental impact assessments. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cells: Technology and Applications)
Show Figures

Figure 1

19 pages, 4920 KiB  
Article
Novel, Fluorine-Free Membranes Based on Sulfonated Polyvinyl Alcohol and Poly(ether-block-amide) with Sulfonated Montmorillonite Nanofiller for PEMFC Applications
by Manhal H. Ibrahim Al-Mashhadani, Gábor Pál Szijjártó, Zoltán Sebestyén, Zoltán Károly, Judith Mihály and András Tompos
Membranes 2024, 14(10), 211; https://doi.org/10.3390/membranes14100211 - 1 Oct 2024
Cited by 2 | Viewed by 1538
Abstract
Novel blend membranes containing S-PVA and PEBAX 1657 with a blend ratio of 8:2 (referred to as SPP) were prepared using a solution-casting technique. In the manufacturing process, sulfonated montmorillonite (S-MMT) in ratios of 0%, 3%, 5%, and 7% was used as a [...] Read more.
Novel blend membranes containing S-PVA and PEBAX 1657 with a blend ratio of 8:2 (referred to as SPP) were prepared using a solution-casting technique. In the manufacturing process, sulfonated montmorillonite (S-MMT) in ratios of 0%, 3%, 5%, and 7% was used as a filler. The crystallinity of composite membranes has been investigated by X-ray diffraction (XRD), while the interaction between the components was evaluated using Fourier-transform infrared spectroscopy (FT-IR). With increasing filler content, good compatibility between the components due to hydrogen bonds was established, which ultimately resulted in improved tensile strength and chemical stability. In addition, due to the sulfonated moieties of S-MMT, the highest ion exchange capacity (0.46 meq/g) and water uptake (51.61%) can be achieved at the highest filler content with an acceptable swelling degree of 22.65%. The composite membrane with 7% S-MMT appears to be suitable for application in proton exchange membrane fuel cells (PEMFCs). Amongst the membranes studied, this membrane achieved the highest current density and power density in fuel cell tests, which were 149.5 mA/cm2 and 49.51 mW/cm2. Our fluorine-free composite membranes can become a promising new membrane family in PEMFC applications, offering an alternative to Nafion membranes. Full article
(This article belongs to the Special Issue Recent Advances in Fluorine-Free Membranes)
Show Figures

Figure 1

14 pages, 5065 KiB  
Article
High-Performance Flexible Hybrid Silica Membranes with an Ultrasonic Atomization-Assisted Spray-Coated Active Layer on Polymer for Isopropanol Dehydration
by Mingjia Liao, He Guan, Hongfen Zuo, Guannan Ren and Genghao Gong
Membranes 2024, 14(7), 154; https://doi.org/10.3390/membranes14070154 - 12 Jul 2024
Cited by 3 | Viewed by 1548
Abstract
Organic–inorganic hybrid silica materials, incorporating an organic group bridging two silicon atoms, have demonstrated great potential in creating membranes with excellent permselectivity. Yet, the large-scale production of polymer-supported flexible hybrid silica membranes has remained a significant challenge. In this study, we present an [...] Read more.
Organic–inorganic hybrid silica materials, incorporating an organic group bridging two silicon atoms, have demonstrated great potential in creating membranes with excellent permselectivity. Yet, the large-scale production of polymer-supported flexible hybrid silica membranes has remained a significant challenge. In this study, we present an easy and scalable approach for fabricating these membranes. By employing a sol–gel ultrasonic spray process with a single-pass method, we deposited a thin and uniform hybrid active layer onto a porous polymer substrate. We first optimized the deposition conditions, including substrate temperature, the binary solvent ratio of the silica sol, and various ultrasonic spray parameters. The resulting flexible hybrid silica membranes exhibited exceptional dehydration performance for isopropanol (IPA)/water solutions (IPA: 90 wt%) in the pervaporation process, achieving a water flux of 0.6 kg/(m2 h) and a separation factor of around 1300. This work demonstrates that the single-pass ultrasonic spray method is an effective strategy for the large-scale production of polymer-supported flexible hybrid silica membranes. Full article
(This article belongs to the Special Issue Inorganic Membranes for Energy and Environmental Applications)
Show Figures

Figure 1

24 pages, 7321 KiB  
Article
Catalytic Ozonation of Pharmaceuticals Using CeO2-CeTiOx-Doped Crossflow Ultrafiltration Ceramic Membranes
by Nikoletta Tsiarta, Silvia Morović, Vilko Mandić, Ivana Panžić, Roko Blažic, Lidija Ćurković and Wolfgang Gernjak
Nanomaterials 2024, 14(13), 1163; https://doi.org/10.3390/nano14131163 - 7 Jul 2024
Cited by 1 | Viewed by 2073
Abstract
The removal of persistent organic micropollutants (OMPs) from secondary effluent in wastewater treatment plants is critical for meeting water reuse standards. Traditional treatment methods often fail to adequately degrade these contaminants. This study explored the efficacy of a hybrid ozonation membrane filtration (HOMF) [...] Read more.
The removal of persistent organic micropollutants (OMPs) from secondary effluent in wastewater treatment plants is critical for meeting water reuse standards. Traditional treatment methods often fail to adequately degrade these contaminants. This study explored the efficacy of a hybrid ozonation membrane filtration (HOMF) process using CeO2 and CeTiOx-doped ceramic crossflow ultrafiltration ceramic membranes for the degradation of OMPs. Hollow ceramic membranes (CM) with a 300 kDa molecular weight cut-off (MWCO) were modified to serve as substrates for catalytic nanosized metal oxides in a crossflow and inside-out operational configuration. Three types of depositions were tested: a single layer of CeO2, a single layer of CeTiOx, and a combined layer of CeO2 + CeTiOx. These catalytic nanoparticles were distributed uniformly using a solution-based method supported by vacuum infiltration to ensure high-throughput deposition. The results demonstrated successful infiltration of the metal oxides, although the yield permeability and transmembrane flow varied, following this order: pristine > CeTiOx > CeO2 > CeO2 + CeTiOx. Four OMPs were examined: two easily degraded by ozone (carbamazepine and diclofenac) and two recalcitrant (ibuprofen and pCBA). The highest OMP degradation was observed in demineralized water, particularly with the CeO2 + CeTiOx modification, suggesting O3 decomposition to hydroxyl radicals. The increased resistance in the modified membranes contributed to the adsorption phenomena. The degradation efficiency decreased in secondary effluent due to competition with the organic and inorganic load, highlighting the challenges in complex water matrices. Full article
Show Figures

Graphical abstract

16 pages, 5171 KiB  
Article
Promising Fluorine-Free Ion Exchange Membranes Based on a Poly(ether-block-amide) Copolymer and Sulfonated Montmorillonite: Influence of Different Copolymer Segment Ratios
by Manhal H. Ibrahim Al-Mashhadani, Khirdakhanim Salmanzade, András Tompos and Asmaa Selim
Membranes 2024, 14(1), 17; https://doi.org/10.3390/membranes14010017 - 6 Jan 2024
Cited by 1 | Viewed by 3110
Abstract
Novel composite membranes employing a poly(ether-block-amide) (PEBAX) copolymer and sulfonated montmorillonite (S-MMT) as a filler were developed. The ratio of polyether to polyamide blocks was investigated using PEBAX 2533 and PEBAX 4533 based on the membrane properties and performance. Additionally, the effect of [...] Read more.
Novel composite membranes employing a poly(ether-block-amide) (PEBAX) copolymer and sulfonated montmorillonite (S-MMT) as a filler were developed. The ratio of polyether to polyamide blocks was investigated using PEBAX 2533 and PEBAX 4533 based on the membrane properties and performance. Additionally, the effect of the changing filler ratio was monitored. The interaction between the S-MMT as nanofiller and the polymer matrix of PEBAX2533 and PEBAX4533 as well as the crystalline nature and thermal and mechanical stability of the composite membranes were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and tensile test. The composite membrane with 7 wt.% S-MMT showed the highest water uptake of 21% and 16% and an acceptable swelling degree of 16% and 9% for PEBAX 2533 and PEBAX 4533 composite membranes, respectively. In terms of water uptake and ion exchange capacity at room temperature, the new un-protonated membranes are superior to un-protonated Nafion. Meanwhile, with the same S-MMT content, the ion conductivity of PEBAX 2533 and PEBAX 4533 composite membranes is 2 and 1.6 mS/cm, and their ion exchange capacity is 0.9 and 1.10 meq/g. Full article
(This article belongs to the Special Issue Advanced Polymeric Membranes for Fuel Cell Applications)
Show Figures

Figure 1

14 pages, 2690 KiB  
Review
Porous Metal–Organic Frameworks for Light Hydrocarbon Separation
by Xiang Gao, Wen-Hui Yan, Bo-Yang Hu, Yu-Xin Huang and Shi-Mei Zheng
Molecules 2023, 28(17), 6337; https://doi.org/10.3390/molecules28176337 - 30 Aug 2023
Cited by 11 | Viewed by 2597
Abstract
The separation of light hydrocarbon compounds is an important process in the chemical industry. Currently, its separation methods mainly include distillation, membrane separation, and physical adsorption. However, these traditional methods or materials have some drawbacks and disadvantages, such as expensive equipment costs and [...] Read more.
The separation of light hydrocarbon compounds is an important process in the chemical industry. Currently, its separation methods mainly include distillation, membrane separation, and physical adsorption. However, these traditional methods or materials have some drawbacks and disadvantages, such as expensive equipment costs and high energy consumption, poor selectivity, low separation ratios, and separation efficiencies. Therefore, it is important to develop novel separation materials for light hydrocarbon separation. As a new type of organic–inorganic hybrid crystalline material, metal–organic frameworks (MOFs) are promising materials for light hydrocarbon separation due to their designability of structure and easy modulation of function. This review provides an overview of recent advances in the design, synthesis, and application of MOFs for light hydrocarbon separation in recent years, with a focus on the separation of alkane, alkene, and alkyne. We discuss strategies for improving the adsorption selectivity and capacity of MOFs, including pore size limitation, physical adsorption, and chemisorption. In addition, we discuss the advantages/disadvantages, challenges, and prospects of MOFs in the separation of light hydrocarbon. Full article
Show Figures

Graphical abstract

21 pages, 5426 KiB  
Article
e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes
by Nursanat Parmanbek, Nurgulim A. Aimanova, Anastassiya A. Mashentseva, Murat Barsbay, Fatima U. Abuova, Dinara T. Nurpeisova, Zhanar Ye. Jakupova and Maxim V. Zdorovets
Membranes 2023, 13(7), 659; https://doi.org/10.3390/membranes13070659 - 11 Jul 2023
Cited by 4 | Viewed by 1487
Abstract
Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) [...] Read more.
Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays. Full article
Show Figures

Figure 1

28 pages, 6816 KiB  
Review
The Difference in Performance and Compatibility between Crystalline and Amorphous Fillers in Mixed Matrix Membranes for Gas Separation (MMMs)
by Mariolino Carta, Ariana R. Antonangelo, Johannes Carolus Jansen and Mariagiulia Longo
Polymers 2023, 15(13), 2951; https://doi.org/10.3390/polym15132951 - 5 Jul 2023
Cited by 13 | Viewed by 3222
Abstract
An increasing number of high-performing gas separation membranes is reported almost on a daily basis, yet only a few of them have reached commercialisation while the rest are still considered pure research outcomes. This is often attributable to a rapid change in the [...] Read more.
An increasing number of high-performing gas separation membranes is reported almost on a daily basis, yet only a few of them have reached commercialisation while the rest are still considered pure research outcomes. This is often attributable to a rapid change in the performance of these separation systems over a relatively short time. A common approach to address this issue is the development of mixed matrix membranes (MMMs). These hybrid systems typically utilise either crystalline or amorphous additives, so-called fillers, which are incorporated into polymeric membranes at different loadings, with the aim to improve and stabilise the final gas separation performance. After a general introduction to the most relevant models to describe the transport properties in MMMs, this review intends to investigate and discuss the main advantages and disadvantages derived from the inclusion of fillers of different morphologies. Particular emphasis will be given to the study of the compatibility at the interface between the filler and the matrix created by the two different classes of additives, the inorganic and crystalline fillers vs. their organic and amorphous counterparts. It will conclude with a brief summary of the main findings. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Membranes and Films II)
Show Figures

Graphical abstract

13 pages, 3878 KiB  
Article
Adsorption Performance of Heavy Metal Ions under Multifactorial Conditions by Synthesized Organic-Inorganic Hybrid Membranes
by Chaoqun Wu, Jiuhan Zheng and Limei Han
Membranes 2023, 13(5), 531; https://doi.org/10.3390/membranes13050531 - 19 May 2023
Cited by 1 | Viewed by 1638
Abstract
A series of hybridized charged membrane materials containing carboxyl and silyl groups were prepared via the epoxy ring-opening reaction and sol–gel methods using 3-glycidoxypropyltrimethoxysilane (WD-60) and polyethylene glycol 6000 (PEG-6000) as raw materials and DMF as a solvent. Scanning electron microscopy (SEM), fourier [...] Read more.
A series of hybridized charged membrane materials containing carboxyl and silyl groups were prepared via the epoxy ring-opening reaction and sol–gel methods using 3-glycidoxypropyltrimethoxysilane (WD-60) and polyethylene glycol 6000 (PEG-6000) as raw materials and DMF as a solvent. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analyzer/differential scanning calorimetry (TGA/DSC) analysis showed that the heat resistance of the polymerized materials could reach over 300 °C after hybridization. A comparison of the results of heavy metal lead and copper ions’ adsorption tests on the materials at different times, temperatures, pHs, and concentrations showed that the hybridized membrane materials have good adsorption effects on heavy metals and better adsorption effects on lead ions. The maximum capacity obtained from optimized conditions for Cu2+ and Pb2+ ions were 0.331 and 5.012 mmol/g. The experiments proved that this material is indeed a new environmentally friendly, energy-saving, high-efficiency material. Moreover, their adsorptions for Cu2+ and Pb2+ ions will be evaluated as a model for the separation and recovery of heavy metal ions from wastewater. Full article
(This article belongs to the Special Issue Membrane-Based Technologies for Water/Wastewater Treatment)
Show Figures

Figure 1

20 pages, 3450 KiB  
Article
Hybrid Membranes of the Ureasil-Polyether Containing Glucose for Future Application in Bone Regeneration
by Camila Garcia da Silva, João Rodrigues Monteiro, João Augusto Oshiro-Júnior and Leila Aparecida Chiavacci
Pharmaceutics 2023, 15(5), 1474; https://doi.org/10.3390/pharmaceutics15051474 - 12 May 2023
Cited by 5 | Viewed by 2367
Abstract
The application of mesenchymal stem cells (MSC) in bone tissue regeneration can have unpredictable results due to the low survival of cells in the process since the lack of oxygen and nutrients promotes metabolic stress. Therefore, in this work, polymeric membranes formed by [...] Read more.
The application of mesenchymal stem cells (MSC) in bone tissue regeneration can have unpredictable results due to the low survival of cells in the process since the lack of oxygen and nutrients promotes metabolic stress. Therefore, in this work, polymeric membranes formed by organic–inorganic hybrid materials called ureasil-polyether for modified glucose release were developed in order to overcome the problems posed by a of lack of this nutrient. Thus, membranes formed by polymeric blend of polypropylene oxide (PPO4000) and polyethylene oxide (PEO500) with 6% glucose incorporation were developed. Physical–chemical characterization techniques were performed, as well as tests that evaluated thermal properties, bioactivity, swelling, and release in SBF solution. The results of the swelling test showed an increase in membrane mass correlated with an increase in the concentration of ureasil-PEO500 in the polymeric blends. The membranes showed adequate resistance when subjected to the application of a high compression force (15 N). X-ray diffraction (XRD) evidenced peaks corresponding to orthorhombic crystalline organization, but the absence of glucose-related peaks showed characteristics of the amorphous regions of hybrid materials, likely due to solubilization. Thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses showed that the thermal events attributed to glucose and hybrid materials were similar to that seen in the literature, however when glucose was incorporated into the PEO500, an increase in rigidity occurs. In PPO400, and in the blends of both materials, there was a slight decrease in Tg values. The smaller contact angle for the ureasil-PEO500 membrane revealed the more hydrophilic character of the material compared to other membranes. The membranes showed bioactivity and hemocompatibility in vitro. The in vitro release test revealed that it is possible to control the release rate of glucose and the kinetic analysis revealed a release mechanism characteristic of anomalous transport kinetics. Thus, we can conclude that ureasil-polyether membranes have great potential to be used as a glucose release system, and their future application has the potential to optimize the bone regeneration process. Full article
Show Figures

Figure 1

34 pages, 9039 KiB  
Review
A Brief Overview of the Microstructural Engineering of Inorganic–Organic Composite Membranes Derived from Organic Chelating Ligands
by Sulaiman Oladipo Lawal and Masakoto Kanezashi
Membranes 2023, 13(4), 390; https://doi.org/10.3390/membranes13040390 - 30 Mar 2023
Cited by 7 | Viewed by 2407
Abstract
This review presents a concise conceptual overview of membranes derived from organic chelating ligands as studied in several works. The authors’ approach is from the viewpoint of the classification of membranes by matrix composition. The first part presents composite matrix membranes as a [...] Read more.
This review presents a concise conceptual overview of membranes derived from organic chelating ligands as studied in several works. The authors’ approach is from the viewpoint of the classification of membranes by matrix composition. The first part presents composite matrix membranes as a key class of membranes and makes a case for the importance of organic chelating ligands in the formation of inorganic–organic composites. Organic chelating ligands, categorized into network-modifying and network-forming types, are explored in detail in the second part. Four key structural elements, of which organic chelating ligands (as organic modifiers) are one and which also include siloxane networks, transition-metal oxide networks and the polymerization/crosslinking of organic modifiers, form the building blocks of organic chelating ligand-derived inorganic–organic composites. Three and four parts explore microstructural engineering in membranes derived from network-modifying and network-forming ligands, respectively. The final part reviews robust carbon–ceramic composite membranes as important derivatives of inorganic–organic hybrid polymers for selective gas separation under hydrothermal conditions when the proper organic chelating ligand and crosslinking conditions are chosen. This review can serve as inspiration for taking advantage of the wide range of possibilities presented by organic chelating ligands. Full article
(This article belongs to the Special Issue Structure and Performance of Porous Polymer Membranes)
Show Figures

Figure 1

Back to TopTop