Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = initiated chemical vapor deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5208 KB  
Article
High-Performance Silicon–Carbon Materials with High-Temperature Precursors for Advanced Lithium-Ion Batteries
by Hailong Mei, Zhixiao Yin, Shuai Wang, Kui Zhang, Jiugou Leng and Ziguo He
Coatings 2026, 16(2), 188; https://doi.org/10.3390/coatings16020188 - 2 Feb 2026
Viewed by 46
Abstract
In silicon–carbon (Si-C) anode materials fabricated via chemical vapor deposition (CVD), the pore size distribution of porous carbon is a critical parameter that strongly affects the overall electrochemical performance. In this study, biomass-derived hard carbon was employed as the precursor, and porous carbon [...] Read more.
In silicon–carbon (Si-C) anode materials fabricated via chemical vapor deposition (CVD), the pore size distribution of porous carbon is a critical parameter that strongly affects the overall electrochemical performance. In this study, biomass-derived hard carbon was employed as the precursor, and porous carbon materials with distinct pore size characteristics were prepared via fluidized bed porosimetry after carbonization at different temperatures. Based on these porous carbon substrates, three types of Si-C anodes corresponding to low-, medium-, and high-temperature treatments were synthesized through a combination of SiH4 deposition and carbon coating processes. Electrochemical evaluation demonstrated that all three Si-C anodes exhibited favorable electrochemical performance and suppressed volume expansion. Among them, the Si-C anode prepared at a medium temperature of 1100 °C, denoted as NT-P-SC, delivered the most balanced performance, achieving an initial coulombic efficiency of 94.47% together with excellent rate capability. Furthermore, when Si-C anodes derived from different porous carbon matrices were blended with graphite to achieve a composite capacity of 500 mAh/g and evaluated in full-cell configurations, the NT-P-SC silicon-based composite exhibited superior cycling stability. The composite delivered an initial discharge capacity of 3.53 mAh and maintained a capacity of 2.74 mAh after 1628 cycles, corresponding to a capacity retention of 77.62%. The improved electrochemical performance of the Si-C anode is primarily attributed to the optimized pore structure of the porous carbon matrix synergistically combined with the carbon coating process. Full article
Show Figures

Figure 1

14 pages, 1823 KB  
Article
Raster Orientation Effects on the Adhesion of iCVD-Deposited PSA Thin Films on FDM-Printed PLA
by Aydın Güneş, Kurtuluş Yılmaz, Mehmet Gürsoy and Mustafa Karaman
Polymers 2026, 18(3), 371; https://doi.org/10.3390/polym18030371 - 30 Jan 2026
Viewed by 203
Abstract
The adhesion performance of pressure-sensitive adhesive (PSA) thin films on additively manufactured polymers is strongly governed by surface anisotropy induced during printing. In this study, PSA thin films based on 2-ethylhexyl acrylate (EHA) and acrylic acid (AA) were deposited by initiated chemical vapor [...] Read more.
The adhesion performance of pressure-sensitive adhesive (PSA) thin films on additively manufactured polymers is strongly governed by surface anisotropy induced during printing. In this study, PSA thin films based on 2-ethylhexyl acrylate (EHA) and acrylic acid (AA) were deposited by initiated chemical vapor deposition (iCVD) onto fused deposition modeling (FDM) printed PLA substrates with different raster orientations (0°, 30°, 60°, and 90°). The deposited films exhibited high optical transparency on glass, and thicknesses consistent with the targeted deposition. Adhesion performance was evaluated using tensile and three-point bending tests, revealing a strong dependence on raster orientation. The 0° raster orientation yielded the highest shear adhesion strengths, reaching 12.03 N/cm2 under tensile loading and 4.59 N/cm2 under bending, along with the largest failure displacements. In contrast, specimens printed at 90° exhibited an approximately 47% reduction in tensile shear adhesion strength and limited deformation prior to failure. SEM analysis showed that raster alignment parallel to the loading direction promoted extensive adhesive deformation and PSA fibrillation, whereas higher raster angles resulted in predominantly interfacial debonding. These results demonstrate that raster orientation is a critical design parameter for tuning PSA adhesion on FDM-printed PLA substrates without modifying adhesive chemistry. Full article
Show Figures

Figure 1

10 pages, 2160 KB  
Article
Tailoring Ge Nanocrystals via Ag-Catalyzed Chemical Vapor Deposition to Enhance the Performance of Non-Volatile Memory
by Chucai Guo, Qingwei Zhou, Biyuan Zheng, Hansheng Li, Fan Wu, Dan Chen, Fang Luo and Zhihong Zhu
Nanomaterials 2026, 16(2), 146; https://doi.org/10.3390/nano16020146 - 22 Jan 2026
Viewed by 145
Abstract
With the rapid advancement in portable electronics, artificial intelligence, and the Internet of Things, there is an escalating demand for high-density, low-voltage non-volatile memory (NVM) technologies. Germanium (Ge) nanocrystals (NCs) have emerged as a promising candidate for NVM applications; however, traditional synthesis methodologies [...] Read more.
With the rapid advancement in portable electronics, artificial intelligence, and the Internet of Things, there is an escalating demand for high-density, low-voltage non-volatile memory (NVM) technologies. Germanium (Ge) nanocrystals (NCs) have emerged as a promising candidate for NVM applications; however, traditional synthesis methodologies suffer from limitations in achieving precise control over the size and density of these nanocrystals, which exert a significant influence on device performance. This study presents an innovative Ag-catalyzed chemical vapor deposition (CVD) methodology for the synthesis of Ge NCs with precisely controllable size and density on SiO2/Si substrates, tailored for NVM applications. Scanning electron microscopy characterization confirms the successful growth of faceted Ge NCs. Electrical characterization of the fabricated devices reveals that Ge NCs grown at temperatures ranging from 700 to 1000 °C exhibit memory windows spanning from 3.0 to 6.8 V under a ±6 V bias. Notably, the device synthesized at 900 °C demonstrates an exceptional memory window of 7.0 V under a ±8 V bias. Furthermore, the Ge NC-based NVM devices exhibit excellent charge retention characteristics. Specifically, for the device with Ge NCs grown at 700 °C, the time required to retain charge from 100% to 95% of its initial value exceeds 10 years, demonstrating long-term stable charge storage capability. These findings underscore the significant potential of this approach for the development of high-performance NVM technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 3518 KB  
Article
Al/Graphene Co-Doped ZnO Electrodes: Impact on CTS Thin-Film Solar Cell Efficiency
by Done Ozbek, Meryem Cam, Guldone Toplu, Sevde Erkan, Serkan Erkan, Ali Altuntepe, Kasim Ocakoglu, Sakir Aydogan, Yavuz Atasoy, Mehmet Ali Olgar and Recep Zan
Crystals 2026, 16(1), 64; https://doi.org/10.3390/cryst16010064 - 17 Jan 2026
Viewed by 177
Abstract
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al [...] Read more.
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al and reduced graphene oxide (rGO), to evaluate the individual and combined effects of these dopants. The optimal pH value for the ZnO structure was initially determined, with the film produced at pH 9 exhibiting the most favorable characteristics. Al doping was then optimized at a ratio of Al/(Al + Zn) = 0.2, followed by optimization of the graphene content at 1.5 wt%. In this context, the structural, optical, and electrical properties of pristine ZnO, Al-doped ZnO (AZO), and Al and graphene co-doped ZnO (Gr:AZO) thin films were systematically investigated. These films were integrated as TCO layers into Cu2SnS3 (CTS)-based thin-film solar cells fabricated via physical vapor deposition (PVD). The cell architecture employed an 80 nm pristine ZnO window layer, while the doped ZnO films (300 nm) served as TCO layers. To assess the influence of the chemically deposited top layers, device performance was compared against a reference cell in which all layers were fabricated entirely using PVD. As expected, the reference cell exhibited superior performance compared to the cell whose AZO layer deposited chemically; however, the incorporation of both Al and graphene significantly enhanced the efficiency of the chemically modified cell, outperforming devices using only pristine or singly doped ZnO films. These results demonstrate the promising potential of co-doped solution-processed ZnO films as an alternative TCO layer in improving the performance of thin-film solar cell technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

8 pages, 502 KB  
Proceeding Paper
Advances in TiO2 Nanoparticles for Rhodamine B Degradation
by Md. Golam Sazid, Asraf Ibna Helal, Harunur Rashid and Md. Redwanur Rashid Nafi
Mater. Proc. 2025, 25(1), 14; https://doi.org/10.3390/materproc2025025014 - 9 Dec 2025
Viewed by 447
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor [...] Read more.
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor deposition (CVD) techniques, on the electrical and morphological properties of TiO2 NPs has been studied, emphasizing the distinctive physicochemical properties of TiO2 NPs, including their extensive surface area, significant oxidative capacity, and remarkable chemical stability, which are important in the recent advancements in their use for RhB degradation. A detailed examination of TiO2’s photocatalytic mechanism shows that it is based on the generation of reactive oxygen species (ROS) by photoinduced electron–hole pair formation under ultraviolet (UV) light exposure. In wastewater treatment, TiO2 degrades RhB into less harmful byproducts by the generation of electron–hole pairs that initiate redox reactions under sunlight. This study includes a thorough overview of significant factors influencing photocatalytic efficacy. The parameters include particle size, crystal phase (anatase, rutile, and brookite), surface changes, and the incorporation of metal or non-metal dopants to enhance visible light absorption. Researchers continually seek methods to overcome challenges, including restricted visible-light responsiveness and rapid electron–hole recombination. The investigated approaches include heterojunction generation, composite development, and co-catalyst insertion. This review article aims to address the deficiencies in our understanding of TiO2-based photocatalysis for the degradation of RhB and to propose enhancements for these systems to enable more efficient and sustainable wastewater treatment in the future. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

12 pages, 3666 KB  
Article
Development and Experimental Validation of a Filament-Assisted Chemical Vapor Deposition (FACVD) Reactor Using a Plastic Chamber
by Him Chan Kang, Jeong Heon Lee and Jae B. Kwak
Coatings 2025, 15(10), 1213; https://doi.org/10.3390/coatings15101213 - 15 Oct 2025
Viewed by 702
Abstract
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible [...] Read more.
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible substrates. FACVD enables polymer deposition under mild vacuum and temperature conditions, providing an opportunity to utilize plastic vacuum chambers as cost-effective and easily machinable alternatives to metallic chambers. In this study, a custom-designed acrylic chamber was fabricated and integrated into an FACVD system. Glycidyl methacrylate (GMA) and tert-butyl peroxide (TBPO) were considered as the monomer and initiator, respectively, for creating thin films under a low-temperature and moderate-vacuum deposition process. Polymeric film (pGMA) contains reactive epoxy groups that allow versatile post-polymerization modifications and are widely applied in coatings and biomedical fields. Preliminary experiments demonstrated the successful growth of pGMA thin films, with Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirming the characteristic polymer features, including the disappearance of the C=C stretching band as direct evidence of polymerization. Ellipsometry determines a uniformity of film thickness of approximately 85% for the 4-inch wafers’ area, with deposition rates in the range of 18–26 nm/h. These results highlight the potential of polymer-based chambers as cost-effective and versatile alternatives to advanced vapor-phase polymerization processes. Full article
Show Figures

Figure 1

22 pages, 3922 KB  
Article
Silicon Oxycarbide Coatings Produced by Remote Hydrogen Plasma CVD Process from Cyclic Tetramethylcyclotetrasiloxane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznański
Coatings 2025, 15(10), 1179; https://doi.org/10.3390/coatings15101179 - 8 Oct 2025
Viewed by 1898
Abstract
The development of high-speed computers and electronic memories, high-frequency communication networks, electroluminescent and photovoltaic devices, flexible displays, and more requires new materials with unique properties, such as a low dielectric constant, an adjustable refractive index, high hardness, thermal resistance, and processability. SiOC coatings [...] Read more.
The development of high-speed computers and electronic memories, high-frequency communication networks, electroluminescent and photovoltaic devices, flexible displays, and more requires new materials with unique properties, such as a low dielectric constant, an adjustable refractive index, high hardness, thermal resistance, and processability. SiOC coatings possess a number of desirable properties required by modern technologies, including good heat and UV resistance, transparency, high electrical insulation, flexibility, and solubility in commonly used organic solvents. Chemical vapor deposition (CVD) is a very useful and convenient method to produce this type of layer. In this article we present the results of studies on SiOC coatings obtained from tetramethylcyclotetrasiloxane in a remote hydrogen plasma CVD process. The elemental composition (XPS, EDS) and chemical structure (FTIR and NMR spectroscopy-13C, 29Si) of the obtained coatings were investigated. Photoluminescence analyses and ellipsometric and thermogravimetric measurements were also performed. The surface morphology was characterized using AFM and SEM. The obtained results allowed us to propose a mechanism for the initiation and growth of the SiOC layer. Full article
Show Figures

Figure 1

18 pages, 2205 KB  
Article
Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics
by Sung-Hun Jo, Donghwan Kim, Chaewon Park and Eun Gyo Jeong
Polymers 2025, 17(19), 2688; https://doi.org/10.3390/polym17192688 - 4 Oct 2025
Viewed by 1122
Abstract
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The [...] Read more.
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The polymer, deposited via initiated chemical vapor deposition (iCVD), offered over 90% optical transmittance, low RMS roughness (1–3 nm), and excellent solvent resistance, providing a stable base for inorganic barrier integration. An ALD Al2O3/ZnO nano-stratified barrier initially delivered effective moisture blocking, but tensile stress accumulation imposed a critical thickness of 30 nm, where the WVTR plateaued at ~2.5 × 10−4 g/m2/day. To overcome this limitation, a 40 nm e-beam SiO2 capping layer was added, introducing compressive stress via atomic peening and stabilizing Al2O3 interfaces through Si–O–Al bonding. This stress-balanced design doubled the critical thickness to 60 nm and reduced the WVTR to 3.75 × 10−5 g/m2/day, representing an order-of-magnitude improvement. OLEDs fabricated on this ultrathin platform preserved J–V–L characteristics and efficiency (~4.5–5.0 cd/A) after water-assisted transfer and on-skin deformation, while maintaining LT80 lifetimes of 140–190 h at 400 cd/m2 and stable emission for over 20 days in ambient storage. These results demonstrate that the stress-balanced encapsulation platform provides a practical route to meet the durability and reliability requirements of next-generation wearable optoelectronic devices. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2241 KB  
Article
Vertically Aligned Carbon Nanotubes Grown on Copper Foil as Electrodes for Electrochemical Double Layer Capacitors
by Chinaza E. Nwanno, Ram Chandra Gotame, John Watt, Winson Kuo and Wenzhi Li
Nanomaterials 2025, 15(19), 1506; https://doi.org/10.3390/nano15191506 - 1 Oct 2025
Cited by 1 | Viewed by 1319
Abstract
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate [...] Read more.
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate pre-treatments, simplifying electrode design and enhancing electrical integration. The resulting VACNTs form a dense, uniform, and porous array with strong adhesion to the Cu substrate, minimizing contact resistance and improving conductivity. Electrochemical analysis shows gravimetric specific capacitance (Cgrav) and areal specific capacitance (Careal) of 8 F g−1 and 3.5 mF cm−2 at a scan rate of 5 mV/s, with low equivalent series resistance (3.70 Ω) and charge transfer resistance (0.48 Ω), enabling efficient electron transport and rapid ion diffusion. The electrode demonstrates excellent rate capability and retains 92% of its initial specific capacitance after 3000 charge–discharge cycles, indicating strong cycling stability. These results demonstrate the potential of directly grown VACNT-based electrodes for high-performance EDLCs, particularly in applications requiring rapid charge–discharge cycles and sustained energy delivery. Full article
Show Figures

Graphical abstract

12 pages, 3414 KB  
Article
Frequency Dependence of FINEMET/Ni/G Composite Ribbons Coated with As-Grown Graphene Layer via Chemical Vapor Deposition
by Yupo Wu, Yijun Chen, Zhenjie Zhao and Yenan Song
Nanomaterials 2025, 15(17), 1310; https://doi.org/10.3390/nano15171310 - 25 Aug 2025
Viewed by 966
Abstract
Enhanced Giant Magneto-Impedance (GMI) effects of composite materials play a crucial role in producing devices with a good soft magnetic property. To improve this soft magnetic property, graphene is introduced to increase the conductivity of composite materials. However, the quality of graphene layers [...] Read more.
Enhanced Giant Magneto-Impedance (GMI) effects of composite materials play a crucial role in producing devices with a good soft magnetic property. To improve this soft magnetic property, graphene is introduced to increase the conductivity of composite materials. However, the quality of graphene layers restricts the enhancement of GMI effects. There are few reports on the direct growth of graphene on Fe73.5Si13.5B9Cu1Nb3 (FINEMET). In this paper, the composite ribbons of FINEMET coated with as-grown graphene are prepared by chemical vapor deposition (CVD), which is much better than previous results obtained by methods such as the transfer method or electroless plating in quality. The Ni layer, with good magnetic conductivity, is induced to the FINEMET as an auxiliary layer by the magnetron sputtering method for high-quality graphene-layer growth due to its high carbon dissolution rate. The results show that the growth temperature of the as-grown graphene layer on the FINEMET with the best GMI ratio could reach as high as 560 °C. Moreover, it was found that an Ni layer thickness of 300 nm has a crucial impact on GMI, with the maximum ratio reaching 76.8%, which is 1.9 times that of an initial bare FINEMET ribbon (39.7%). As a result, the direct growth of graphene layers on FINEMET ribbons by the CVD method is a promising way to light GMI-based devices. Full article
Show Figures

Figure 1

15 pages, 5445 KB  
Article
Numerical Study on Chemical Vapor Deposition of Aluminide Coatings
by Shihong Xin, Baiwan Su, Qizheng Li and Chonghang Tang
Coatings 2025, 15(8), 974; https://doi.org/10.3390/coatings15080974 - 21 Aug 2025
Viewed by 1091
Abstract
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade [...] Read more.
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade safety. This study employs computational fluid dynamics (CFD) to investigate the flow field within CVD reactors and the influences of deposition processes on the chemical reaction rates at sample surfaces, thereby guiding the optimization of CVD reactor design and deposition parameters. Three distinct CVD reactor configurations are examined to analyze the flow characteristics of precursor gases and the internal flow field distributions. The results demonstrate that Model A, featuring a bottom-positioned outlet and an extended inlet, exhibits a larger stable deposition zone with more uniform flow velocities near the sample surface, thereby indicating the formation of higher-quality aluminide coatings. Based on Model A, CFD simulations are conducted to evaluate the effects of process parameters, including inflow velocity, pressure, and temperature, on aluminide coating deposition. The results show that the surface chemical reaction rate increases with inflow velocity (0.0065–6.5 m/s), but the relative change rate (ratio of reaction rate to flow rate) shows a declining trend. Temperature variations (653–1453 K) induce a trapezoidal-shaped trend in deposition rates: an initial increase (653–1053 K), followed by stabilization (1053–1303 K), and a subsequent decline (>1303 K). The underlying mechanisms for this trend are discussed. Pressure variations (0.5–2 atm) reveal that both excessively low and high pressures reduce surface reaction rates, with optimal performance observed near 1 atm. This study provides a methodology and insights for optimizing CVD reactor designs and process parameters to enhance aluminide coating quality on turbine blades. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

14 pages, 4419 KB  
Article
Slurry Aluminizing Mechanisms of Nickel-Based Superalloy and Applicability for the Manufacturing of Platinum-Modified Aluminide Coatings
by Giulia Pedrizzetti, Virgilio Genova, Erica Scrinzi, Rita Bottacchiari, Marco Conti, Laura Paglia and Cecilia Bartuli
Coatings 2025, 15(7), 822; https://doi.org/10.3390/coatings15070822 - 14 Jul 2025
Cited by 2 | Viewed by 1392
Abstract
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber [...] Read more.
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber and the initial slurry layer thickness on the microstructure, chemical composition, and phase composition of aluminide coatings. Coatings were manufactured on Ni-based superalloy substrates using CrAl powders as an aluminum source and chloride- and fluoride-based activator salts. The effect of the initial thickness of the slurry layer was studied by varying the amount of deposited slurry in terms of mgslurry/cm2sample (with constant mgslurry/cm3chamber). The microstructure and phase composition of the produced aluminide coatings were evaluated by SEM, EDS, and XRD analysis. Slurry thickness can affect concentration gradients during diffusion, and the best results were obtained with an initial slurry amount of 100 mgslurry/cm2sample. The effect of the Al vapor phase in the reaction chamber was then investigated by varying the mgslurry/cm3chamber ratio while keeping the slurry layer thickness constant at 100 mgslurry/cm2sample. This parameter influences the amount of Al at the substrate surface before the onset of solid-state diffusion, and the best results were obtained for a 6.50 mgslurry/cm3chamber ratio with the formation of 80 µm coatings (excluding the interdiffusion zone) with a β-NiAl phase throughout the thickness. To validate process flexibility, the same parameters were successfully applied to produce platinum-modified aluminides with a bi-phasic ζ-PtAl2 and β-(Ni,Pt)Al microstructure. Full article
Show Figures

Figure 1

14 pages, 1673 KB  
Article
Drying and Film Formation Processes of Graphene Oxide Suspension on Nonwoven Fibrous Membranes with Varying Wettability
by Zeman Liu, Jiaxing Fan, Jian Xue and Fei Guo
Surfaces 2025, 8(2), 39; https://doi.org/10.3390/surfaces8020039 - 18 Jun 2025
Viewed by 1509
Abstract
Graphene oxide (GO) films have attracted significant attention due to their potential in separation and filtration applications. Based on their unique lamellar structure and ultrathin nature, GO films are difficult to maintain in a free-standing form and typically require substrate support. Consequently, understanding [...] Read more.
Graphene oxide (GO) films have attracted significant attention due to their potential in separation and filtration applications. Based on their unique lamellar structure and ultrathin nature, GO films are difficult to maintain in a free-standing form and typically require substrate support. Consequently, understanding their film formation behavior and mechanisms on substrates is of paramount importance. This work employs commonly used nonwoven fibrous membranes as substrates and guided by the coffee-ring theory, systematically investigates the film formation behaviors, film morphology, and underlying mechanisms of GO films on fibrous membranes with varying wettability. Fibrous membranes with different wetting properties—hydrophilic, hydrophobic, and superhydrophobic—were prepared via electrospinning and initiated chemical vapor deposition (iCVD) surface modification techniques. The spreading behaviors, deposition dynamics, capillary effects, and evaporation-induced film formation mechanisms of GO suspensions on these substrates were thoroughly examined. The results showed that GO formed belt-like, ring-like, and circular patterns on the three fibrous membranes, respectively. GO films encapsulated more than the upper half, approximately the upper half, and the top portion of fibers, respectively. Pronounced wrinkling of GO films was observed except for those on the hydrophilic fibrous membrane. This work demonstrates that tuning the wettability of fibrous substrates enables precise control over GO film morphology, including fiber encapsulation, wrinkling, and coverage area. Furthermore, it deepens the understanding of the interactions between 1D nanofibers and 2D GO sheets at low-dimensional scales, laying a foundational basis for the optimized design of membrane engineering. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

14 pages, 2695 KB  
Article
Synergistic MoS2–Gold Nanohybrids for Sustainable Hydrogen Production
by Shrouq H. Aleithan, Shroq S. Laradhi, Kawther Al-Amer and Hany M. Abd El-Lateef
Catalysts 2025, 15(6), 550; https://doi.org/10.3390/catal15060550 - 1 Jun 2025
Cited by 1 | Viewed by 1230
Abstract
Extensive research has been conducted on the catalytic properties of molybdenum disulfide (MoS2) materials in the context of the hydrogen evolution reaction (HER). This study focuses on exploring hybrid MoS2/Au structures as a catalyst for HER, utilizing linear sweep [...] Read more.
Extensive research has been conducted on the catalytic properties of molybdenum disulfide (MoS2) materials in the context of the hydrogen evolution reaction (HER). This study focuses on exploring hybrid MoS2/Au structures as a catalyst for HER, utilizing linear sweep voltammetry as the experimental methodology. Firstly, 2D-MoS2 flakes were synthesized by the chemical vapor deposition (CVD) approach and directly added to gold nanoparticles during or after their preparation process. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy with energy-dispersive X-ray analysis (SEM/EDX). The HER performance was tested for the two resulting samples to show that the preparation of gold nanoparticles with the coexistence of CVD-MoS2 flakes produces a superior electrocatalytic performance of the sample in a neutral medium. Notably, the onset potential was measured as −0.152 V (versus reversible hydrogen electrode (RHE)) with an exchange current density (j0) of 0.22 mA/cm2. Chronoamperometric data show that all composites retained initial current densities for 15 hours, confirming stable, efficient HER performance post-decay. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

12 pages, 3228 KB  
Article
Electronic Quality Enhancement of Multicrystalline Silicon via SiNx and H2 Plasma Passivation Using Plasma-Enhanced Chemical Vapor Deposition for Photovoltaic Applications
by Achref Mannai, Rabia Benabderrahmane Zaghouani, Karim Choubani, Mohammed A. Almeshaal, Mohamed Ben Rabha and Wissem Dimassi
Crystals 2025, 15(6), 498; https://doi.org/10.3390/cryst15060498 - 23 May 2025
Cited by 1 | Viewed by 1337
Abstract
This study explored advancements in photovoltaic technologies by enhancing the electronic quality of multicrystalline silicon (mc-Si) through silicon nitride (SiNx) and hydrogen (H2) plasma deposition via plasma-enhanced chemical vapor deposition (PECVD). This innovative approach replaced toxic chemical wet processes [...] Read more.
This study explored advancements in photovoltaic technologies by enhancing the electronic quality of multicrystalline silicon (mc-Si) through silicon nitride (SiNx) and hydrogen (H2) plasma deposition via plasma-enhanced chemical vapor deposition (PECVD). This innovative approach replaced toxic chemical wet processes with H2 plasma and SiNx. The key parameters of silicon solar cells, including the effective lifetime (τeff), diffusion length (Ldiff), and iron concentration ([Fe]), were analyzed before and after this sustainable solution. The results show significant improvements, particularly in the edge region, which initially exhibited a low τeff and a high iron concentration. After the treatment, the τeff and Ldiff increased to 7 μs and 210 μm, respectively, compared to 2 μs and 70 μm for the untreated mc-Si. Additionally, the [Fe] decreased significantly after the process, dropping from 60 ppt to 10 ppt in most regions. Furthermore, the treatment led to a significant decrease in reflectivity, from 25% to 8% at a wavelength of 500 nm. These findings highlight the effectiveness of the PECVD-SiNx and H2 plasma treatments for improving the optoelectronic performance of mc-Si, making them promising options for high-efficiency photovoltaic devices. Full article
Show Figures

Figure 1

Back to TopTop