Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of p(IEM-co-HEMA) Superstrate
2.2. Deposition of ALD Nano-Stratified Barrier
2.3. Deposition of SiO2 Capping Layer
2.4. Fabrication of Stress-Balanced Transferable Platform
2.5. Characterization
3. Results & Discussion
3.1. Urethane-Based Polymer Superstrate for Conformable and Transferable Platforms
3.2. Correlation Between Residual Stress and WVTR in ALD Nano-Stratified Barriers
3.3. Stress Balancing and Chemical Stabilization Strategy via E-Beam SiO2 Layer
3.4. Realization of a Stress-Balanced and Highly Reliable Transferable Platform
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | Atomic Layer Deposition |
Al2O3 | Aluminum Oxide |
Alq3 | Tris(8-hydroxyquinolinato)aluminum |
CTE | Coefficient of Thermal Expansion |
DEZ | Diethylzinc |
EtOH | Ethanol |
FT-IR | Fourier Transform Infrared Spectroscopy |
HEMA | 2-Hydroxyethyl Methacrylate |
IEM | Isocyanatoethyl Methacrylate |
iCVD | Initiated Chemical Vapor Deposition |
IPA | Isopropyl Alcohol |
MoO3 | Molybdenum Trioxide |
NPB | N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine |
OLED | Organic Light-Emitting Diode |
OPV | Organic Photovoltaic |
PEN | Polyethylene Naphthalate |
PET | Polyethylene Terephthalate |
PI | Polyimide |
PVD | Physical Vapor Deposition |
p(IEM-co-HEMA) | Poly(isocyanatoethyl methacrylate-co-2-hydroxyethyl methacrylate) |
SiO2 | Silicon Dioxide |
TMA | Trimethylaluminum |
WVTR | Water Vapor Transmission Rate |
ZnO | Zinc Oxide |
References
- Xu, C.; Solomon, S.A.; Gao, W. Artificial Intelligence-Powered Electronic Skin. Nat. Mach. Intell. 2023, 5, 1344–1355. [Google Scholar] [CrossRef]
- Zhang, S.; Chhetry, A.; Zahed, M.A.; Sharma, S.; Park, C.; Yoon, S.; Park, J.Y. On-Skin Ultrathin and Stretchable Multifunctional Sensor for Smart Healthcare Wearables. npj Flex. Electron. 2022, 6, 11. [Google Scholar] [CrossRef]
- Jahandar, M.; Kim, S.; Lim, D.C. Transforming Wearable Technology with Advanced Ultra-Flexible Energy Harvesting and Storage Solutions. Nat. Commun. 2024, 15, 8149. [Google Scholar] [CrossRef]
- Kim, D.H.; Lu, N.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Long, H.; Liu, Y.; Wei, Y. Peeling of Elastic Thin Films from Cylindrical Substrates. Int. J. Solids Struct. 2025, 320, 113529. [Google Scholar] [CrossRef]
- Ohara, A.; Okumura, K. Bending of Polymer Films: A Method for Obtaining a Compressive Modulus of Thin Films. Soft Matter 2024, 20, 8589–8600. [Google Scholar] [CrossRef]
- Gleason, K.K. Designing Organic and Hybrid Surfaces and Devices with Initiated Chemical Vapor Deposition (ICVD). Adv. Mater. 2024, 36, 2306665. [Google Scholar] [CrossRef]
- Moon, H.; Seong, H.; Shin, W.C.; Park, W.T.; Kim, M.; Lee, S.; Bong, J.H.; Noh, Y.Y.; Cho, B.J.; Yoo, S.; et al. Synthesis of Ultrathin Polymer Insulating Layers by Initiated Chemical Vapour Deposition for Low-Power Soft Electronics. Nat. Mater. 2015, 14, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D. Significant Progress of Initiated Chemical Vapor Deposition in Manufacturing Soft Non-Spherical Nanoparticles: Upgrading to the Condensed Droplet Polymerization Approach and Key Technological Aspects. ChemEngineering 2023, 8, 2. [Google Scholar] [CrossRef]
- Park, K.W.; Yu, C.H.; Fu, S.; Yang, R. Ion-Conducting Polymer Thin Films via Chemical Vapor Deposition Polymerization. Soft Matter 2025, 21, 1813–1834. [Google Scholar] [CrossRef] [PubMed]
- Moro, L.; Visser, R.J. Encapsulation of Flexible Displays: Background, Status, and Perspective. In Flexible Flat Panel Displays, 2nd ed.; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 229–254. [Google Scholar] [CrossRef]
- Chen, J.J. Realizing Thin-Film Encapsulation’s Benefits for Large-Scale OLED Panels. Inf. Disp. 2021, 37, 6–9. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Wang, J.; Chen, X. Recent Achievements for Flexible Encapsulation Films Based on Atomic/Molecular Layer Deposition. Micromachines 2024, 15, 478. [Google Scholar] [CrossRef]
- Kwon, B.H.; Joo, C.W.; Cho, H.; Kang, C.M.; Yang, J.H.; Shin, J.W.; Kim, G.H.; Choi, S.; Nam, S.; Kim, K.; et al. Organic/Inorganic Hybrid Thin-Film Encapsulation Using Inkjet Printing and PEALD for Industrial Large-Area Process Suitability and Flexible OLED Application. ACS Appl. Mater. Interfaces 2021, 13, 55391–55402. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yang, Z.; Meng, X.; Yue, Y.; Ahmad, M.A.; Zhang, W.; Zhang, S.; Zhang, Y.; Liu, Z.; Chen, W. A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2100151. [Google Scholar] [CrossRef]
- Kim, K.; Van Gompel, M.; Wu, K.; Schiavone, G.; Carron, J.; Bourgeois, F.; Lacour, S.P.; Leterrier, Y.; Kim, K.; Wu, K.; et al. Extended Barrier Lifetime of Partially Cracked Organic/Inorganic Multilayers for Compliant Implantable Electronics. Small 2021, 17, 2103039. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Park, J.W.; Cho, H.; Shin, J.W.; Kim, K.; Kwon, O.E.; Yang, J.H.; Kang, C.M.; Byun, C.W.; Jung, S.D. Biocompatible Multilayered Encapsulation for Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2025, 17, 25534–25545. [Google Scholar] [CrossRef]
- Weng, Y.; Chen, G.; Zhou, X.; Zhang, Y.; Yan, Q.; Guo, T. Design and Fabrication of PDMS/Al2O3 Hybrid Flexible Thin Films for OLED Encapsulation Applications. ACS Appl. Polym. Mater. 2023, 5, 10148–10157. [Google Scholar] [CrossRef]
- Lee, C.H.; Yoo, K.S.; Kim, D.; Kim, J.M.; Park, J.S. Advanced Atmospheric-Pressure Spatial Atomic Layer Deposition for OLED Encapsulation: Controlling Growth Dynamics for Superior Film Performance. Chem. Eng. J. 2025, 503, 158424. [Google Scholar] [CrossRef]
- Xi, Y.; Gao, K.; Pang, X.; Yang, H.; Xiong, X.; Li, H.; Volinsky, A.A. Film Thickness Effect on Texture and Residual Stress Sign Transition in Sputtered TiN Thin Films. Ceram. Int. 2017, 43, 11992–11997. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Ghasemi, A.R.; Shokrieh, M.M.; Marzbanrad, B.; Baraheni, M.; Fotouhi, M. Residual Stress in Engineering Materials: A Review. Adv. Eng. Mater. 2022, 24, 2100786. [Google Scholar] [CrossRef]
- Aruchamy, N.; Schenk, T.; Kovacova, V.; Glinsek, S.; Defay, E.; Granzow, T. Influence of Tensile vs. Compressive Stress on Fatigue of Lead Zirconate Titanate Thin Films. J. Eur. Ceram. Soc. 2021, 41, 6991–6999. [Google Scholar] [CrossRef]
- Leplan, H.; Geenen, B.; Robic, J.-Y.; Pauleau, Y. Residual Stresses in Silicon Dioxide Thin Films Prepared by Reactive Electron Beam Evaporation. In Optical Interference Coatings; Abeles, F., Ed.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 1994; Volume 2253, p. 1263. [Google Scholar]
- Wang, G.; Wang, Z.; Ren, J.; Wu, Z.; Duan, Y. Innovative Stress-Release Method for Low-Stress Flexible Al2O3 Encapsulation Films in OLED Applications. npj Flex. Electron. 2025, 9, 94. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, G.S.; Lee, S.; Kim, J.Y. Enhanced Stretchability of Wavy-Structured Thermally Grown Silicon Dioxide Films for Stretchable Encapsulation. Adv. Electron. Mater. 2023, 9, 2300078. [Google Scholar] [CrossRef]
- Jeong, E.G.; Jeon, Y.; Cho, S.H.; Choi, K.C. Textile-Based Washable Polymer Solar Cells for Optoelectronic Modules: Toward Self-Powered Smart Clothing. Energy Environ. Sci. 2019, 12, 1878–1889. [Google Scholar] [CrossRef]
- Jeong, E.G.; Kwon, S.; Han, J.H.; Im, H.G.; Bae, B.S.; Choi, K.C. A Mechanically Enhanced Hybrid Nano-Stratified Barrier with a Defect Suppression Mechanism for Highly Reliable Flexible OLEDs. Nanoscale 2017, 9, 6370–6379. [Google Scholar] [CrossRef]
- Schubert, S.; Klumbies, H.; Müller-Meskamp, L.; Leo, K. Electrical Calcium Test for Moisture Barrier Evaluation for Organic Devices. Rev. Sci. Instrum. 2011, 82, 094101. [Google Scholar] [CrossRef]
- da Silva Sobrinho, A.S.; Czeremuszkin, G.; Latrèche, M.; Wertheimer, M.R. Defect-Permeation Correlation for Ultrathin Transparent Barrier Coatings on Polymers. J. Vac. Sci. Technol. A 2000, 18, 149–157. [Google Scholar] [CrossRef]
- Felts, J.T. Transparent Barrier Coatings Update: Flexible Substrates. J. Plast. Film. Sheeting 1993, 9, 139–158. [Google Scholar] [CrossRef]
- Meyer, J.; Schmidt, H.; Kowalsky, W.; Riedl, T.; Kahn, A. The Origin of Low Water Vapor Transmission Rates through Al2O3/ZrO2 Nanolaminate Gas-Diffusion Barriers Grown by Atomic Layer Deposition. Appl. Phys. Lett. 2010, 96, 243308. [Google Scholar] [CrossRef]
- Janssen, G.C.A.M.; Abdalla, M.M.; van Keulen, F.; Pujada, B.R.; van Venrooy, B. Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments from Polycrystalline Steel Strips to Single Crystal Silicon Wafers. Thin Solid Films 2009, 517, 1858–1867. [Google Scholar] [CrossRef]
- Kobayashi, M.; Matsui, T.; Murakami, Y. Mechanism of Creation of Compressive Residual Stress by Shot Peening. Int. J. Fatigue 1998, 20, 351–357. [Google Scholar] [CrossRef]
- Ding, Z.H.; Cui, F.K.; Liu, Y.B.; Li, Y.; Xie, K.G. A Model of Surface Residual Stress Distribution of Cold Rolling Spline. Math. Probl. Eng. 2017, 2017, 2425645. [Google Scholar] [CrossRef]
- Thornton, J.A.; Hoffman, D.W. Stress-Related Effects in Thin Films. Thin Solid Films 1989, 171, 5–31. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, M.K.; Rhee, C.K.; Kim, W.W. Control of Hydrolytic Reaction of Aluminum Particles for Aluminum Oxide Nanofibers. Mater. Sci. Eng. A 2004, 375–377, 1263–1268. [Google Scholar] [CrossRef]
- Rückerl, A.; Zeisel, R.; Mandl, M.; Costina, I.; Schroeder, T.; Zoellner, M.H. Characterization and Prevention of Humidity Related Degradation of Atomic Layer Deposited Al2O3. J. Appl. Phys. 2017, 121, 25306. [Google Scholar] [CrossRef]
- Davis, C.A. A Simple Model for the Formation of Compressive Stress in Thin Films by Ion Bombardment. Thin Solid Films 1993, 226, 30–34. [Google Scholar] [CrossRef]
- Behrendt, A.; Meyer, J.; Van De Weijer, P.; Gahlmann, T.; Heiderhoff, R.; Riedl, T. Stress Management in Thin-Film Gas-Permeation Barriers. ACS Appl. Mater. Interfaces 2016, 8, 4056–4061. [Google Scholar] [CrossRef] [PubMed]
- Fripiat, J.J. Proton Mobility in Solids. I. Hydrogenic Vibration Modes and Proton Delocalization in Boehmite. J. Phys. Chem. 1967, 71, 1097–1111. [Google Scholar] [CrossRef]
Property | Measured Value | |
---|---|---|
Surface roughness | Root mean square roughness (Rq) | 1~3 nm |
Optical property | Transmittance | 91~92% |
Refractive index | 1.51 | |
UV stability | Good | |
Thermal stability | Thermal decomposition | Onset 250 °C |
Coefficient of thermal expansion (CTE) | 50.54 ppm/°C | |
Mechanical property | Elastic modulus | 1~3 GPa |
Yield strength | 20~50 MPa | |
Yield strain | 1.5~3.5% |
Thermal Evaporation | E-Beam Evaporation | Sputtering | |
---|---|---|---|
Residual stress | 389.4 ± 36.6 MPa * | 126.5 ± 4.9 MPa | 198.9 ± 13.9 MPa |
Ion energy | 0.255 eV | 1.5 eV | 22.5 eV |
Measurement Condition | Luminance [cd/m2] | Current Density [mA/cm2] | Current Efficiency [cd/A] |
---|---|---|---|
Glass substrate | 946.82 ± 15.2 * | 21.89 ± 0.30 | 4.53 ± 0.15 |
Polymer platform (before exfoliation) | 886.15 ± 12.8 | 19.29 ± 0.25 | 4.59 ± 0.14 |
Polymer platform (after exfoliation) | 898.99 ± 14.1 | 20.18 ± 0.28 | 4.45 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.-H.; Kim, D.; Park, C.; Jeong, E.G. Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics. Polymers 2025, 17, 2688. https://doi.org/10.3390/polym17192688
Jo S-H, Kim D, Park C, Jeong EG. Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics. Polymers. 2025; 17(19):2688. https://doi.org/10.3390/polym17192688
Chicago/Turabian StyleJo, Sung-Hun, Donghwan Kim, Chaewon Park, and Eun Gyo Jeong. 2025. "Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics" Polymers 17, no. 19: 2688. https://doi.org/10.3390/polym17192688
APA StyleJo, S.-H., Kim, D., Park, C., & Jeong, E. G. (2025). Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics. Polymers, 17(19), 2688. https://doi.org/10.3390/polym17192688