Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = inherently conductive polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3666 KiB  
Review
Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites
by Ping Li, Ziyu Cui, Mengshuang Wang, Junxian Yang, Mingli Hu, Qiqing Cheng and Shi Wang
Electrochem 2025, 6(3), 28; https://doi.org/10.3390/electrochem6030028 - 4 Aug 2025
Abstract
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with [...] Read more.
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with conductive materials can compensate for these deficiencies. For MOF/metal nanoparticle composites (e.g., composites with gold, silver, platinum, and bimetallic nanoparticles), the high electrical conductivity and catalytic activity of metal nanoparticles are utilized, and MOFs can inhibit the agglomeration of nanoparticles. MOF/carbon-based material composites integrate the high electrical conductivity and large specific surface area of carbon-based materials. MOF/conductive polymer composites offer good flexibility and tunability. MOF/multiple conductive material composites exhibit synergistic effects. Although MOF composites provide an ideal platform for electrocatalytic reactions, current research still suffers from several issues, including a lack of comparative studies, insufficient research on structure–property correlations, limited practical applications, and high synthesis costs. In the future, it is necessary to explore new synthetic pathways and seek; inexpensive alternative raw materials. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 327
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

35 pages, 6415 KiB  
Review
Recent Advances in Conductive Hydrogels for Electronic Skin and Healthcare Monitoring
by Yan Zhu, Baojin Chen, Yiming Liu, Tiantian Tan, Bowen Gao, Lijun Lu, Pengcheng Zhu and Yanchao Mao
Biosensors 2025, 15(7), 463; https://doi.org/10.3390/bios15070463 - 18 Jul 2025
Viewed by 364
Abstract
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their [...] Read more.
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their practical applications. In contrast, conductive hydrogels (CHs) for electronic skin (E-skin) and healthcare monitoring have attracted substantial interest owing to outstanding features, including adjustable mechanical properties, intrinsic flexibility, stretchability, transparency, and diverse functional and structural designs. Considerable efforts focus on developing CHs incorporating various conductive materials to enable multifunctional wearable sensors and flexible electrodes, such as metals, carbon, ionic liquids (ILs), MXene, etc. This review presents a comprehensive summary of the recent advancements in CHs, focusing on their classifications and practical applications. Firstly, CHs are categorized into five groups based on the nature of the conductive materials employed. These categories include polymer-based, carbon-based, metal-based, MXene-based, and ionic CHs. Secondly, the promising applications of CHs for electrophysiological signals and healthcare monitoring are discussed in detail, including electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), respiratory monitoring, and motion monitoring. Finally, this review concludes with a comprehensive summary of current research progress and prospects regarding CHs in the fields of electronic skin and health monitoring applications. Full article
Show Figures

Figure 1

17 pages, 5663 KiB  
Article
Ultra-Stable, Conductive, and Porous P-Phenylenediamine-Aldehyde-Ferrocene Micro/Nano Polymer Spheres for High-Performance Supercapacitors with Positive Electrodes
by Xin Wang, Qingning Li, Zhiruo Bian, Da Wang, Cong Liu, Zhaoxu Yu, Xuewen Li and Qijun Li
Polymers 2025, 17(14), 1964; https://doi.org/10.3390/polym17141964 - 17 Jul 2025
Viewed by 300
Abstract
Supercapacitors, with their remarkable attributes such as including a high power density, an extended cycle life, and inherent safety, have emerged as a major research area for electrochemical energy storage. In this paper, phenylenediamine and glyoxal were used as raw material to prepare [...] Read more.
Supercapacitors, with their remarkable attributes such as including a high power density, an extended cycle life, and inherent safety, have emerged as a major research area for electrochemical energy storage. In this paper, phenylenediamine and glyoxal were used as raw material to prepare p-phenylenediamine glyoxal (PGo) with one single step. p-phenylenediamine glyoxal-ferrocene (PGo-Fcx, x = 1, 0.3, 0.2, 0.1) composites were synthesized based on a poly-Schiff base. FTIR and XRD results indicated that ferrocene doping preserves the intrinsic PGo framework while inducing grain refinement, as evidenced by the narrowing of the XRD diffraction peaks. SEM observations further revealed distinct morphological evolution. CV (cyclic voltammetry), EIS (electrochemical impedance spectroscopy), and GCD (galvanostatic charge–discharge) were conducted on PGo-Fcx in order to examine its electrochemical performance. The PGo-Fc0.3 in PGo-Fcx electrode material had a specific capacitance of 59.6 F/g at a current density of 0.5 A/g and 36 F/g at a current density of 10 A/g. Notably, even after undergoing 5000 charging–discharging cycles at 10 A/g, the material retained 76.2% of its specific capacitance compared to the initial cycle. Therefore, taking conductive polymers and metal oxide materials for modification can improve the stability and electrochemical performance of supercapacitors. Full article
(This article belongs to the Special Issue Design and Characterization of Polymer-Based Electrode Materials)
Show Figures

Figure 1

20 pages, 1816 KiB  
Review
Recent Achievements of Epicardial Patch Electronics Using Adhesive and Conductive Hydrogels
by Su Hyeon Lee, Jong Won Lee, Daehyeon Kim, Gi Doo Cha and Sung-Hyuk Sunwoo
Gels 2025, 11(7), 530; https://doi.org/10.3390/gels11070530 - 9 Jul 2025
Viewed by 417
Abstract
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by [...] Read more.
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by a mechanical mismatch between the device and myocardium. This leads to the excessive formation of fibrous tissue around the implanted device, ultimately compromising both device functionality and tissue health. To address these challenges, flexible electronics based on polymers and elastomers significantly softer than conventional rigid metals and silicon have been explored. The epicardial approach enables the device to conform to the curved myocardial surface and deform synchronously with cardiac motion, thereby improving mechanical compatibility. However, modulus mismatches between soft polymers and cardiac tissue can still lead to mechanical instability and non-uniform adhesion, potentially affecting long-term performance. This review comprehensively summarizes recent research advancements in epicardial patch electronics based on bioadhesive and conductive hydrogels. We emphasize current research directions, highlighting the potential of hydrogels in epicardial electronics applications. Critical discussion includes recent trends, ongoing challenges, and emerging strategies aimed at improving the properties of hydrogel-based epicardial patches. Future research directions to facilitate clinical translation are also outlined. Full article
(This article belongs to the Special Issue Novel Gels for Biomedical Applications)
Show Figures

Figure 1

12 pages, 2165 KiB  
Article
Flexible Piezoresistive Sensors Based on PANI/rGO@PDA/PVDF Nanofiber for Wearable Biomonitoring
by Hong Pan, Yuxiao Wang, Guangzhong Xie, Chunxu Chen, Haozhen Li, Fang Wu and Yuanjie Su
J. Compos. Sci. 2025, 9(7), 339; https://doi.org/10.3390/jcs9070339 - 30 Jun 2025
Viewed by 417
Abstract
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) [...] Read more.
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) nanofiber piezoresistive sensor (PNPS) capable of versatile wearable biomonitoring. The PNPS was fabricated by integrating rGO sheets and PANI particles into a PDA-modified PVDF nanofiber network, where PDA was implemented to boost the interaction between the nanofiber networks and functional materials, PANI particles were deposited on a nanofiber substrate to construct electroactive nanofibers, and rGO sheets were utilized to interconnect nanofibers to strengthen in-plane charge carrier transport. Benefitting from the synergistic effect of multi-dimensional electroactive materials in piezoresistive membranes, the as-fabricated PNPS exhibits a high sensitivity of 13.43 kPa−1 and a fast response time of 9 ms, which are significantly superior to those without an rGO sheet. Additionally, a wide pressure detection range from 0 to 30 kPa and great mechanical reliability over 12,000 cycles were attained. Furthermore, the as-prepared PNPS demonstrated the capability to detect radial arterial pulses, subtle limb motions, and diverse respiratory patterns, highlighting its potential for wearable biomonitoring and healthcare assessment. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

34 pages, 8870 KiB  
Review
Advances in Graphene-Based Flame-Retardant for Polystyrene Applications: Synthesis, Mechanisms, and Future Perspectives
by Mutawakkil Isah, Farrukh Shehzad and Mamdouh A. Al-Harthi
Polymers 2025, 17(13), 1811; https://doi.org/10.3390/polym17131811 - 29 Jun 2025
Viewed by 654
Abstract
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. [...] Read more.
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. However, despite these advantages, challenges such as agglomeration, high thermal conductivity, poor interfacial compatibility, and processing limitations hinder their full-scale adoption in building insulation and other applications. This review presents an in-depth analysis of recent progress in graphene-enhanced flame-retardant systems for polystyrene applications, focusing on synthesis methods, flame-retardant mechanisms, and material performance. It also discusses strategies to address these challenges, such as surface functionalization, hybrid flame-retardant formulations, optimized graphene loading, and improved dispersion techniques. Furthermore, future research directions are proposed to enhance the effectiveness and commercial viability of graphene-based flame-retardant polystyrene composites. Overcoming these challenges is essential for high-performance, eco-friendly, flame-retardant materials on a larger scale. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 10483 KiB  
Article
The Effect of Low-Temperature Plasma Treatment on the Adhesive Bonding Performance of CF/PEKK Surfaces
by Liwei Wen, Zhentao Dong and Ruozhou Wang
Surfaces 2025, 8(3), 41; https://doi.org/10.3390/surfaces8030041 - 20 Jun 2025
Viewed by 391
Abstract
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on [...] Read more.
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on their lap shear strength. Surface characterization was systematically performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle analysis to evaluate morphological, chemical, and wettability changes induced via plasma treatment. The results demonstrated a significant enhancement in lap shear strength after plasma treatment. Optimal bonding performance was achieved at a treatment speed of 10 mm/s and a nozzle-to-substrate distance of 5 mm, yielding a maximum shear strength of 28.28 MPa, a 238% improvement compared to the untreated control. Notably, the failure mode transitioned from interfacial fracture in the untreated sample to a mixed-mode failure dominated by cohesive failure of the adhesive and substrate. Plasma treatment substantially reduced the contact angle of CF/PEKK, indicating improved surface wettability. SEM micrographs revealed an increased micro-porous texture on the treated surface, which enhanced mechanical interlocking between the composite and adhesive. XPS analysis confirmed compositional alterations, specifically elevated oxygen-containing functional groups on the plasma-treated surface. These modifications facilitated stronger chemical bonding between CF/PEKK and the epoxy resin, thereby validating the efficacy of plasma treatment in optimizing surface chemical activity and adhesion performance. Full article
Show Figures

Graphical abstract

19 pages, 7263 KiB  
Article
Design and Fabrication of Heat Exchangers Using Thermally Conductive Polymer Composite
by Jian Liu, David Cheng, Wang Pan, Khin Oo, Ty-Liyiah McCrimmon and Shuang Bai
Appl. Mech. 2025, 6(2), 38; https://doi.org/10.3390/applmech6020038 - 27 May 2025
Viewed by 1180
Abstract
Polymer heat exchangers (HXs) are lightweight and cost-effective due to the affordability of raw polymer materials. However, the inherently low thermal conductivity (TC) of polymers limits their application in HXs. To enhance thermal conductivity polymer composites, two types of diamond powders, with particle [...] Read more.
Polymer heat exchangers (HXs) are lightweight and cost-effective due to the affordability of raw polymer materials. However, the inherently low thermal conductivity (TC) of polymers limits their application in HXs. To enhance thermal conductivity polymer composites, two types of diamond powders, with particle sizes of 0.25 µm and 16.7 µm, were used as fillers, while Acrylonitrile Butadiene Styrene (ABS) served as the matrix. Composite polymer samples were fabricated, and their density and thermal conductivity were tested and compared. The results indicate that fillers with larger particle sizes tend to exhibit higher thermal conductivity. A polymer HX based on a Triply Periodic Minimal Surface (TPMS) structure was designed. The factors influencing the efficiency of polymer HXs were analyzed and compared with those of metal HXs. In polymer HXs, the polymer wall is the primary source of heat resistance. Additionally, the mechanical strength of 3D-printed polymer parts was evaluated. Finally, an HX was successfully fabricated using a polymer composite containing 50 wt% diamond powder via 3D printing. Full article
(This article belongs to the Special Issue Thermal Mechanisms in Solids and Interfaces)
Show Figures

Figure 1

23 pages, 4982 KiB  
Article
Laser-Ablative Structuring of Elastic Bandages—An Experimental Study
by Peijiao Huang, Daoyong Zhang, Wenyuan Lu, Xihuai Wang, Da Chen, Shengbin Zhao and Mingdi Wang
Nanomaterials 2025, 15(9), 701; https://doi.org/10.3390/nano15090701 - 7 May 2025
Viewed by 430
Abstract
To address the problem of excessive ablation in conventional laser processing caused by the inhomogeneous energy distribution at the focal point, along with the inherent heterogeneity and surface irregularities of textile materials, a new method for laser printing elastic bandage fabrics was developed. [...] Read more.
To address the problem of excessive ablation in conventional laser processing caused by the inhomogeneous energy distribution at the focal point, along with the inherent heterogeneity and surface irregularities of textile materials, a new method for laser printing elastic bandage fabrics was developed. We used flat top light sources, short focal field mirrors, and low power lasers instead of the Gaussian light sources, long focal field mirrors, and high-power lasers used in traditional methods. First, the sample was preheated, and the aspherical lens system was designed and simulated. Then, the physical and chemical properties of laser-processed elastic bandage fabrics were investigated. Finally, based on single-factor experiments, orthogonal experimental analysis was conducted to determine the optimal process parameters. The results show that the optimized optical path can effectively improve the uniformity of the temperature field during laser scanning and enhance focusing performance; as energy gradually accumulates, chemical bonds in polymer molecules break; when the elastic bandage fabric is in a highly elastic state, it exhibits appropriate breaking strength and color difference. The best parameters obtained from the single-factor experiment are as follows: laser power range of 25–34 W, scanning speed range of 2200–2800 mm/s, preheating temperature range of 125–200 °C. The best parameters obtained from the orthogonal experiment are as follows: laser power 28 W, scanning speed 2800 mm/s, and the preheating temperature 175 °C. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

11 pages, 2874 KiB  
Article
Reservoir Computing Enabled by Polymer Electrolyte-Gated MoS2 Transistors for Time-Series Processing
by Xiang Wan, Qiujie Yuan, Lianze Sun, Kunfang Chen, Dongyoon Khim and Zhongzhong Luo
Polymers 2025, 17(9), 1178; https://doi.org/10.3390/polym17091178 - 25 Apr 2025
Cited by 1 | Viewed by 495
Abstract
This study presented a novel reservoir computing (RC) system based on polymer electrolyte-gated MoS2 transistors. The proposed transistors operate through lithium ion (Li+) intercalation, which induces reversible phase transitions between semiconducting 2H and metallic 1T’ phases in MoS2 films. [...] Read more.
This study presented a novel reservoir computing (RC) system based on polymer electrolyte-gated MoS2 transistors. The proposed transistors operate through lithium ion (Li+) intercalation, which induces reversible phase transitions between semiconducting 2H and metallic 1T’ phases in MoS2 films. This mechanism enables dynamic conductance modulation with inherent nonlinearity and fading memory effects, rendering these transistors particularly suitable as reservoir nodes. Our RC implementation leverages time-multiplexed virtual nodes to reduce physical component requirements while maintaining rich temporal dynamics. Testing on a spoken digit recognition task using the NIST TI-46 dataset demonstrated 95.1% accuracy, while chaotic time-series prediction of the Lorenz system achieved a normalized root mean square error as low as 0.04. This work established polymer electrolyte-gated MoS2 transistors as promising building blocks for efficient RC systems capable of processing complex temporal patterns, offering enhanced scalability, and practical applicability in neuromorphic computation. Full article
(This article belongs to the Special Issue Novel Conjugated Polymers and Conductive Polymers)
Show Figures

Figure 1

18 pages, 17970 KiB  
Article
Lignin-Mediated Dual Conductive Hydrogels with High Conductivity, Antibacterial Activity and Biocompatibility for Chronic Wound Repair
by Jianhong Lin, Mengyao Chen, Wei Zhao, Shengyu Zhang, Jialin Liu, Yang Zhou, Lei Jiang and Jiantao Zhang
Gels 2025, 11(4), 283; https://doi.org/10.3390/gels11040283 - 11 Apr 2025
Viewed by 778
Abstract
In recent years, conductive polymer hydrogels based on polypyrrole (PPy) combined with electrical stimulation (ES) have emerged as a promising approach for chronic wound repair. However, in practical applications, PPy often exhibits limitations such as poor water dispersion, weak inherent conductivity and a [...] Read more.
In recent years, conductive polymer hydrogels based on polypyrrole (PPy) combined with electrical stimulation (ES) have emerged as a promising approach for chronic wound repair. However, in practical applications, PPy often exhibits limitations such as poor water dispersion, weak inherent conductivity and a lack of biological functionality. To address these challenges, this study proposes an innovative design of a conductive hydrogel that employs a natural biopolymer, lignin sulfonate (Lgs), as both a dispersant and dopant for PPy, while incorporating silver nanoparticles (Ag NPs) to confer the hydrogel antibacterial properties. The results showed that the water dispersion of PPy was significantly improved, and the conductivity of the hydrogel was as high as 2.82 ± 0.04 mS/cm through the double conduction mechanism of PPy and Ag NPs. The hydrogel exhibited antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the antibacterial rate could exceed 90%. In vitro tests demonstrated that the hydrogel exhibited good biocompatibility, adhesion ability (7.97 ± 0.56 kPa) and hemostatic ability. Furthermore, in vivo animal experiments showed that the hydrogel combined with ES achieved 93.71 ± 2.46% wound closure within 14 days, which can significantly accelerate wound healing, promote collagen deposition and epithelial tissue regeneration. These findings demonstrate that the developed hydrogel can serve as an effective platform for ES-assisted chronic wound repair. Full article
Show Figures

Figure 1

23 pages, 5590 KiB  
Article
Pushing the Limits of Thermal Resistance in Nanocomposites: A Comparative Study of Carbon Black and Nanotube Modifications
by Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt, Bernhard Schartel and Philipp Höfer
Nanomaterials 2025, 15(7), 546; https://doi.org/10.3390/nano15070546 - 3 Apr 2025
Cited by 1 | Viewed by 577
Abstract
Enhancing the thermal resistance of carbon fiber-reinforced polymers (CFRPs) with flame retardants or coatings often leads to increased weight and reduced mechanical integrity. To address these challenges, this study introduces an innovative approach for developing nanocomposites using carbon-based nanoparticles, while preserving the structural [...] Read more.
Enhancing the thermal resistance of carbon fiber-reinforced polymers (CFRPs) with flame retardants or coatings often leads to increased weight and reduced mechanical integrity. To address these challenges, this study introduces an innovative approach for developing nanocomposites using carbon-based nanoparticles, while preserving the structural lightweight properties. For this, carbon black particles (CBPs) up to 10% and carbon nanotubes (CNTs) up to 1.5% were incorporated into the RTM6/G939 composite material. The obtained samples were then analyzed for their properties and heat resistance under one-sided thermal loading at a heat flux of 50 kW/m2. Results demonstrate that integrating these particles improves heat conduction without compromising the material’s inherent advantages. As a result, thermo-induced damage and the resulting loss of mechanical strength are delayed by 17% with CBPs and 7% with CNTs compared to the unmodified material. Thereby, the thermal behavior can be accurately modeled by a straightforward approach, using calibrated, effective measurements of the nanoparticles in the polymer matrix rather than relying on theoretical assumptions. This approach thus provides a promising methode to characterize and improve thermal resistance without significant trade-offs. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

18 pages, 6523 KiB  
Article
Thermal Transport in Polyethylene Reinforced with H/CH3/C2H5 Functionalized Graphene: A Molecular Dynamics Study
by Nava Zarkhah, Mostafa Baghani, Daniel George, Ali Rajabpour, Majid Baniassadi and Mohammadreza Aghaei
Energies 2025, 18(7), 1647; https://doi.org/10.3390/en18071647 - 25 Mar 2025
Cited by 1 | Viewed by 495
Abstract
Effective thermal management in polymer-based materials remains a critical challenge due to their inherently low thermal conductivity, driving the need for advanced nanocomposites. This study develops non-equilibrium molecular dynamics (NEMD) simulations to investigate the thermal transport properties of polyethylene (PE) reinforced with graphene [...] Read more.
Effective thermal management in polymer-based materials remains a critical challenge due to their inherently low thermal conductivity, driving the need for advanced nanocomposites. This study develops non-equilibrium molecular dynamics (NEMD) simulations to investigate the thermal transport properties of polyethylene (PE) reinforced with graphene functionalized by hydrogen (H), methyl (CH3), and ethyl (C2H5) groups with volume fractions of 5–30%. The interfacial thermal conductance (ITC) between PE and graphene increases significantly with functionalization, reaching 2.50 × 108 W/m2K with 30% ethyl coverage, a 250% enhancement compared to 8.8 × 107 W/m2K for pristine graphene. The effective thermal conductivity of the PE/functionalized graphene composite peaks at 0.42 W/mK with 30% hydrogen coverage, a 17.4% improvement over the 0.36 W/mK of PE/pristine graphene, though still 6.5% below pure PE (0.45 W/mK). Analysis of the vibrational density of states reveals that ethyl groups maximize phonon coupling at the interface, explaining their superior ITC enhancement. These findings offer quantitative insights into optimizing polymer nanocomposites for thermal management applications, such as microelectronics and energy storage systems, where efficient heat dissipation is important. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

25 pages, 12594 KiB  
Article
Enhancing the Flexibility and Hydrophilicity of PLA via Polymer Blends: Electrospinning vs. Solvent Casting
by Qi-Hong Weng, Ming-Hsien Hu, Ji-Feng Wang and Jin-Jia Hu
Polymers 2025, 17(6), 800; https://doi.org/10.3390/polym17060800 - 18 Mar 2025
Cited by 3 | Viewed by 1613
Abstract
Polylactic acid (PLA) is a biodegradable polymer with high tensile strength, high stiffness, and biocompatibility, but its brittleness and hydrophobicity limit its applications. This study aims to address these limitations by blending PLA with polycaprolactone (PCL) to enhance flexibility and with polyethylene oxide [...] Read more.
Polylactic acid (PLA) is a biodegradable polymer with high tensile strength, high stiffness, and biocompatibility, but its brittleness and hydrophobicity limit its applications. This study aims to address these limitations by blending PLA with polycaprolactone (PCL) to enhance flexibility and with polyethylene oxide (PEO) to improve hydrophilicity. Unlike conventional approaches where PEO serves as a plasticizer, this study investigated PEO as a major blend component. Electrospinning and solvent casting, which differ in their solvent evaporation rates, were employed to fabricate thin films of neat PLA and PLA blends to examine their influence on mechanical and surface properties. Polymer solutions were prepared using a dichloromethane (DCM)/dimethylformamide (DMF) mixture known to enhance the electrospinning process. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate crystallinity of polymers and their interactions, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) provided insights into phase separation and fiber morphology. Uniaxial tensile testing and water contact angle measurements were conducted to evaluate mechanical properties and surface properties, respectively. The results showed that electrospun PLA films exhibited higher elongation at break and ultimate strength but lower Young’s modulus than solvent-cast PLA films. Electrospun films of PLA/PCL blends demonstrated improved elongation at break while retaining Young’s modulus comparable to that of electrospun PLA films, unlike their solvent-cast counterparts. In contrast, PLA/PEO blends exhibited enhanced hydrophilicity in both processing methods but showed a marked reduction in mechanical properties. In summary, electrospun films consistently outperformed solvent-cast films in terms of flexibility and mechanical integrity, primarily due to their fibrous structure, suppressed phase separation, and reduced crystallinity. This study uniquely demonstrates that electrospinning enables the fabrication of phase-separated PLA/PEO blends with mechanical integrity despite PEO’s inherent immiscibility with PLA and incompatibility in the solvent mixture. Furthermore, electrospinning proves to be an effective processing method for producing PLA blend films with enhanced flexibility and hydrophilicity without the need for plasticizers or compatibilizers. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

Back to TopTop