Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = inherent optical property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2510 KB  
Article
Modelling the Remote Sensing Reflectance for the Sea Surface Layer Using Empirical Inherent Optical Properties
by Barbara Lednicka, Zbigniew Otremba, Sławomir Sagan and Jacek Piskozub
Remote Sens. 2026, 18(1), 98; https://doi.org/10.3390/rs18010098 - 27 Dec 2025
Viewed by 288
Abstract
The study focuses on modeling the remote sensing reflectance (Rrs) for optically complex waters based on the absorption (a), scattering (b), and backscattering (bb) coefficients measured at selected wavelengths (420 nm, 488 nm, 555 nm, and 620 nm). R [...] Read more.
The study focuses on modeling the remote sensing reflectance (Rrs) for optically complex waters based on the absorption (a), scattering (b), and backscattering (bb) coefficients measured at selected wavelengths (420 nm, 488 nm, 555 nm, and 620 nm). Rrs was calculated using both Morel’s proxy and Monte Carlo (MC) simulations. A comparison of the Rrs values obtained from the proxy and the MC simulations allowed us to determine the proxy factor (k). The results evidenced that this proxy parameter increases with wavelength. The findings demonstrate that Rrs can be computed from inherent optical properties (IOPs) using radiative transfer modeling, providing light independent reflectance estimates, unlike direct in situ Rrs measurements, which are affected by instantaneous lightening conditions. Full article
Show Figures

Graphical abstract

28 pages, 5006 KB  
Article
Gold-Doped Hybrid Nanoparticles: A Versatile Tool for Multimodal Imaging of Cell Trafficking
by Andrea Bezze, Jessica Ponti, Deborah Stanco, Carlotta Mattioda and Clara Mattu
Pharmaceutics 2025, 17(12), 1612; https://doi.org/10.3390/pharmaceutics17121612 - 15 Dec 2025
Viewed by 649
Abstract
Background: Nanomedicine has demonstrated great potential to improve drug delivery across various diseases. However, accurately monitoring the real-time trafficking of organic nanoparticles (NPs) within biological systems remains a significant challenge. Current detection methods rely heavily on fluorescence, while high-resolution, label-free imaging is often [...] Read more.
Background: Nanomedicine has demonstrated great potential to improve drug delivery across various diseases. However, accurately monitoring the real-time trafficking of organic nanoparticles (NPs) within biological systems remains a significant challenge. Current detection methods rely heavily on fluorescence, while high-resolution, label-free imaging is often precluded by the limited optical contrast of organic materials, limiting a comprehensive understanding of NP fate. Metallic doping allows simultaneous detection of carriers using multiple imaging and analysis techniques. This study presents a novel approach to prepare gold-doped hybrid NPs compatible with multimodal imaging, thus facilitating multimodal tracking. Methods: Gold-doped NPs were successfully synthesized via nanoprecipitation, yielding stable, monodisperse carriers with optimal size, confirmed by Dynamic Light Scattering and Nanoparticle Tracking Analysis. UV/Vis spectroscopy confirmed effective gold-doping, with doping efficiency of approximately 50%. Transmission Electron Microscopy (TEM) showed gold NP accumulation throughout the polymer core and near the lipid shell. Results: Although gold doping resulted in a slight increase in NP size and zeta potential, no effects on cytocompatibility or cellular uptake by glioblastoma and microglia cells were observed. Furthermore, the optical properties (i.e., the refractive index and the UV spectrum) of the NPs were successfully modified to enable tracking across complementary imaging modalities. Real-time, label-free visualization of NP accumulation in the cytoplasm of U87 cells was achieved via holotomography by exploiting the enhanced refractive index after gold-doping. This observation was confirmed through correlation with fluorescence confocal microscopy, using fluorescently labelled gold-doped NPs. Furthermore, the high electron density of the gold tracer facilitated the precise localization of NPs within intracellular compartments via TEM, bypassing the inherently low contrast of organic NPs. Conclusions: These findings validated the gold-doped NPs as versatile nanoplatforms for multimodal imaging, showcasing their potential for non-invasive, high-resolution tracking and more accurate quantification of intracellular accumulation using diverse analytical techniques. Full article
Show Figures

Graphical abstract

15 pages, 3854 KB  
Article
Cascade Dielectrophoretic Separation for Selective Enrichment of Polyhydroxybutyrate (PHB)-Producing Cyanobacterium Synechocystis sp. PCC 6803
by Songyuan Yan, Sara Louise Pacheco, Asa K. Laskie, Cesar Raul Gonzalez Esquer and Lawrence Kulinsky
Micromachines 2025, 16(12), 1402; https://doi.org/10.3390/mi16121402 - 12 Dec 2025
Viewed by 354
Abstract
Maintaining favorable biological productivities in photosynthetic biomanufacturing systems, especially when the risk of contamination with competing microbes is high, remains a challenge to achieve while maintaining economic feasibility. This study presents a dielectrophoresis (DEP)-based microfluidic approach for isolating a desired strain within a [...] Read more.
Maintaining favorable biological productivities in photosynthetic biomanufacturing systems, especially when the risk of contamination with competing microbes is high, remains a challenge to achieve while maintaining economic feasibility. This study presents a dielectrophoresis (DEP)-based microfluidic approach for isolating a desired strain within a co-culture. The cyanobacterium Synechocystis sp. PCC 6803 (a strain capable of producing the bioplastic precursor polyhydroxybutyrate, or PHB) was enriched from mixed cultures containing the competing cyanobacterium Synechococcus elongatus PCC 7942 (which does not naturally produce PHB). A DEP cascade electrode system was established to increase purification efficiency through sequential enrichment, which leveraged inherent differences in cell morphology and dielectric properties, to achieve the selective separation of these strains under physiological conditions. A substantial increase in the relative abundance of PHB-producing cells was assessed by optical microscopy and flow cytometry characterization, confirming more than five-fold reduction of the Synechococcus fraction in the refined cell mix. The presented electrokinetic platform offers a scalable and effective approach for selectively enhancing desired microbial components within microbial biomanufacturing systems, leading towards improved product yields. Full article
(This article belongs to the Section C1: Micro/Nanoscale Electrokinetics)
Show Figures

Graphical abstract

15 pages, 3703 KB  
Article
Holographic Lenses for See-Through Applications Recorded Without Prisms
by Joan Josep Sirvent-Verdú, Tomás Lloret, Juan Carlos Bravo, Cristian Neipp, Andrés Márquez, Sergi Gallego and Augusto Beléndez
Polymers 2025, 17(23), 3164; https://doi.org/10.3390/polym17233164 - 28 Nov 2025
Viewed by 427
Abstract
Holography offers a wide range of solutions for see-through display applications, where holographic optical elements can act either as mirrors or as waveguide couplers. In the latter case, one of the main challenges lies in achieving efficient mass fabrication. To address this limitation, [...] Read more.
Holography offers a wide range of solutions for see-through display applications, where holographic optical elements can act either as mirrors or as waveguide couplers. In the latter case, one of the main challenges lies in achieving efficient mass fabrication. To address this limitation, the use of wavelength shift recording has been proposed, as it eliminates the need for prisms and index matching during the recording process. These elements are typically designed as slanted holographic gratings, recorded using either transmission or reflection geometries. Photopolymers as holographic recording materials are a promising solution for such applications because of their attractive optical properties. However, their inherent volume changes affect the optical performance of the recorded elements. In this paper, we propose the use of holographic lenses as wave couplers, which enables control over additional parameters such as magnification and optical aberrations. We analyze the limitations of this recording approach when prisms are not employed, and we investigate the influence of photopolymer shrinkage on hologram quality, comparing lenses recorded using transmission and reflection holography with different focal lengths. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 9641 KB  
Article
Additive Manufacturing as a Cost-Effective Solution for Stepped-Septum Polarizers
by Tayla Dahms, Bahare Mohamadzade, Ken W. Smart and Stephanie L. Smith
Electronics 2025, 14(22), 4535; https://doi.org/10.3390/electronics14224535 - 20 Nov 2025
Viewed by 465
Abstract
Additive manufacturing (AM) offers significant potential for producing complex, cost-effective, and high-performance components in the radio frequency and microwave industry. To significantly benefit from the manufacturing and design freedoms AM offers, AM-based microwave research must shift toward creating designs inherently optimized for AM. [...] Read more.
Additive manufacturing (AM) offers significant potential for producing complex, cost-effective, and high-performance components in the radio frequency and microwave industry. To significantly benefit from the manufacturing and design freedoms AM offers, AM-based microwave research must shift toward creating designs inherently optimized for AM. This study investigates various AM methods and materials for fabricating a polarizer operating in the K-band, a device widely used in microwave systems and well-suited for AM due to its intricate geometry. Four manufacturing approaches—machining and electroforming, stereolithography and electroless plating, bound metal deposition, and selective laser melting—were evaluated for accuracy, surface quality, and electrical performance. The polarizers were characterized through both single and back-to-back measurements and compared against CST Studio Suite simulations. To better understand discrepancies in performance, further analysis of material properties was conducted using conductivity measurements, skin depth calculations, optical microscopy, and scanning electron microscopy imaging. The results demonstrate that AM techniques can achieve good agreement with simulations and reveal the strengths and limitations of each method, guiding the selection of suitable AM processes for reliable and precise microwave component fabrication in the K-band. Full article
Show Figures

Figure 1

43 pages, 507 KB  
Article
A General Formalism for Electromagnetic Response Based on Quasi-Energy Derivatives Within a Single-Determinant Framework
by Xinxin Liu, Daoling Peng and Feng Long Gu
Chemistry 2025, 7(6), 181; https://doi.org/10.3390/chemistry7060181 - 14 Nov 2025
Viewed by 425
Abstract
A unified electromagnetic response theory has been formulated in terms of quasi-energy derivatives within the nonrelativistic single-determinant framework. The formalism is applicable to any type of optical response, without restriction to monochromatic fields. Electromagnetic properties are expressed through quasi-energy derivatives, providing a consistent [...] Read more.
A unified electromagnetic response theory has been formulated in terms of quasi-energy derivatives within the nonrelativistic single-determinant framework. The formalism is applicable to any type of optical response, without restriction to monochromatic fields. Electromagnetic properties are expressed through quasi-energy derivatives, providing a consistent and general description under arbitrary static or dynamic perturbations. Magnetic properties obtained from this framework are inherently gauge-invariant, since a gauge transformation of the electromagnetic potentials corresponds to a unitary phase transformation acting on both the Hamiltonian and molecular orbitals. The present theory thus offers a comprehensive foundation for evaluating (hyper)polarizabilities, (hyper)magnetizabilities, and other related response properties. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

25 pages, 11372 KB  
Article
OptiFusionStack: A Physio-Spatial Stacking Framework for Shallow Water Bathymetry Integrating QAA-Derived Priors and Neighborhood Context
by Wei Shen, Jinzhuang Liu, Xiaojuan Li, Dongqing Zhao, Zhongqiang Wu and Yibin Xu
Remote Sens. 2025, 17(22), 3712; https://doi.org/10.3390/rs17223712 - 14 Nov 2025
Viewed by 469
Abstract
Conventional pixel-wise satellite-derived bathymetry (SDB) models face dual challenges: physical ambiguity from variable water quality and spatial incoherence from ignoring geographic context. This study addresses these limitations by proposing and validating OptiFusionStack, a novel two-stage physio-spatial synergistic framework that operates without in situ [...] Read more.
Conventional pixel-wise satellite-derived bathymetry (SDB) models face dual challenges: physical ambiguity from variable water quality and spatial incoherence from ignoring geographic context. This study addresses these limitations by proposing and validating OptiFusionStack, a novel two-stage physio-spatial synergistic framework that operates without in situ optical data for model calibration. The framework first generates diverse, physics-informed predictions by integrating Quasi-Analytical Algorithm (QAA)-derived inherent optical properties (IOPs) with multiple base learners. Critically, it then constructs a multi-scale spatial context by computing neighborhood statistics over an experimentally optimized 9 × 9-pixel window. These physical priors and spatial features are then effectively fused by a StackingMLP meta-learner. Validation in optically diverse environments demonstrates that OptiFusionStack significantly surpasses the performance plateau of pixel-wise methods, elevating inversion accuracy (e.g., R2 elevated from 0.66 to >0.92 in optically complex inland waters). More importantly, the framework substantially reduces spatial artifacts, producing bathymetric maps with superior spatial coherence. A rigorous benchmark against several state-of-the-art, end-to-end deep learning models further confirms the superior performance of our proposed hierarchical fusion architecture in terms of accuracy. This research offers a robust and generalizable new approach for high-fidelity geospatial modeling, particularly under the common real-world constraint of having no in situ data for optical model calibration. Full article
Show Figures

Figure 1

26 pages, 6195 KB  
Article
From Chains to Chromophores: Tailored Thermal and Linear/Nonlinear Optical Features of Asymmetric Pyrimidine—Coumarin Systems
by Prescillia Nicolas, Stephania Abdallah, Dong Chen, Giorgia Rizzi, Olivier Jeannin, Koen Clays, Nathalie Bellec, Belkis Bilgin-Eran, Huriye Akdas-Kiliç, Jean-Pierre Malval, Stijn Van Cleuvenbergen and Franck Camerel
Molecules 2025, 30(21), 4322; https://doi.org/10.3390/molecules30214322 - 6 Nov 2025
Viewed by 570
Abstract
Eleven novel asymmetric pyrimidine derivatives were synthesized. The pyrimidine core was functionalized with a coumarin chromophore and a pro-mesogenic fragment bearing either chiral or linear alkyl chains of variable length and substitution patterns. The thermal properties were investigated using polarized optical microscopy, differential [...] Read more.
Eleven novel asymmetric pyrimidine derivatives were synthesized. The pyrimidine core was functionalized with a coumarin chromophore and a pro-mesogenic fragment bearing either chiral or linear alkyl chains of variable length and substitution patterns. The thermal properties were investigated using polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering, revealing that only selected derivatives exhibited liquid crystalline phases with ordered columnar or smectic organizations. Linear and nonlinear optical properties were characterized by UV–Vis absorption, fluorescence spectroscopy, two-photon absorption, and second-harmonic generation. Optical responses were found to be highly sensitive to the substitution pattern: derivatives functionalized at the 4 and 3,4,5 positions exhibited enhanced 2PA cross-sections and pronounced SHG signals, whereas variations in alkyl chain length exerted only a minor influence. Notably, compounds forming highly ordered non-centrosymmetric mesophases produced robust SHG-active thin films. Importantly, strong SHG responses were obtained without the need for a chiral center, as the inherent asymmetry of the linear alkyl chain derivatives was sufficient to drive self-organization into non-centrosymmetric materials. These results demonstrate that asymmetric pyrimidine-based architectures combining π-conjugation and controlled supramolecular organization are promising candidates for nonlinear optical applications such as photonic devices, multiphoton imaging, and optical data storage. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

29 pages, 10868 KB  
Review
RTM Surrogate Modeling in Optical Remote Sensing: A Review of Emulation for Vegetation and Atmosphere Applications
by Jochem Verrelst, Miguel Morata, José Luis García-Soria, Yilin Sun, Jianbo Qi and Juan Pablo Rivera-Caicedo
Remote Sens. 2025, 17(21), 3618; https://doi.org/10.3390/rs17213618 - 31 Oct 2025
Viewed by 1261
Abstract
Radiative transfer models (RTMs) are foundational to optical remote sensing for simulating vegetation and atmospheric properties. However, their significant computational cost, especially for 3D RTMs and large-scale applications, severely limits their utility. Emulation, or surrogate modeling, has emerged as a highly effective strategy, [...] Read more.
Radiative transfer models (RTMs) are foundational to optical remote sensing for simulating vegetation and atmospheric properties. However, their significant computational cost, especially for 3D RTMs and large-scale applications, severely limits their utility. Emulation, or surrogate modeling, has emerged as a highly effective strategy, accurately and efficiently replicating RTM outputs. This review comprehensively surveys recent developments in emulating vegetation and atmospheric RTMs. We discuss the methodological underpinnings, including suitable machine learning regression algorithms (MLRAs), effective training sampling strategies (e.g., Latin Hypercube Sampling, active learning), and spectral dimensionality reduction (DR) methods (e.g., PCA, autoencoders). Emulators commonly achieve 102106× per-evaluation acceleration, but accuracy–efficiency trade-offs remain inherently context-dependent, governed by the MLRA design and the coverage/quality of training data. DR consistently shifts this trade-off toward lower cost at comparable accuracy, positioning latent-space training as a pragmatic choice for hyperspectral applications. We synthesize key emulation applications such as global sensitivity analysis, synthetic scene generation, scene-to-scene translation (e.g., multispectral-to-hyperspectral), and retrieval of geophysical variables using remote sensing data. The paper concludes by outlining persistent challenges in generalizability, interpretability, and scalability, while also proposing future research avenues: investigating advanced deep learning algorithms (e.g., physics-informed and explainable architectures), developing multimodal/multitemporal frameworks, and establishing community benchmarks, tools and libraries. Emulation ultimately empowers remote sensing workflows with unparalleled scalability, transforming previously unmanageable tasks into viable solutions for operational Earth observation applications. Full article
Show Figures

Graphical abstract

24 pages, 14119 KB  
Review
All-Solution-Processable Robust Carbon Nanotube Photo-Thermoelectric Devices for Multi-Modal Inspection Applications
by Yukito Kon, Kohei Murakami, Junyu Jin, Mitsuki Kosaka, Hayato Hamashima, Miki Kubota, Leo Takai, Yukio Kawano and Kou Li
Materials 2025, 18(21), 4980; https://doi.org/10.3390/ma18214980 - 31 Oct 2025
Viewed by 710
Abstract
While recent industrial automation trends emphasize the importance of non-destructive inspection by material-identifying millimeter-wave, terahertz-wave, and infrared (MMW, THz, IR) monitoring, fundamental tools in these wavelength bands (such as sensors) are still immature. Although inorganic semiconductors serve as diverse sensors with well-established large-scale [...] Read more.
While recent industrial automation trends emphasize the importance of non-destructive inspection by material-identifying millimeter-wave, terahertz-wave, and infrared (MMW, THz, IR) monitoring, fundamental tools in these wavelength bands (such as sensors) are still immature. Although inorganic semiconductors serve as diverse sensors with well-established large-scale fine-processing fabrication, the use of those devices is insufficient for non-destructive monitoring due to the lack of photo-absorbent properties for such major materials in partial regions across MMW–IR wavelengths. To satisfy the inherent advantageous non-destructive MMW–IR material identification, ultrabroadband operation is indispensable for photo-sensors under compact structure, flexible designability, and sensitive performances. This review then introduces the recent advances of carbon nanotube film-based photo-thermoelectric imagers regarding usable and high-yield device fabrication techniques and scientific synergy among computer vision to collectively satisfy material identification with three-dimensional (3D) structure reconstruction. This review synergizes material science, printable electronics, high-yield fabrication, sensor devices, optical measurements, and imaging into guidelines as functional non-destructive inspection platforms. The motivation of this review is to introduce the recent scientific fusion of MMW–IR sensors with visible-light computer vision, and emphasize its significance (non-invasive material-identifying sub-millimeter-resolution 3D-reconstruction with 660 nm–1.15 mm-wavelength imagers at noise equivalent power within 100 pWHz−1/2) among the existing testing methods. Full article
(This article belongs to the Special Issue Electronic, Optical, and Structural Properties of Carbon Nanotubes)
Show Figures

Figure 1

16 pages, 4671 KB  
Article
Mechanically Reinforced Silica Aerogels via Thermally Induced Phase Separation of Poly(ethylene-co-vinyl Alcohol)
by Hainan Ma, Baomin Wang, Yongjun Zhang and Liquan Zheng
Gels 2025, 11(11), 870; https://doi.org/10.3390/gels11110870 - 30 Oct 2025
Viewed by 581
Abstract
Silica aerogels are highly attractive due to their outstanding properties, including their low density, ultralow thermal conductivity, large porosity, high optical transparency, and strong sorption activity. However, their inherent brittleness has limited widespread applications. Constructing a robust, highly porous three-dimensional network is critical [...] Read more.
Silica aerogels are highly attractive due to their outstanding properties, including their low density, ultralow thermal conductivity, large porosity, high optical transparency, and strong sorption activity. However, their inherent brittleness has limited widespread applications. Constructing a robust, highly porous three-dimensional network is critical to achieving the desired mechanical properties in aerogels. In this study, we introduce a novel synthesis route for fabricating lightweight and mechanically strong aerogels by incorporating poly(ethylene-co-vinyl alcohol) (EVOH) through thermally induced phase separation (TIPS). EVOH exhibits upper critical solution temperature (UCST) behavior in a mixture of isopropanol (IPA) and water, which can be utilized to reinforce the silica skeletal structure. Robust aerogels were prepared via the sol–gel process and TIPS method, followed by supercritical CO2 drying, yielding samples with bulk densities ranging from 0.136 to 0.200 g/cm3. N2 physisorption analysis revealed a mesoporous structure, with the specific surface area decreasing from 874 to 401 m2/g as EVOH content increased from 0 to 80 mg/mL. The introduced EVOH significantly enhanced mechanical performance, raising the flexural strength and compressive strength to 0.545 MPa and 18.37 MPa, respectively—far exceeding those of pure silica aerogel (0.098 MPa and 0.74 MPa). This work demonstrates the effectiveness of the TIPS strategy for developing high-strength, low-density silica aerogels with well-preserved porosity. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

23 pages, 18947 KB  
Article
IOPE-IPD: Water Properties Estimation Network Integrating Physical Model and Deep Learning for Hyperspectral Imagery
by Qi Li, Mingyu Gao, Ming Zhang, Junwen Wang, Jingjing Chen and Jinghua Li
Remote Sens. 2025, 17(21), 3546; https://doi.org/10.3390/rs17213546 - 26 Oct 2025
Viewed by 669
Abstract
Hyperspectral underwater target detection holds great potential for marine exploration and environmental monitoring. A key challenge lies in accurately estimating water inherent optical properties (IOPs) from hyperspectral imagery. To address these limitations, we propose a novel water IOP estimation network to support the [...] Read more.
Hyperspectral underwater target detection holds great potential for marine exploration and environmental monitoring. A key challenge lies in accurately estimating water inherent optical properties (IOPs) from hyperspectral imagery. To address these limitations, we propose a novel water IOP estimation network to support the interpretation of bathymetric models. We propose the IOPs physical model that focuses on the description of the water IOPs, describing how the concentrations of chlorophyll, colored dissolved organic matter, and detrital material influence the absorption and backscattering coefficients. Building on this foundation, we proposed an innovative IOP estimation network integrating a physical model and deep learning (IOPE-IPD). This approach enables precise and physically interpretable estimation of the IOPs. Specially, the IOPE-IPD network takes water spectra as input. The encoder extracts spectral features, while dual parallel decoders simultaneously estimate four key parameters. Based on these outputs, the absorption and backscattering coefficients of the water body are computed using the IOPs physical model. Subsequently, the bathymetric model is employed to reconstruct the water spectrum. Under the constraint of a consistency loss, the retrieved spectrum is encouraged to closely match the input spectrum. To ensure the IOPE-IPD’s applicability across various scenarios, multiple actual and Jerlov-simulated aquatic environments were used. Comprehensive experimental results demonstrate the robustness and effectiveness of our proposed IOPE-IPD over the compared method. Full article
Show Figures

Figure 1

15 pages, 3042 KB  
Article
Mathematical Analysis and Freeform Surface Modeling for LED Illumination Systems Incorporating Diffuse Reflection and Total Internal Reflection
by Xin Xu, Jianghua Rao, Xiaowen Liang, Zhenmin Zhu and Yuanyuan Peng
Photonics 2025, 12(10), 1025; https://doi.org/10.3390/photonics12101025 - 16 Oct 2025
Viewed by 500
Abstract
Indirect lighting systems employing light-emitting diodes (LEDs) and diffuse reflective surfaces are prevalent in applications demanding stringent illumination uniformity. However, conventional diffuse reflection approaches exhibit inherent limitations (inevitable light loss from multiple diffuse reflections and trade-off between uniformity and efficiency). To overcome these [...] Read more.
Indirect lighting systems employing light-emitting diodes (LEDs) and diffuse reflective surfaces are prevalent in applications demanding stringent illumination uniformity. However, conventional diffuse reflection approaches exhibit inherent limitations (inevitable light loss from multiple diffuse reflections and trade-off between uniformity and efficiency). To overcome these constraints, we introduce a novel composite freeform surface illumination system that synergistically integrates total internal reflection (TIR) with diffuse reflection. This design leverages the inherent Lambertian radiation characteristics of LEDs and the properties of ideal diffuse reflectors. A rigorous mathematical model is derived based on the luminous intensity distribution of the LED chip, the prescribed illumination requirements on the target plane, the principle of energy conservation, and Snell’s law. The resulting system of nonlinear equations is solved to generate a series of two-dimensional profile curves, which are subsequently synthesized into an off-axis freeform surface. Simulated results demonstrate that the proposed system achieves higher optical efficiency and superior illumination uniformity compared to traditional diffuse reflector configurations. This universal and feasible methodology broadens the application potential of high-performance diffuse indirect lighting. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

11 pages, 691 KB  
Article
One-Pot Synthesis of Thiochromen-4-ones from 3-(Arylthio)propanoic Acids
by Kahlia S. Simpkins, Maggie Y. Guo, Toniyah D. Smith, Holden A. Hankerson and Fenghai Guo
Chemistry 2025, 7(5), 163; https://doi.org/10.3390/chemistry7050163 - 6 Oct 2025
Viewed by 1539
Abstract
Thiochromen-4-ones are known to possess useful optical properties and rich bioactivities, including antioxidant, antimicrobial, and anticancer properties. They are known to inhibit tumor cell growth, induce apoptosis, and have antiplatelet aggregation effects. Thiochromen-4-ones are also used as synthons and precursors in organic synthesis [...] Read more.
Thiochromen-4-ones are known to possess useful optical properties and rich bioactivities, including antioxidant, antimicrobial, and anticancer properties. They are known to inhibit tumor cell growth, induce apoptosis, and have antiplatelet aggregation effects. Thiochromen-4-ones are also used as synthons and precursors in organic synthesis for bioactive agents. Although many synthetic approaches to oxygen-containing counterparts, chromones, have been reported, research on the synthesis of thiochromen-4-ones is scarce. The synthesis of thiochromen-4-ones can be challenging due to the inherent nature of sulfur, including its multiple oxidation states and tendency to form diverse bonding patterns. Here, we report the one-pot synthesis of thiochromen-4-ones, where two transformations of the starting material, 3-(arylthio)propanoic acid, are performed within a single reaction vessel, eliminating the need for an intermediate purification step. This one-pot reaction worked well with a variety of substrates with both electron-withdrawing and donating groups on the aromatic ring of 3-(arylthio)propanoic acids to give thiochromen-4-ones with good yields (up to 81%). This approach offers advantages like time and cost savings, increased efficiency, and reduced waste. This synthetic approach will allow access to a broader scope of thiochromen-4-ones due to the readily available thiophenols. Full article
(This article belongs to the Special Issue Organic Chalcogen Chemistry: Recent Advances)
Show Figures

Figure 1

30 pages, 5345 KB  
Review
Recent Advances in Graphitic Carbon Nitride-Based Materials in the Photocatalytic Degradation of Emerging Contaminants
by Dan Xu, Heshan Cai, Daguang Li, Feng Chen, Shuwen Han, Xiaojuan Chen, Zhenyi Li, Zebang He, Zhuhong Chen, Jiabao He, Weiyu Huang, Xinyi Tang, Yihuan Wen and Yejun Feng
Inorganics 2025, 13(10), 319; https://doi.org/10.3390/inorganics13100319 - 26 Sep 2025
Cited by 1 | Viewed by 1708
Abstract
The increasing presence of emerging contaminants (ECs) has attracted considerable attention due to their potential harm to human health and ecosystems. Graphitic carbon nitride (g-C3N4), a semiconductor devoid of metals, stands out due to its distinctive optical properties and [...] Read more.
The increasing presence of emerging contaminants (ECs) has attracted considerable attention due to their potential harm to human health and ecosystems. Graphitic carbon nitride (g-C3N4), a semiconductor devoid of metals, stands out due to its distinctive optical properties and strong resistance to chemical degradation, which holds significant promise in the photocatalytic degradation of ECs. However, the inherent limitations of g-C3N4, such as its reduced specific surface area and the swift recombination of photogenerated electron-hole pairs, have prompted extensive research on modification strategies to enhance its photocatalytic performance. Current research on g-C3N4-based materials is often constrained in scope, with most reviews focusing solely on modification strategies or its application in degrading a single category of emerging contaminants (ECs). In this review, a systematic overview of synthesis methods and advanced modification strategies for g-C3N4-based materials is discussed, highlighting their recent advances in the photocatalytic degradation of various ECs using g-C3N4-based materials, which underscores their potential for environmental remediation. Moreover, this article critically examines the current challenges and outlines future research directions, with particular emphasis on integrating artificial intelligence and machine learning to accelerate the development of g-C3N4-based photocatalysts and optimize degradation processes, thereby promoting their efficient application in the photocatalytic degradation of ECs. Full article
(This article belongs to the Special Issue Novel Photo(electro)catalytic Degradation)
Show Figures

Figure 1

Back to TopTop