Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = inductively coupled plasma (ICP) etching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3262 KiB  
Article
Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma
by Lei Zhao, Xiangbing Wang, Minxing Jiang, Chao Zhao, Nan Jiang, Kazhihito Nishimura, Jian Yi and Shuangquan Fang
Materials 2025, 18(11), 2615; https://doi.org/10.3390/ma18112615 - 3 Jun 2025
Viewed by 585
Abstract
Diamond, known for its exceptional physical and chemical properties, shows great potential in advanced fields such as medicine, semiconductors, and optics. However, reducing surface roughness is critical for enhancing its performance. This study employs inductively coupled plasma (ICP) polishing to etch single-crystal diamond [...] Read more.
Diamond, known for its exceptional physical and chemical properties, shows great potential in advanced fields such as medicine, semiconductors, and optics. However, reducing surface roughness is critical for enhancing its performance. This study employs inductively coupled plasma (ICP) polishing to etch single-crystal diamond and analyzes the impact of different etching parameters on surface roughness using atomic force microscopy (AFM). Using the change in surface roughness before and after etching as the main evaluation metric, the optimal etching parameters were determined: Ar/O2/SF6 gas flow ratio of 40/50/10 sccm, ICP power of 200 W, RF bias power of 40 W, chamber pressure of 20 mTorr, and etching time of 10 min. Results show that increased etching time and SF6 flow rate raise surface roughness; although higher ICP and RF power reduce roughness, they also cause nanostructure formation, affecting surface quality. Lower chamber pressure results in smaller roughness increases, while higher pressure significantly worsens it. Based on the optimized process parameters, the pristine single-crystal diamond was further etched in this study, resulting in a significant reduction of the surface roughness from 2.22 nm to 0.562 nm, representing a 74.7% decrease. These improvements in surface roughness demonstrate the effectiveness of the optimized process, enhancing the diamond’s suitability for high-precision optical applications. Full article
Show Figures

Figure 1

13 pages, 72508 KiB  
Article
Fabrication of Anti-Reflective Composite Structures on Inverted Pyramids Using Inductively Coupled Plasma Etching
by Zhiwei Fan, Liang Xu, Biyun Zhou and Tao Chen
Micromachines 2025, 16(5), 503; https://doi.org/10.3390/mi16050503 - 26 Apr 2025
Viewed by 781
Abstract
The anti-reflective properties of silicon surfaces play a pivotal role in determining the light absorption efficiency of various silicon-based optoelectronic devices, with surface micro-nanostructures emerging as a crucial technological approach for achieving enhanced anti-reflection. In this study, inverted pyramid structures were employed as [...] Read more.
The anti-reflective properties of silicon surfaces play a pivotal role in determining the light absorption efficiency of various silicon-based optoelectronic devices, with surface micro-nanostructures emerging as a crucial technological approach for achieving enhanced anti-reflection. In this study, inverted pyramid structures were employed as the micron-scale framework, and micro-nano composite structures were successfully prepared using an inductively coupled plasma (ICP) etching system. This paper, mainly focused on the micro-nano fabrication, investigated the effects of gas flow rate ratio (SF6:O2:C4F8), ICP power, RF power, and etching time on the surface morphology and reflectance of the composite structures. The results demonstrate that the optimal anti-reflective micro-nano composite structure was achieved under the following conditions: SF6 flow rate of 18 sccm, O2 flow rate of 9 sccm, C4F8 flow rate of 4 sccm, ICP power of 300 W, RF power of 5 W, and etching time of 5 min. The average reflectivity of the prepared surface structure was as low as 1.86%. Full article
Show Figures

Figure 1

12 pages, 6694 KiB  
Article
Normally Off AlGaN/GaN MIS-HEMTs with Self-Aligned p-GaN Gate and Non-Annealed Ohmic Contacts via Gate-First Fabrication
by Yinmiao Yin, Qian Fan, Xianfeng Ni, Chao Guo and Xing Gu
Micromachines 2025, 16(4), 473; https://doi.org/10.3390/mi16040473 - 16 Apr 2025
Cited by 1 | Viewed by 768
Abstract
This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizing gate metallization for both electrical contact and etching [...] Read more.
This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizing gate metallization for both electrical contact and etching mask functions, enabling precise self-alignment. A highly selective Cl2/N2/O2 inductively coupled plasma (ICP) etching process was optimized to etch the p-GaN layer in the access regions, with a selectivity ratio of 33:1 and minimal damage to the AlGaN barrier. Additionally, a novel, non-annealed ohmic contact formation technique was developed, leveraging ICP etching to create nitrogen vacancies that facilitate contact formation without requiring thermal annealing. This technique streamlines the process by combining ohmic contact formation and mesa isolation into a single lithographic step. Incorporating a SiNx gate dielectric layer led to a 4.5 V threshold voltage shift in the fabricated devices. The resulting devices exhibited improved electrical performance, including a wide gate voltage swing (>10 V), a high on/off current ratio (~107), and clear pinch-off characteristics. These results demonstrate the effectiveness of the proposed fabrication approach, offering significant improvements in process efficiency and manufacturability. Full article
Show Figures

Figure 1

12 pages, 6695 KiB  
Article
Dry Etching Characteristics of InGaZnO Thin Films Under Inductively Coupled Plasma–Reactive-Ion Etching with Hydrochloride and Argon Gas Mixture
by Changyong Oh, Myeong Woo Ju, Hojun Jeong, Jun Ho Song, Bo Sung Kim, Dae Gyu Lee and ChoongHo Cho
Materials 2024, 17(24), 6241; https://doi.org/10.3390/ma17246241 - 20 Dec 2024
Viewed by 1263
Abstract
Inductively coupled plasma–reactive etching (ICP-RIE) of InGaZnO (IGZO) thin films was studied with variations in gas mixtures of hydrochloride (HCl) and argon (Ar). The dry etching characteristics of the IGZO films were investigated according to radiofrequency bias power, gas mixing ratio, and chamber [...] Read more.
Inductively coupled plasma–reactive etching (ICP-RIE) of InGaZnO (IGZO) thin films was studied with variations in gas mixtures of hydrochloride (HCl) and argon (Ar). The dry etching characteristics of the IGZO films were investigated according to radiofrequency bias power, gas mixing ratio, and chamber pressure. The IGZO film showed an excellent etch rate of 83.2 nm/min from an optimized etching condition such as a plasma power of 100 W, process pressure of 3 mTorr, and HCl ratio of 75% (HCl:Ar at 30 sccm:10 sccm). In addition, this ICP-RIE etching condition with a high HCl composition ratio at a moderate RIE power of 100 W showed a low etched pattern skew and low photoresist damage on the IGZO patterns. It also provided excellent surface morphology of the SiO2 film underneath after the entire dry etching of the IGZO layer. The IGZO thin film as an active layer was successfully patterned under the ICP-RIE dry etching under the HCl-Ar gas mixture, affording an excellent electrical characteristic in the resultant top-gate IGZO thin-film transistor. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 17144 KiB  
Article
Fabrication of Black Silicon Antireflection Coatings to Enhance Light Harvesting in Photovoltaics
by Klodian Dhoska, Evjola Spaho and Uljan Sinani
Eng 2024, 5(4), 3358-3380; https://doi.org/10.3390/eng5040175 - 14 Dec 2024
Cited by 5 | Viewed by 1373
Abstract
Black silicon has attracted significant interest for various engineering applications, including solar cells, due to its ability to create highly absorbent surfaces or interfaces for light. It enhances light absorption in crystalline solar cells, improving the efficiency of converting incident light into electricity [...] Read more.
Black silicon has attracted significant interest for various engineering applications, including solar cells, due to its ability to create highly absorbent surfaces or interfaces for light. It enhances light absorption in crystalline solar cells, improving the efficiency of converting incident light into electricity for photovoltaic applications. This research focused on fabricating nanostructures that played a critical role in enhancing light absorption in the upper layers of solar cells. These nanostructures were created using the black silicon method, forming a layer known as “black silicon”. The coating not only improved the efficiency of crystalline solar cells but also enhanced their stability. The antireflection coating, composed of nanostructures with various shapes, including conical, pillar-like, and spike-like forms, achieved a reflectivity as low as 10% in the spectral range of 400–700 nm. This corresponded to a sample with α = 0.85 and a chuck bias of 4 W. An Inductively Coupled Plasma Reactive Ion Etching (ICP RIE) machine was employed to develop and control the specific shape, size, and density of the fabricated black silicon, which was then subjected to testing. The efficiency of the black silicon photovoltaic cell was 23.3%. Full article
Show Figures

Figure 1

18 pages, 12884 KiB  
Article
Data-Driven Analysis of High-Temperature Fluorocarbon Plasma for Semiconductor Processing
by Sung Kyu Jang, Woosung Lee, Ga In Choi, Jihun Kim, Minji Kang, Seongho Kim, Jong Hyun Choi, Seul-Gi Kim, Seoung-Ki Lee, Hyeong-U Kim and Hyeongkeun Kim
Sensors 2024, 24(22), 7307; https://doi.org/10.3390/s24227307 - 15 Nov 2024
Cited by 1 | Viewed by 1487
Abstract
The semiconductor industry increasingly relies on high aspect ratio etching facilitated by Amorphous Carbon Layer (ACL) masks for advanced 3D-NAND and DRAM technologies. However, carbon contamination in ACL deposition chambers necessitates effective fluorine-based plasma cleaning. This study employs a high-temperature inductively coupled plasma [...] Read more.
The semiconductor industry increasingly relies on high aspect ratio etching facilitated by Amorphous Carbon Layer (ACL) masks for advanced 3D-NAND and DRAM technologies. However, carbon contamination in ACL deposition chambers necessitates effective fluorine-based plasma cleaning. This study employs a high-temperature inductively coupled plasma (ICP) system and Time-of-Flight Mass Spectrometry (ToF-MS) to analyze gas species variations under different process conditions. We applied Principal Component Analysis (PCA) and Non-negative Matrix Factorization (NMF) to identify key gas species, and used the First-Order Plus Dead Time (FOPDT) model to quantify dynamic changes in gas signals. Our analysis revealed the formation of COF3 at high gas temperatures and plasma power levels, indicating the presence of additional reaction pathways under these conditions. This study provides a comprehensive understanding of high-temperature plasma interactions and suggests new strategies for optimizing ACL processes in semiconductor manufacturing. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

11 pages, 7311 KiB  
Article
Large-Scale High-Accuracy and High-Efficiency Phase Plate Machining
by Guanhua Wang, Zhaoxiang Liu, Lvbin Song, Jianglin Guan, Wei Chen, Jian Liu, Jinming Chen, Min Wang and Ya Cheng
Nanomaterials 2024, 14(19), 1563; https://doi.org/10.3390/nano14191563 - 27 Sep 2024
Cited by 1 | Viewed by 1509
Abstract
In this paper, multifunctional, multilevel phase plates of quartz substrate were efficiently prepared by using a newly developed polygon scanner-based femtosecond laser photolithography system combined with inductively coupled discharge plasma reactive-ion etching (ICP-RIE) technology. The femtosecond laser photolithography system can achieve a scanning [...] Read more.
In this paper, multifunctional, multilevel phase plates of quartz substrate were efficiently prepared by using a newly developed polygon scanner-based femtosecond laser photolithography system combined with inductively coupled discharge plasma reactive-ion etching (ICP-RIE) technology. The femtosecond laser photolithography system can achieve a scanning speed of 5 m/s and a preparation efficiency of 15 cm2/h while ensuring an overlay alignment accuracy of less than 100 nm and a writing resolution of 500 nm. The ICP-RIE technology can control the etching depth error within ±5 nm and the mask-to-mask edge error is less than 1 μm. An 8-level Fresnel lens phase plate with a focal length of 20 mm and an 8-level Fresnel axicon phase plate with a cone angle of 5° were demonstrated. The diffraction efficiency was greater than 93%, and their performance was tested for focusing and glass cutting, respectively. Combined with the high-speed femtosecond laser photolithography system’s infinite field-of-view (IFOV) processing capability, the one-time direct writing preparation of phase plate masks of different sizes was realized on a 6-inch wafer. This is expected to reduce the production cost of quartz substrate diffractive optical elements and promote their customized mass production. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

9 pages, 5739 KiB  
Article
High-Performance N-Polar GaN/AlGaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors with Low Surface Roughness Enabled by Chemical–Mechanical-Polishing-Incorporated Layer Transfer Technology
by Bohan Guo, Guohao Yu, Li Zhang, Jiaan Zhou, Zheming Wang, Runxian Xing, An Yang, Yu Li, Bosen Liu, Xiaohong Zeng, Zhongkai Du, Xuguang Deng, Zhongming Zeng and Baoshun Zhang
Crystals 2024, 14(3), 253; https://doi.org/10.3390/cryst14030253 - 4 Mar 2024
Cited by 5 | Viewed by 2922
Abstract
This article presents the utilization of the chemical–mechanical polishing (CMP) method to fabricate high-performance N-polar GaN/AlGaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs) through layer transfer technology. The nucleation and buffer layers were removed via CMP to attain a pristine N-polar GaN surface with elevated smoothness, [...] Read more.
This article presents the utilization of the chemical–mechanical polishing (CMP) method to fabricate high-performance N-polar GaN/AlGaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs) through layer transfer technology. The nucleation and buffer layers were removed via CMP to attain a pristine N-polar GaN surface with elevated smoothness, featuring a low root-mean-square (RMS) roughness of 0.216 nm. Oxygen, carbon, and chlorine impurity elements content were low after the CMP process, as detected via X-ray photoelectron spectroscopy (XPS). The electrical properties of N-polar HEMTs fabricated via CMP exhibited a sheet resistance (Rsh) of 244.7 Ω/sq, a mobility of 1230 cm2/V·s, and an ns of 2.24 × 1013 cm−2. Compared with a counter device fabricated via inductively coupled plasma (ICP) dry etching, the CMP devices showed an improved output current of 756.1 mA/mm, reduced on-resistance of 6.51 Ω·mm, and a significantly reduced subthreshold slope mainly attributed to the improved surface conditions. Meanwhile, owing to the MIS configuration, the reverse gate leakage current could be reduced to as low as 15 μA/mm. These results highlight the feasibility of the CMP-involved epitaxial layer transfer (ELT) technique to deliver superior N-polar GaN MIS-HEMTs for power electronic applications. Full article
(This article belongs to the Special Issue High Electron Mobility Transistor (HEMT) Devices and Applications)
Show Figures

Figure 1

12 pages, 5347 KiB  
Article
Fluorine-Based Low-Damage Selective Etching Process for E-Mode p-GaN/AlGaN/GaN HFET Fabrication
by Hyeon-Ji Kim, Jun-Hyeok Yim, Hyungtak Kim and Ho-Young Cha
Electronics 2023, 12(20), 4347; https://doi.org/10.3390/electronics12204347 - 20 Oct 2023
Cited by 3 | Viewed by 2809
Abstract
In this study, we conducted an optimization of a low-damage selective etching process utilizing inductively coupled plasma-reactive ion etch (ICP-RIE) with a fluorine-based gas mixture. This optimization was carried out for the fabrication of p-GaN gated AlGaN/GaN enhancement-mode (E-mode) heterojunction field-effect transistors (HFETs). [...] Read more.
In this study, we conducted an optimization of a low-damage selective etching process utilizing inductively coupled plasma-reactive ion etch (ICP-RIE) with a fluorine-based gas mixture. This optimization was carried out for the fabrication of p-GaN gated AlGaN/GaN enhancement-mode (E-mode) heterojunction field-effect transistors (HFETs). The optimum process conditions resulted in an etch selectivity of 21:1 (=p-GaN:Al0.2Ga0.8N) with a p-GaN etch rate of 5.2 nm/min and an AlGaN etch rate of 0.25 nm/min. In comparison with an oxygen-based selective etching process, the fluorine-based selective etching process demonstrated reduced damage to the etched surface. This was confirmed through current–voltage characteristics and surface roughness inspections. The p-GaN gated AlGaN/GaN E-mode device, fabricated using the optimized fluorine-based selective etching process, achieved a high threshold voltage of 3.5 V with a specific on-resistance of 5.3 mΩ.cm2 for the device and with a gate-to-p-GaN gate distance of 3 μm, a p-GaN gate length of 4 μm, and a p-GaN gate-to-drain distance of 12 μm. The catastrophic breakdown voltage exceeded 1350 V. Full article
(This article belongs to the Special Issue GaN Power Devices and Applications)
Show Figures

Figure 1

11 pages, 2111 KiB  
Article
Advanced Etching Techniques of LiNbO3 Nanodevices
by Bowen Shen, Di Hu, Cuihua Dai, Xiaoyang Yu, Xiaojun Tan, Jie Sun, Jun Jiang and Anquan Jiang
Nanomaterials 2023, 13(20), 2789; https://doi.org/10.3390/nano13202789 - 18 Oct 2023
Cited by 7 | Viewed by 3911
Abstract
Single LiNbO3 (LNO) crystals are widely utilized in surface acoustic wave devices, optoelectronic devices, and novel ferroelectric memory devices due to their remarkable electro-optic and piezoelectric properties, and high saturation and remnant polarizations. However, challenges remain regarding their nanofabrication that hinder their [...] Read more.
Single LiNbO3 (LNO) crystals are widely utilized in surface acoustic wave devices, optoelectronic devices, and novel ferroelectric memory devices due to their remarkable electro-optic and piezoelectric properties, and high saturation and remnant polarizations. However, challenges remain regarding their nanofabrication that hinder their applications. The prevailing etching techniques for LNO encompass dry etching, wet etching, and focused-ion-beam etching, each having distinct merits and demerits. Achieving higher etching rates and improved sidewall angles presents a challenge in LNO nanofabrication. Building upon the current etching researches, this study explores various etching methods using instruments capable of generating diverse plasma densities, such as dry etching in reactive ion etching (RIE) and inductively coupled plasma (ICP), proton exchange-enhanced etching, and wet chemical etching following high-temperature reduction treatment, as well as hybrid dry and wet etching. Ultimately, after employing RIE dry etching combined with wet etching, following a high-temperature reduction treatment, an etching rate of 10 nm/min and pretty 90° sidewall angles were achieved. Furthermore, high etching rates of 79 nm/min with steep sidewall angles of 83° were obtained using ICP dry etching. Additionally, using SiO2 masks, a high etching rate of 108 nm/min and an etching selectivity ratio of 0.86:1 were achieved. Distinct etching conditions yielded diverse yet exceptional results, providing multiple processing paths of etching for the versatile application of LNO. Full article
(This article belongs to the Special Issue Fabrication of Nanoscale Electronics Devices)
Show Figures

Figure 1

16 pages, 8987 KiB  
Article
Understanding and Mitigating the Dissolution and Delamination Issues Encountered with High-Voltage LiNi0.5Mn1.5O4
by Bingning Wang, Seoung-Bum Son, Pavan Badami, Stephen E. Trask, Daniel Abraham, Yang Qin, Zhenzhen Yang, Xianyang Wu, Andrew Jansen and Chen Liao
Batteries 2023, 9(9), 435; https://doi.org/10.3390/batteries9090435 - 24 Aug 2023
Cited by 3 | Viewed by 3587
Abstract
In our initial study on the high-voltage 5 V cobalt-free spinel LiNi0.5Mn1.5O4 (LNMO) cathode, we discovered a severe delamination issue in the laminates when cycled at a high upper cut-off voltage (UCV) of 4.95 V, especially when a [...] Read more.
In our initial study on the high-voltage 5 V cobalt-free spinel LiNi0.5Mn1.5O4 (LNMO) cathode, we discovered a severe delamination issue in the laminates when cycled at a high upper cut-off voltage (UCV) of 4.95 V, especially when a large cell format was used. This delamination problem prompted us to investigate further by studying the transition metal (TM) dissolution mechanism of cobalt-free LNMO cathodes, and as a comparison, some cobalt-containing lithium nickel manganese cobalt oxides (NMC) cathodes, as the leachates from the soaking experiment might be the culprit for the delamination. Unlike other previous reports, we are interested in the intrinsic stability of the cathode in the presence of a baseline Gen2 electrolyte consisting of 1.2 M of LiPF6 in ethylene carbonate/ethyl methyl carbonate (EC/EMC), similar to a storage condition. The electrode laminates (transition metal oxides, transition metal oxides, TMOs, coated on an Al current collector with a loading level of around 2.5 mAh/cm2) or the TMO powders (pure commercial quality spinel LNMO, NMC, etc.) were stored in the baseline solution, and the transition metal dissolution was studied through nuclear magnetic resonance, such as 1H NMR, 19F NMR, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Significant electrolyte decomposition was observed and could be the cause that leads to the TM dissolution of LNMO. To address this TM dissolution, additives were introduced into the baseline electrolyte, effectively alleviating the issue of TM dissolution. The results suggest that the observed delamination is caused by electrolyte decompositions that lead to etching, and additives such as lithium difluorooxalato borate and p-toluenesulfonyl isocyanate can alleviate this issue by forming a firm cathode electrolyte interface. This study provides a new perspective on cell degradation induced by electrode/electrolyte interactions under storage conditions. Full article
(This article belongs to the Special Issue Behavior of Cathode Materials at High Voltage)
Show Figures

Graphical abstract

10 pages, 2471 KiB  
Article
High-Efficiency and Reliable Value Geometric Standard: Integrated Periodic Structure Reference Materials
by Chenying Wang, Di Liu, Yaxin Zhang, Weixuan Jing, Song Wang, Feng Han, Qi Mao, Yonglu Wang, Pengcheng Zhang and Zhuangde Jiang
Micromachines 2023, 14(8), 1550; https://doi.org/10.3390/mi14081550 - 1 Aug 2023
Viewed by 1557
Abstract
Integrated periodic structure reference materials are crucial for calibration in optical instruments and micro-computed tomography (micro-CT), yet they face limitations concerning a restricted measurement range, a single pattern type, and a single calibration parameter. In this study, we address these challenges by developing [...] Read more.
Integrated periodic structure reference materials are crucial for calibration in optical instruments and micro-computed tomography (micro-CT), yet they face limitations concerning a restricted measurement range, a single pattern type, and a single calibration parameter. In this study, we address these challenges by developing integrated periodic structure reference materials with an expanded measurement range, diverse pattern types, and multiple calibration parameters through a combination of photolithography and inductively coupled plasma (ICP) etching process. These reference materials facilitate high-efficiency and multi-value calibration, finding applications in the calibration of optical instruments and micro-CT systems. The simulations were conducted using MATLAB (R2022b) to examine the structure-morphology changes during the single-step ICP etching process. The variation rules governing line widths, periods, etching depths, and side wall verticality in integrated periodic structure reference materials were thoroughly evaluated. Linewidths were accurately extracted utilizing an advanced image processing algorithm, while average period values were determined through the precise Fast Fourier Transform method. The experimental results demonstrate that the relative errors of line widths do not exceed 17.5%, and the relative errors of periods do not exceed 1.5%. Furthermore, precise control of the etching depth was achieved, ranging from 30 to 60 μm for grids with line widths 2–20 μm. The side wall verticality exhibited remarkable consistency with an angle of 90° ± 0.8°, and its relative error was found to be less than 0.9%. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 2nd Edition)
Show Figures

Figure 1

11 pages, 3005 KiB  
Article
Study of Atmospheric Pressure Plasma Temperature Based on Silicon Carbide Etching
by Shaozhen Xu, Julong Yuan, Jianxing Zhou, Kun Cheng and Hezhong Gan
Micromachines 2023, 14(5), 992; https://doi.org/10.3390/mi14050992 - 2 May 2023
Cited by 3 | Viewed by 2402
Abstract
In order to further understand the excitation process of inductively coupled plasma (ICP) and improve the etching efficiency of silicon carbide (SiC), the effect of temperature and atmospheric pressure on plasma etching of silicon carbide was investigated. Based on the infrared temperature measurement [...] Read more.
In order to further understand the excitation process of inductively coupled plasma (ICP) and improve the etching efficiency of silicon carbide (SiC), the effect of temperature and atmospheric pressure on plasma etching of silicon carbide was investigated. Based on the infrared temperature measurement method, the temperature of the plasma reaction region was measured. The single factor method was used to study the effect of the working gas flow rate and the RF power on the plasma region temperature. Fixed-point processing of SiC wafers analyzes the effect of plasma region temperature on the etching rate. The experimental results showed that the plasma temperature increased with increasing Ar gas until it reached the maximum value at 15 slm and decreased with increasing flow rate; the plasma temperature increased with a CF4 flow rate from 0 to 45 sccm until the temperature stabilized when the flow rate reached 45 sccm. The higher the RF power, the higher the plasma region’s temperature. The higher the plasma region temperature, the faster the etching rate and the more pronounced the effect on the non-linear effect of the removal function. Therefore, it can be determined that for ICP processing-based chemical reactions, the increase in plasma reaction region temperature leads to a faster SiC etching rate. By processing the dwell time in sections, the nonlinear effect caused by the heat accumulation on the component surface is effectively improved. Full article
(This article belongs to the Special Issue Frontiers in Ultra-Precision Machining, Volume II)
Show Figures

Figure 1

9 pages, 3781 KiB  
Article
Effect of Surface Texture on Light Extraction Efficiency for LEDs
by Fu-Der Lai
Crystals 2023, 13(3), 491; https://doi.org/10.3390/cryst13030491 - 12 Mar 2023
Cited by 1 | Viewed by 2404
Abstract
The light extraction efficiency of an LED is dependent on its surface texture. However, the surface of the p-GaN layer is not easy to be etch with inverted hexagonal pyramid structures (IHPS) with small top widths and large depths using existing methods. Therefore, [...] Read more.
The light extraction efficiency of an LED is dependent on its surface texture. However, the surface of the p-GaN layer is not easy to be etch with inverted hexagonal pyramid structures (IHPS) with small top widths and large depths using existing methods. Therefore, it is important to discuss the expected effect of the conditions of thermal annealing and inductively coupled plasma (ICP) reactive ion etching (RIE) for the generation of nano-pin-holes in the photoresist and fabrication of the top surface structure of GaN-based LEDs, in order to enhance the light output power. In this study, the following four items will be discussed: (1) the effect of thermal annealing on the composition of the photoresist; (2) the effect of thermal annealing and ICP RIE on the generation of the nano-pin-holes in the photoresist; (3) the effect of ICP RIE on the IHPS; and (4) the effect of surface texture of the IHPS on the light output power. It has been found that a nano-pin-hole structure in the photoresist etching mask is needed for the fabrication of many IHPS on the LED surface. A maskless via-hole etching technique was used for texturing the photoresist to produce nano-pore structures with diameters of less than 50 nm. The relationship between the light extraction efficiency and the surface texture is discussed in detail. The simulation results show the best light extraction efficiency (LEE) ratio of 358% to be obtained when the distance between two neighboring IHPS patterns (DBNP) is 300 nm. This in turn allowed the formation of IHPS with small top widths and large depths on the LED surface. A LEE ratio of 305% was obtained with the fabrication of IHPS with a top width of 290 nm, a depth of 170 nm and a DBNP of 180 nm on the LED surface. Full article
(This article belongs to the Special Issue Optoelectronics and Photonics in Crystals)
Show Figures

Figure 1

13 pages, 4909 KiB  
Article
Femtosecond Laser Processing Assisted SiC High-Temperature Pressure Sensor Fabrication and Performance Test
by You Zhao, Yulong Zhao, Lukang Wang, Yu Yang and Yabing Wang
Micromachines 2023, 14(3), 587; https://doi.org/10.3390/mi14030587 - 28 Feb 2023
Cited by 7 | Viewed by 2538
Abstract
Due to material plastic deformation and current leakage at high temperatures, SOI (silicon-on-insulator) and SOS (silicon-on-sapphire) pressure sensors have difficulty working over 500 °C. Silicon carbide (SiC) is a promising sensor material to solve this problem because of its stable mechanical and electrical [...] Read more.
Due to material plastic deformation and current leakage at high temperatures, SOI (silicon-on-insulator) and SOS (silicon-on-sapphire) pressure sensors have difficulty working over 500 °C. Silicon carbide (SiC) is a promising sensor material to solve this problem because of its stable mechanical and electrical properties at high temperatures. However, SiC is difficult to process which hinders its application as a high-temperature pressure sensor. This study proposes a piezoresistive SiC pressure sensor fabrication method to overcome the difficulties in SiC processing, especially deep etching. The sensor was processed by a combination of ICP (inductive coupled plasma) dry etching, high-temperature rapid annealing and femtosecond laser deep etching. Static and dynamic calibration tests show that the accuracy error of the fabricated sensor can reach 0.33%FS, and the dynamic signal response time is 1.2 μs. High and low temperature test results show that the developed sensor is able to work at temperatures from −50 °C to 600 °C, which demonstrates the feasibility of the proposed sensor fabrication method. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

Back to TopTop