Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Experiment on the Effect of Etching Time on Surface Roughness
3.2. Experiments on the Effect of Ar/O2/SF6 Gas Flow Ratio on Surface Roughness
3.3. Experiments on the Effect of ICP Power on Surface Roughness
3.4. Experiments on the Effect of RF Power on Surface Roughness
3.5. Experiments on the Effect of Chamber Air Pressure on Surface Roughness
3.6. Optimal Process Results Etching
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; He, Y.; Huang, B.; Zhang, T.; Zhu, H. A Review of Diamond Materials and Applications in Power Semiconductor Devices. Materials 2024, 17, 3437. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Guo, B.; Zhang, J.; Wu, G.; Zhao, H.; Jia, J.; Meng, Q.; Zhao, Q. CVD diamond processing tools: A review. J. Adv. Res. 2024, in press. [CrossRef] [PubMed]
- Feng, X.; Yuan, X.; Zhou, J.; An, K.; Zhu, F.; Wei, X.; Huang, Y.; Zhang, J.; Chen, L.; Liu, J.; et al. A review: CNT/diamond composites prepared via CVD and its potential applications. Mater. Sci. Semicond. Process. 2025, 186, 109008. [Google Scholar] [CrossRef]
- Maze, J.R.; Stanwix, P.L.; Hodges, J.S.; Hong, S.; Taylor, J.M.; Cappellaro, P.; Jiang, L.; Dutt, M.V.G.; Togan, E.; Zibrov, A.S.; et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 2008, 455, 644–647. [Google Scholar] [CrossRef]
- Orphal-Kobin, L.; Torun, C.G.; Bopp, J.M.; Pieplow, G.; Schröder, T. Coherent Microwave, Optical, and Mechanical Quantum Control of Spin Qubits in Diamond. Adv. Quantum Technol. 2024, 8, 2300432. [Google Scholar] [CrossRef]
- Li, H.-D.; Wen, Y.; Shen, Y.; Wang, E.-P.; Zhang, S.-J.; Yuan, Q.-L.; Jiang, N.; Bo, Y.; Peng, Q.-J. Evolution of mechanical and thermal properties of diamond under external stress. Diam. Relat. Mater. 2025, 151, 111810. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, D.; Xu, B.; Hu, W.; Ma, Y.; Wang, Y.; Zhao, Z.; Wen, B.; He, J.; Liu, Z.; et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 2014, 510, 250–253. [Google Scholar] [CrossRef]
- Sun, G.; Deng, C.; Hao, W.; Zhao, J.; Fan, M.; Ding, J.; Ji, X. Study on mechanism and characteristics of laser repair of surface damage after ultra-precision grinding of monocrystalline silicon. Opt. Laser Technol. 2025, 186, 112660. [Google Scholar] [CrossRef]
- Schuelke, T.; Grotjohn, T.A. Diamond polishing. Diam. Relat. Mater. 2013, 32, 17–26. [Google Scholar] [CrossRef]
- Nojiri, K. Dry Etching Technology for Semiconductors; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zheng, Y.; Jia, Y.; Liu, J.; Wei, J.; Chen, L.; An, K.; Yan, X.; Zhang, X.; Ye, H.; Ouyang, X.; et al. Surface etching evolution of mechanically polished single crystal diamond with subsurface cleavage in microwave hydrogen plasma: Topography, state and electrical properties. Vacuum 2022, 199, 110932. [Google Scholar] [CrossRef]
- Liu, N.; Sugimoto, K.; Yoshitaka, N.; Yamada, H.; Sun, R.; Kawai, K.; Arima, K.; Yamamura, K. Effects of polishing pressure and sliding speed on the material removal mechanism of single crystal diamond in plasma-assisted polishing. Diam. Relat. Mater. 2022, 124, 108899. [Google Scholar] [CrossRef]
- Toros, A.; Kiss, M.; Graziosi, T.; Sattari, H.; Gallo, P.; Quack, N. Precision micro-mechanical components in single crystal diamond by deep reactive ion etching. Microsyst. Nanoeng. 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Degen, C.L. Single-Crystal Diamond Nanowire Tips for Ultrasensitive Force Microscopy. Nano Lett. 2015, 15, 7893–7897. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, Y.; Wang, Y.; He, Q.; Zhang, Y.; Deng, H. Microwave plasma-assisted polishing of polycrystalline diamond. Diam. Relat. Mater. 2025, 152, 111907. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Xu, R.; Yu, D. Single crystal diamond polishing assisted by inductively coupled plasma etching. Diam. Relat. Mater. 2025, 152, 111978. [Google Scholar] [CrossRef]
- Schmitt, J.; Nelissen, W.; Wallrabe, U.; Völklein, F. Implementation of smooth nanocrystalline diamond microstructures by combining reactive ion etching and ion beam etching. Diam. Relat. Mater. 2017, 79, 164–172. [Google Scholar] [CrossRef]
- Izak, T.; Kromka, A.; Babchenko, O.; Ledinsky, M.; Hruska, K.; Verveniotis, E. Comparative study on dry etching of polycrystalline diamond thin films. Vacuum 2012, 86, 799–802. [Google Scholar] [CrossRef]
- Hiscocks, M.P.; Kaalund, C.J.; Ladouceur, F.; Huntington, S.T.; Gibson, B.C.; Trpkovski, S.; Simpson, D.; Ampem-Lassen, E.; Prawer, S.; Butler, J.E. Reactive ion etching of waveguide structures in diamond. Diam. Relat. Mater. 2008, 17, 1831–1834. [Google Scholar] [CrossRef]
- Achard, J.; Tallaire, A.; Mille, V.; Naamoun, M.; Brinza, O.; Boussadi, A.; William, L.; Gicquel, A. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates. Phys. Status Solidi (a) 2014, 211, 2264–2267. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Zhang, L.; Yang, B.; Gan, Z. The Etching Mechanisms of Diamond, Graphite, and Amorphous Carbon by Hydrogen Plasma: A Reactive Molecular Dynamics Study. Adv. Theory Simul. 2023, 6, 2300371. [Google Scholar] [CrossRef]
- Villalpando, I.; John, P.; Porro, S. Wilson JIB: Hydrogen plasma etching of diamond films deposited on graphite. Diam. Relat. Mater. 2011, 20, 711–716. [Google Scholar] [CrossRef]
- Hicks, M.-L.; Pakpour-Tabrizi, A.C.; Zuerbig, V.; Kirste, L.; Nebel, C.; Jackman, R.B. Optimizing reactive ion etching to remove sub-surface polishing damage on diamond. J. Appl. Phys. 2019, 125, 244502. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, C.; Wu, B.; Geng, Z.; Zhang, X. Wafer-Scale Polishing of Polycrystalline MPACVD-Diamond. Surfaces 2022, 5, 155–164. [Google Scholar] [CrossRef]
- Racka-Szmidt, K.; Stonio, B.; Zelazko, J.; Filipiak, M.; Sochacki, M. A Review: Inductively Coupled Plasma Reactive Ion Etching of Silicon Carbide. Materials 2021, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Golovanov, A.V.; Bormashov, V.S.; Luparev, N.V.; Tarelkin, S.A.; Troschiev, S.Y.; Buga, S.G.; Blank, V.D. Diamond Microstructuring by Deep Anisotropic Reactive Ion Etching. Phys. Status Solidi (a) 2018, 215, 1800273. [Google Scholar] [CrossRef]
ICP (W) | RF (W) | Ar (sccm) | O2 (sccm) | SF6 (sccm) | Chamber Air Pressure (mTorr) | Etching Time (min) | |
---|---|---|---|---|---|---|---|
I | 200 | 40 | 40 | 50 | 10 | 20 | 1 |
5 | |||||||
10 | |||||||
15 | |||||||
20 | |||||||
25 | |||||||
30 |
ICP (W) | RF (W) | Ar (sccm) | O2 (sccm) | SF6 (sccm) | Chamber Air Pressure (mTorr) | Etching Time (min) | |
---|---|---|---|---|---|---|---|
II | 200 | 40 | 40 | 10 | 50 | ||
40 | 20 | 40 | |||||
40 | 30 | 30 | 20 | 10 | |||
40 | 40 | 20 | |||||
40 | 50 | 10 |
ICP (W) | RF (W) | Ar (sccm) | O2 (sccm) | SF6 (sccm) | Chamber Air Pressure (mTorr) | Etching Time (min) | |
---|---|---|---|---|---|---|---|
III | 100 | 40 | 40 | 50 | 10 | 20 | |
150 | |||||||
200 | 10 | ||||||
250 | |||||||
300 |
ICP (W) | RF (W) | Ar (sccm) | O2 (sccm) | SF6 (sccm) | Chamber Air Pressure (mTorr) | Etching Time (min) | |
---|---|---|---|---|---|---|---|
IV | 20 | 40 | 50 | 10 | 20 | ||
40 | |||||||
200 | 60 | 10 | |||||
80 | |||||||
100 |
ICP (W) | RF (W) | Ar (sccm) | O2 (sccm) | SF6 (sccm) | Chamber Air Pressure (mTorr) | Etching Time (min) | |
---|---|---|---|---|---|---|---|
V | 40 | 50 | 10 | 10 | 10 | ||
15 | |||||||
200 | 40 | 20 | |||||
25 | |||||||
30 |
Etching Time (min) | 1 | 3 | 5 | 7 | 9 | 10 | 11 | 13 | 15 |
---|---|---|---|---|---|---|---|---|---|
Unetched (nm) | 1.10 | 1.88 | 2.34 | 2.28 | 1.87 | 1.7 | 1.86 | 1.24 | 1.85 |
Etching (nm) | 1.09 | 1.79 | 2.20 | 1.99 | 1.10 | 0.662 | 1.97 | 1.57 | 2.89 |
Variation | 0.9% | 4.8% | 5.9% | 12.7% | 41.2% | 61.1% | −5.9% | −26.6% | −56.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Wang, X.; Jiang, M.; Zhao, C.; Jiang, N.; Nishimura, K.; Yi, J.; Fang, S. Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma. Materials 2025, 18, 2615. https://doi.org/10.3390/ma18112615
Zhao L, Wang X, Jiang M, Zhao C, Jiang N, Nishimura K, Yi J, Fang S. Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma. Materials. 2025; 18(11):2615. https://doi.org/10.3390/ma18112615
Chicago/Turabian StyleZhao, Lei, Xiangbing Wang, Minxing Jiang, Chao Zhao, Nan Jiang, Kazhihito Nishimura, Jian Yi, and Shuangquan Fang. 2025. "Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma" Materials 18, no. 11: 2615. https://doi.org/10.3390/ma18112615
APA StyleZhao, L., Wang, X., Jiang, M., Zhao, C., Jiang, N., Nishimura, K., Yi, J., & Fang, S. (2025). Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma. Materials, 18(11), 2615. https://doi.org/10.3390/ma18112615