Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (373)

Search Parameters:
Keywords = induced voltage analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10412 KiB  
Article
Design and Evaluation of Radiation-Tolerant 2:1 CMOS Multiplexers in 32 nm Technology Node: Transistor-Level Mitigation Strategies and Performance Trade-Offs
by Ana Flávia D. Reis, Bernardo B. Sandoval, Cristina Meinhardt and Rafael B. Schvittz
Electronics 2025, 14(15), 3010; https://doi.org/10.3390/electronics14153010 - 28 Jul 2025
Abstract
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely [...] Read more.
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely used in data-path routing, clock networks, and reconfigurable systems, provides a critical benchmark for assessing radiation-hardened design methodologies. In this context, this work aims to analyze the power consumption, area overhead, and delay of 2:1 multiplexer designs under transient fault conditions, employing the CMOS and Differential Cascode Voltage Switch Logic (DCVSL) logic styles and mitigation strategies. Electrical simulations were conducted using 32 nm high-performance predictive technology, evaluating both the original circuit versions and modified variants incorporating three mitigation strategies: transistor sizing, D-Cells, and C-Elements. Key metrics, including power consumption, delay, area, and radiation robustness, were analyzed. The C-Element and transistor sizing techniques ensure satisfactory robustness for all the circuits analyzed, with a significant impact on delay, power consumption, and area. Although the D-Cell technique alone provides significant improvements, it is not enough to achieve adequate levels of robustness. Full article
Show Figures

Figure 1

17 pages, 4394 KiB  
Article
Nonclinical Human Cardiac New Approach Methodologies (NAMs) Predict Vanoxerine-Induced Proarrhythmic Potential
by M. Iveth Garcia, Bhavya Bhardwaj, Keri Dame, Verena Charwat, Brian A. Siemons, Ishan Goswami, Omnia A. Ismaiel, Sabyasachy Mistry, Tromondae K. Feaster, Kevin E. Healy, Alexandre J. S. Ribeiro and Ksenia Blinova
J. Cardiovasc. Dev. Dis. 2025, 12(8), 285; https://doi.org/10.3390/jcdd12080285 - 26 Jul 2025
Viewed by 96
Abstract
New approach methodologies (NAMs), including microphysiological systems (MPSs), can recapitulate structural and functional complexities of organs. Vanoxerine was reported to induce cardiac adverse events, including torsade de points (TdP), in a Phase III clinical trial. Despite earlier nonclinical animal models and Phase I–II [...] Read more.
New approach methodologies (NAMs), including microphysiological systems (MPSs), can recapitulate structural and functional complexities of organs. Vanoxerine was reported to induce cardiac adverse events, including torsade de points (TdP), in a Phase III clinical trial. Despite earlier nonclinical animal models and Phase I–II clinical trials, events of QT prolongation or proarrhythmia were not observed. Here, we utilized cardiac NAMs to evaluate the functional consequences of vanoxerine treatment on human cardiac excitation–contraction coupling. The cardiac MPS used in this study was a microfabricated fluidic culture platform with human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) capable of evaluating voltage, intracellular calcium handling, and contractility. Likewise, the hiPSC-CM comprehensive in vitro proarrhythmia assay (CiPA) was employed based on multielectrode array (MEA). Vanoxerine treatment delayed repolarization in a concentration-dependent manner and induced proarrhythmic events in both NAM platforms. The complex cardiac MPS displayed a frequency-dependent vanoxerine response such that EADs were eliminated at a faster pacing rate (1.5 Hz). Moreover, exposure analysis revealed a 99% vanoxerine loss in the cardiac MPS. TdP risk analysis demonstrated high to intermediate TdP risk at clinically relevant concentrations of vanoxerine and frequency-independent EAD events in the hiPSC-CM CiPA model. These findings demonstrate that nonclinical cardiac NAMs can recapitulate clinical outcomes, including detection of vanoxerine-induced delayed repolarization and proarrhythmic effects. Moreover, this work provides a foundation to evaluate the safety and efficacy of novel compounds to reduce the dependence on animal studies. Full article
Show Figures

Figure 1

20 pages, 2271 KiB  
Article
Single and Combined Effects of Meropenem, Valproic Acid, and Ketoprofen on Adult Zebrafish Behavior, Oxidative Stress, and Acetylcholinesterase Activity
by Ionut-Alexandru Chelaru, Roxana Strungaru-Jijie, Mircea Nicoara, Diana Mirila, Alin Ciobica and Dorel Ureche
Pharmaceuticals 2025, 18(8), 1096; https://doi.org/10.3390/ph18081096 - 24 Jul 2025
Viewed by 205
Abstract
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, [...] Read more.
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, an anticonvulsant acting as a voltage-gated sodium channel modulator), and meropenem (Mp, a β-lactam antibiotic) at environmentally relevant concentrations on zebrafish behavior, acetylcholinesterase (AChE) activity, and oxidative status. Methods: Adult zebrafish were exposed for 4 days to Kp, VPA, Mp, and their binary and ternary mixtures. Behavioral effects were assessed using 3D novel tank and social behavior tests, while the oxidative stress response was assessed through malondialdehyde (MDA) content, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Results: Zebrafish exposed to Mp showed a notable increase in immobility, whereas those exposed to VPA and Mp + Kp exhibited a significant augmentation of average velocity and counter-clockwise rotations. All treated groups exhibited a notable increase in the time spent near the walls (thigmotaxis), and except for the control and Mp-exposed zebrafish, the other groups mostly stayed in the bottom tank zone (geotaxis). Kp, VPA + Kp, and VPA + Mp + Kp treatments impaired social behavior, with zebrafish displaying less interest in conspecifics. Biochemical analysis demonstrated that both the individual drugs and their combination caused oxidative stress, characterized by decreased GPx activity and increased SOD activity and MDA levels. Moreover, AChE activity was more strongly inhibited in zebrafish exposed to the binary and ternary mixtures than to individual drugs. Conclusions: The results indicate that acute exposure to individual and/or combined pharmaceuticals induces behavioral changes, oxidative damage, and AChE inhibition in zebrafish, highlighting the need to assess the effects of pharmaceutical mixtures for comprehensive ecosystem risks evaluation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 5656 KiB  
Article
A Quantitative Analysis Framework for Investigating the Impact of Variable Interactions on the Dynamic Characteristics of Complex Nonlinear Systems
by Yiming Tang, Chongru Liu and Chenbo Su
Electronics 2025, 14(14), 2902; https://doi.org/10.3390/electronics14142902 - 20 Jul 2025
Viewed by 165
Abstract
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a [...] Read more.
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a unified nonlinear modal analysis framework integrating second-order analytical solutions with novel nonlinear indices. Validated across diverse systems (DC microgrids and grid-connected PV), the framework yields significant findings: (1) second-order solutions outperform linearization in capturing critical oscillation/damping distortions under realistic disturbances, essential for fault analysis; (2) nonlinear effects induce modal dominance inversion and generate governing composite modes; (3) key interaction mechanisms are quantified, revealing distinct voltage regulation pathways in DC microgrids and multi-path dynamics driving DC voltage fluctuations. This approach provides a systematic foundation for dynamic characteristic assessment and directly informs control design for power electronics-dominated grids. Full article
Show Figures

Figure 1

15 pages, 2113 KiB  
Article
Improved Segmented Control Strategy for Continuous Fault Ride-Through of Doubly-Fed Wind Turbines
by Tie Chen, Yifan Xu, Yue Liu, Junlin Ren and Youyuan Fan
Energies 2025, 18(14), 3845; https://doi.org/10.3390/en18143845 - 19 Jul 2025
Viewed by 189
Abstract
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced [...] Read more.
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced electromotive force (EMF) in each stage of continuous faults, a feedforward control strategy based on the transient component of stator current is proposed. The observable stator current is extracted for its transient component, which is used as a rotor voltage compensation term to effectively counteract the influence of transient EMF. Meanwhile, a fuzzy control algorithm is introduced during the low voltage ride-through (LVRT) stage to dynamically adjust the virtual resistance value, enhancing the system’s damping characteristics. Studies show that this strategy significantly suppresses rotor current spikes in all stages of voltage ride-through. Finally, simulation results verify that the proposed method improves the ride-through performance of DFIG under continuous voltage faults. Full article
Show Figures

Figure 1

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 189
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Active Colitis-Induced Atrial Electrophysiological Remodeling
by Hiroki Kittaka, Edward J. Ouille V, Carlos H. Pereira, Andrès F. Pélaez, Ali Keshavarzian and Kathrin Banach
Biomolecules 2025, 15(7), 982; https://doi.org/10.3390/biom15070982 - 10 Jul 2025
Viewed by 346
Abstract
Patients with ulcerative colitis exhibit an increased risk for supraventricular arrhythmia during the active disease phase of the disease and show signs of atrial electrophysiological remodeling in remission. The goal of this study was to determine the basis for colitis-induced changes in atrial [...] Read more.
Patients with ulcerative colitis exhibit an increased risk for supraventricular arrhythmia during the active disease phase of the disease and show signs of atrial electrophysiological remodeling in remission. The goal of this study was to determine the basis for colitis-induced changes in atrial excitability. In a mouse model (C57BL/6; 3 months) of dextran sulfate sodium (DSS)-induced active colitis (3.5% weight/volume, 7 days), electrocardiograms (ECG) revealed altered atrial electrophysiological properties with a prolonged P-wave duration and PR interval. ECG changes coincided with a decreased atrial conduction velocity in Langendorff perfused hearts. Action potentials (AP) recorded from isolated atrial myocytes displayed an attenuated maximal upstroke velocity and amplitude during active colitis, as well as a prolonged AP duration (APD). Voltage clamp analysis revealed a colitis-induced shift in the voltage-dependent activation of the Na-current (INa) to more depolarizing voltages. In addition, protein levels of Nav1.5 protein and connexin isoform Cx43 were reduced. APD prolongation depended on a reduction in the transient outward K-current (Ito) mostly generated by Kv4.2 channels. The changes in ECG, atrial conductance, and APD were reversible upon remission. The change in conduction velocity predominantly depended on the reversibility of the reduced Cx43 and Nav1.5 expression. Treatment of mice with inhibitors of Angiotensin-converting enzyme (ACE) or Angiotensin II (AngII) receptor type 1 (AT1R) prevented the colitis-induced atrial electrophysiological remodeling. Our data support a colitis-induced increase in AngII signaling that promotes atrial electrophysiological remodeling and puts colitis patients at an increased risk for atrial arrhythmia. Full article
(This article belongs to the Special Issue Molecular Advances in Inflammatory Bowel Disease)
Show Figures

Figure 1

15 pages, 2579 KiB  
Article
Photo-Scanning Capacitance Microscopy and Spectroscopy Study of Epitaxial GaAsN Layers and GaAsN P-I-N Solar Cell Structures
by Adam Szyszka, Wojciech Dawidowski, Damian Radziewicz and Beata Ściana
Nanomaterials 2025, 15(14), 1066; https://doi.org/10.3390/nano15141066 - 9 Jul 2025
Viewed by 324
Abstract
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit [...] Read more.
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit inhomogeneity in their opto-electrical properties. By combining localized cross-section SCM measurements with wavelength-tunable optical excitation (800–1600 nm), we resolved carrier concentration profiles, internal electric fields, and deep-level transitions across the device structure at a nanoscale resolution. A comparative analysis between electrochemical capacitance–voltage (EC-V) profiling and photoluminescence spectroscopy confirmed multiple localized transitions, attributed to compositional fluctuations and nitrogen-induced defects within GaAsN. The SCM method revealed spatial variations in energy states, including discrete nitrogen-rich regions and gradual variations in the nitrogen content throughout the layer depth, which are not recognizable using standard characterization methods. Our results demonstrate the unique capability of the photo-scanning capacitance microscopy and spectroscopy technique to provide spatially resolved insights into complex dilute nitride structures, offering a universal and accessible tool for semiconductor structures and optoelectronic devices evaluation. Full article
(This article belongs to the Special Issue Spectroscopy and Microscopy Study of Nanomaterials)
Show Figures

Graphical abstract

22 pages, 5020 KiB  
Article
Upregulated Hexokinase-2 in Airway Epithelium Regulates Apoptosis and Drives Inflammation in Asthma via Peptidylprolyl Isomerase F
by Zhen Tian, Hongyan Zheng, Yan Fan, Boyu Li, Zhenli Huang, Meijia Wang, Jixian Zhang, Jianping Zhao, Shanshan Wang and Jungang Xie
Cells 2025, 14(13), 1004; https://doi.org/10.3390/cells14131004 - 1 Jul 2025
Viewed by 429
Abstract
Hexokinase catalyzes the first rate-limiting step glycolysis. However, the roles of hexokinase 2 (HK2) in asthma remain incompletely understood. This study aimed to investigate metabolic alterations in asthma, focusing on the expression, function and regulation of HK2. In this study, non-targeted metabolomics analysis [...] Read more.
Hexokinase catalyzes the first rate-limiting step glycolysis. However, the roles of hexokinase 2 (HK2) in asthma remain incompletely understood. This study aimed to investigate metabolic alterations in asthma, focusing on the expression, function and regulation of HK2. In this study, non-targeted metabolomics analysis of 20 asthma patients and 15 healthy controls identified metabolic alterations in asthma, particularly in the glycolytic pathways. Consistently, HK2 expression was elevated in both asthma individuals and mice with allergic airway inflammation. Airway epithelium–specific HK2 knockdown and pharmacological inhibition with 2-deoxy-D-glucose (2-DG) significantly attenuated airway inflammation and hyperresponsiveness in mice induced by ovalbumin/ lipopolysaccharide. Mechanistic analyses demonstrated that HK2 regulates epithelial apoptosis and inflammation via interaction with peptidylprolyl isomerase F (PPIF), independent of voltage-dependent anion channel 1 (VDAC1). Asthma is associated with metabolic reprogramming, characterized by alterations in lipid and glucose metabolism. These findings establish HK2 plays a crucial role in asthma pathogenesis by promoting airway epithelial apoptosis and inflammation in asthma, suggesting its potential as a therapeutic target. Full article
Show Figures

Figure 1

20 pages, 23523 KiB  
Article
A Wrist Brace with Integrated Piezoelectric Sensors for Real-Time Biomechanical Monitoring in Weightlifting
by Sofia Garcia, Ethan Ortega, Mohammad Alghamaz, Alwathiqbellah Ibrahim and En-Tze Chong
Micromachines 2025, 16(7), 775; https://doi.org/10.3390/mi16070775 - 30 Jun 2025
Viewed by 340
Abstract
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage [...] Read more.
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage generation to capture angular displacement. A flexible PVDF film was embedded within a custom-fitted wrist brace and tested on male and female participants performing controlled wrist flexion. The resulting voltage signals were analyzed to extract root-mean-square (RMS) outputs, calibration curves, and sensitivity metrics. To interpret the experimental results analytically, a lumped-parameter cantilever beam model was developed, linking wrist flexion angles to piezoelectric voltage output based on mechanical deformation theory. The model assumed a linear relationship between wrist angle and induced strain, enabling theoretical voltage prediction through simplified material and geometric parameters. Model-predicted voltage responses were compared with experimental measurements, demonstrating a good agreement and validating the mechanical-electrical coupling approach. Experimental results revealed consistent voltage increases with both wrist angle and applied load, and regression analysis demonstrated strong linear or mildly nonlinear fits with high R2 values (up to 0.994) across all conditions. Furthermore, surface plots and strain sensitivity analyses highlighted the system’s responsiveness to simultaneous angular and loading changes. These findings validate the smart wrist brace as a reliable, low-power biomechanical monitoring tool, with promising applications in injury prevention, rehabilitation, and real-time athletic performance feedback. Full article
Show Figures

Figure 1

16 pages, 3131 KiB  
Article
Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation
by Akeel Qadir, Munir Ali, Afshan Khaliq, Shahid Karim, Umar Farooq, Hongsheng Xu and Yiting Yu
Nanomaterials 2025, 15(13), 985; https://doi.org/10.3390/nano15130985 - 25 Jun 2025
Viewed by 254
Abstract
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically [...] Read more.
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically insensitive to water adsorption, making it difficult for adsorbed H2O to effectively dope the graphene. In contrast, when graphene is supported on the silicon substrate, water molecules can effectively dope the graphene by modifying the silicon’s impurity bands and their hybridization with graphene. This humidity-induced doping leads to a significant modulation of the Schottky barrier at the graphene–silicon interface, which serves as the core sensing mechanism. We investigate the current–voltage (I–V) characteristics of these devices as a function of trench width and relative humidity. Our analysis shows that humidity influences key device parameters, including the Schottky barrier height, ideality factor, series resistance, and normalized sensitivity. Specifically, larger trench widths reduce the graphene density of states, an effect that is accounted for in our analysis of these parameters. The sensor operates under both forward and reverse bias, enabling tunable sensitivity, high selectivity, and low power consumption. These features make it promising for applications in industrial and home safety, environmental monitoring, and process control. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

13 pages, 1876 KiB  
Article
Total Ionizing Dose Effects on Lifetime of NMOSFETs Due to Hot Carrier-Induced Stress
by Yujuan He, Rui Gao, Teng Ma, Xiaowen Zhang, Xianyu Zhang and Yintang Yang
Electronics 2025, 14(13), 2563; https://doi.org/10.3390/electronics14132563 - 25 Jun 2025
Viewed by 345
Abstract
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing [...] Read more.
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing at 100 °C to simulate long-term stability. However, under HCI stress conditions (VD = 2.7 V, VG = 1.8 V), irradiated devices show a 6.93% increase in threshold voltage shift (ΔVth) compared to non-irradiated counterparts. According to the IEC 62416 standard, the lifetime degradation of irradiated devices induced by HCI stress is only 65% of that of non-irradiated devices. Conversely, when the saturation drain current (IDsat) degrades by 10%, the lifetime doubles compared to non-irradiated counterparts. Mechanistic analysis demonstrates that partial neutralization of E’ center positive charges at the gate oxide interface by hot electrons weakens the electric field shielding effect, accelerating ΔVth drift, while interface trap charges contribute minimally to degradation due to annealing-induced self-healing. The saturation drain current shift degradation primarily correlates with electron mobility variations. This work elucidates the multi-physics mechanisms through which TID impacts device reliability and provides critical insights for radiation-hardened design optimization. Full article
Show Figures

Figure 1

15 pages, 3061 KiB  
Article
A Tool for the Assessment of Electromagnetic Compatibility in Active Implantable Devices: The Pacemaker Physical Twin
by Cecilia Vivarelli, Eugenio Mattei, Federica Ricci, Sara D'Eramo and Giovanni Calcagnini
Bioengineering 2025, 12(7), 689; https://doi.org/10.3390/bioengineering12070689 - 24 Jun 2025
Viewed by 437
Abstract
Background: The increasing use of technologies operating between 10 and 200 kHz, such as RFID, wireless power transfer systems, and induction cooktops, raises concerns about electromagnetic interference (EMI) with cardiac implantable electronic devices (CIEDs). The mechanisms of interaction within this frequency range have [...] Read more.
Background: The increasing use of technologies operating between 10 and 200 kHz, such as RFID, wireless power transfer systems, and induction cooktops, raises concerns about electromagnetic interference (EMI) with cardiac implantable electronic devices (CIEDs). The mechanisms of interaction within this frequency range have been only partially addressed by both the scientific and regulatory communities. Methods: A physical twin of a pacemaker/implantable defibrillator (PM/ICD) was developed to experimentally assess voltages induced at the input stage by low-to-mid-frequency magnetic fields. The setup simulates the two sensing modalities programmable in PMs/ICDs and allows for the analysis of different implant configurations, lead geometries, and positions within a human body phantom. Results: Characterization of the physical twin demonstrated its capability to reliably measure induced voltages in the range of 5 mV to 1.5 V. Its application enabled the identification of factors beyond the implant’s induction area that contribute to the induced voltage, such as the electrode-tissue interface and body-induced currents. Conclusions: This physical twin represents a valuable tool for experimentally validating the mechanisms of EMI in CIEDs, providing insights beyond current standards. The data obtained can serve as a reference for the validation of numerical models and patient-specific digital twins. Moreover, it offers valuable information to guide future updates and revisions of international electromagnetic compatibility standards for CIEDs. Full article
Show Figures

Figure 1

21 pages, 2977 KiB  
Article
Performance Analysis of Piezoelectric Energy Harvesting System Under Varying Bluff Body Masses and Diameters—Experimental Study and Validation with 0–1 Test
by Paweł Karpiński, Bartłomiej Ambrożkiewicz, Zbigniew Czyż and Grzegorz Litak
Appl. Sci. 2025, 15(13), 6972; https://doi.org/10.3390/app15136972 - 20 Jun 2025
Viewed by 383
Abstract
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The [...] Read more.
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The research aimed to evaluate the impact of the bluff body’s mass and diameter on the efficiency of the piezoelectric energy harvesting system. Vibrations of the test object were induced by airflow within a chamber of a closed-loop wind tunnel. Five different bluff body masses were analyzed for each of three cylindrical diameters across an airflow velocity range of 1 m/s to 10 m/s. These experiments allowed for the recording of a series of voltage signals over time. The signals were then subjected to Fast Fourier Transform (FFT) analysis. Subsequently, the relationship between vibration frequency and airflow velocity was examined. The peak-to-peak voltage value was also analyzed to provide an overall assessment of the energy harvesting efficiency of the system under investigation. Finally, the 0–1 test for chaos was additionally employed as a diagnostic tool to assess the complexity of system dynamics based on time series data. This test allowed for distinguishing between oscillatory behavior and cases where the system became trapped in a potential well, revealing key transitions in dynamic regimes. Full article
(This article belongs to the Special Issue Nonlinear Vibration Analysis of Smart Materials)
Show Figures

Figure 1

10 pages, 2117 KiB  
Article
Assessment of Interference in CIEDs Exposed to Magnetic Fields at Power Frequencies: Induced Voltage Analysis and Measurement
by Mengxi Zhou, Djilali Kourtiche, Julien Claudel, Patrice Roth, Isabelle Magne, François Deschamps and Bruno Salvi
Bioengineering 2025, 12(7), 677; https://doi.org/10.3390/bioengineering12070677 - 20 Jun 2025
Viewed by 355
Abstract
Despite ongoing concerns about electromagnetic interference affecting cardiac implantable electronic devices (CIEDs) in the electrical industry workplaces, no study has experimentally assessed induced voltages in CIEDs under exposure to power-frequency magnetic fields. This study addresses this gap by quantifying such interference using a [...] Read more.
Despite ongoing concerns about electromagnetic interference affecting cardiac implantable electronic devices (CIEDs) in the electrical industry workplaces, no study has experimentally assessed induced voltages in CIEDs under exposure to power-frequency magnetic fields. This study addresses this gap by quantifying such interference using a dedicated experimental setup to reproduce high intensity magnetic fields and to measure voltages induced on CIEDs under exposure. A thorough analysis was carried out in comparison with formula-based and simulation approaches applied in previous studies. The induced voltages on CIEDs were measured across varying configurations, including sensing mode, implantation method, exposure frequency, and magnetic field orientation. Our findings reveal the induced voltage levels under exposure from a statistical perspective and highlight correlations between susceptibility and the impact factors, with unipolar configurations and left pectoral implants exhibiting the highest susceptibility. This work provides insights into electromagnetic interference risks for CIED carriers and supports the development of individual protection strategies to enhance occupational safety. Full article
Show Figures

Figure 1

Back to TopTop